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Abstract. We study I-ultrafilters and two weaker notions for the set-
ting where I is a tall summable ideal Ig on ω. Such ultrafilters are
closely related to rapid ultrafilters. We consider this relation from vari-
ous aspects and show some similarities and differences between the two
classes of ultrafilters. Under Martin’s axiom for countable posets we
construct a rapid ultrafilter which is not an Ig-ultrafilter for arbitrary
summable ideal Ig or an ultrafilter which is Ig-ultrafilter for every tall
summable ideal Ig, but is not a Q-point.

1. Introduction

In this paper we study I-ultrafilters and their two modifications – weak
I-ultrafilters and I-friendly ultrafilters – for the case where I is a tall sum-
mable ideal on ω. In the first section we provide necessary definitions and
present some basic facts about I-ultrafilters and the other notions. We re-
call in the first section also the definition of summable ideals and mention
some known results connecting summable ideals and rapid ultrafilters.

The definition of I-ultrafilter was given by Baumgartner in [1]: Let I be
a family of subsets of a set X such that I contains all singletons and is closed
under subsets. Given an ultrafilter U on ω, we say that U is an I-ultrafilter
if for every function F : ω → X there exists A ∈ U such that F [A] ∈ I.

We modify Baumgartner’s definition so that we restrict the class of con-
sidered functions to finite-to-one or one-to-one functions: Let I be a family
of subsets of a set X such that I contains all singletons and is closed under
subsets. We say that an ultrafilter U on ω is
– weak I-ultrafilter if for every finite-to-one function F : ω → X there exists
A ∈ U such that F [A] ∈ I.
– I-friendly ultrafilter if for every one-to-one function F : ω → X there
exists A ∈ U such that F [A] ∈ I.

It follows immediately from the definition that whenever I ⊆ J then every
I-ultrafilter is a J -ultrafilter and the same holds for weak I-ultrafilters and
I-friendly ultrafilters.

From now on we only consider X = ω and I is an ideal on N although
some of the propositions in the first section are true in other settings as well.
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Recall the definition of Rudin-Keisler order ≤RK on ω∗: For U , V ∈ βω we
write U ≤RK V iff there is f ∈ ωω such that βf(V) = U , which is equivalent
to (∀U ∈ U) f−1[U ] ∈ V or (∀V ∈ V) f [V ] ∈ U .

The family of all I-ultrafilters is downwards closed in Rudin-Keisler order,
i.e. whenever U is an I-ultrafilter and V ≤RK U then V is also an I-
ultrafilter. In fact, one can state this observation as equivalence:

Lemma 1.1. U ∈ ω∗ is an I-ultrafilter if and only if every V ∈ ω∗ such
that V ≤RK U is an I-ultrafilter too.

It is important to mention that the existence of I-ultrafilters has not been
established in ZFC, but it is consistent with ZFC for a large class of ideals
on ω. Assuming Martin’s axiom for σ-centered posets we proved in [4] that
I-ultrafilters exist for every tall ideal I on ω. Remember that an ideal on
ω is called tall (or dense) if for every infinite set A ⊆ ω there exists infinite
B ⊆ A such that B ∈ I. It is not difficult to check that for ideals which are
not tall the corresponding I-ultrafilters cannot exist.

For a function g : ω → (0,∞) such that
∑
n∈ω

g(n) = +∞ the family

Ig = {A ⊆ ω :
∑

a∈A

g(a) < +∞}

is an ideal on ω which we call summable ideal determined by function g. A
summable ideal is tall if and only if lim

n→∞ g(n) = 0.
It is important for our purposes that the summable ideals are P -ideals,

i.e. if An, n ∈ ω, belong to Ig then there exists A ∈ Ig such that An ⊆∗ A
for every n ∈ ω where An ⊆∗ A means A contains all but finitely many
elements of An.

From now on we will consider only (weak) Ig-ultrafilters and Ig-friendly
ultrafilters for a tall summable ideal Ig if not explicitly stated otherwise.
Our aim is to compare such ultrafilters to rapid ultrafilters and Q-points, so
let us recall the definitions:

A free ultrafilter U is called a rapid ultrafilter if the enumeration functions
of its sets form a dominating family in (ωω,≤∗) where enumeration function
of a set A is the unique strictly increasing function eA from ω onto A.

A free ultrafilter U is called a Q-point if for every partition {Qn : n ∈ ω}
of ω into finite sets there is U ∈ U such that |U ∩Qn| ≤ 1 for every n ∈ ω.

It is known that every Q-point is a rapid ultrafilter, but not vice versa.
There exists a certain connection of weak Ig-ultrafilters to rapid ultra-

filters. Some results published in [7] and other presented in [6] concerning
rapid ultrafilters may be translated in terms of I-ultrafilters as follows

Theorem 1.2. For an ultrafilter U ∈ ω∗ the following are equivalent:
(1) U is rapid
(2) U is a weak I-ultrafilter for every tall summable ideal I
(3) U is an I-friendly ultrafilter for every tall summable ideal I
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(4) U ∩ I 6= ∅ for every tall summable ideal I
In section 3. we will show that rapid ultrafilters need not be Ig-ultrafilters.

So it is consistent that for every summable ideal Ig one cannot reverse the
obvious implication that every I-ultrafilter is a weak I-ultrafilter.

On the other hand, one would like to construct an Ig-ultrafilter which is
not rapid. This has been proved for I 1

n
-ultrafilters in [4], but not yet for

an arbitrary summable ideal Ig. Leaving this problem open we present in
section 4. a weaker result that it is consistent that there exists an ultrafilter
which is an Ig-ultrafilter for all summable ideals and not a Q-point.

All the results in this paper are consistency results. It is not known
whether (weak) Ig-ultrafilters exist in ZFC. For Ig-friendly ultrafilters the
situation is a bit different. It has been proved in [4] that Ig-friendly ultra-
filters exist in ZFC for g = 1

n and the construction may be easily modified
for g = lnp n

n , where p ≥ 0.

2. The existence of Ig-ultrafilters

Assuming Martin’s axiom for σ-centered posets one can construct I-
ultrafilters for arbitrary tall ideal I. Thus for every tall summable ideal Ig

it is consistent that Ig-ultrafilters (and weak Ig-ultrafilters and Ig-friendly
ultrafilters) exist. However, it is sufficient to assume Martin’s axiom for
countable posets when we consider summable ideals and one can even re-
quire more — we will construct an ultrafilter U ∈ ω∗ which is an Ig-ultrafilter
for all summable ideals Ig.

Theorem 2.1. (MActble) There exists U ∈ ω∗ such that U is an Ig-ultrafilter
for every tall summable ideal Ig.

Proof. Enumerate all pairs {〈fα, Igα〉 : α < c} where fα ∈ ωω and Igα is a
tall summable ideal. By transfinite induction on α < c we will construct
filter bases Fα so that the following conditions are satisfied:

(i) F0 is the Fréchet filter
(ii) Fα ⊆ Fβ whenever α ≤ β
(iii) Fγ =

⋃
α<γ Fα for γ limit

(iv) (∀α) |Fα| ≤ |α| · ω
(v) (∀α) (∃U ∈ Fα+1) fα[U ] ∈ Igα

Conditions (i)–(iii) take care of the beginning and continuation of the
induction. Because of (iii) condition (iv) is satisfied at limit stages of the
construction and one only has to check that conditions (iv) and (v) hold at
non-limit induction steps.

Induction step: Suppose we know already Fα. If there is F ∈ Fα such
that fα[F ] ∈ Igα then simply put Fα+1 = Fα. If fα[F ] 6∈ Igα (in particular,
fα[F ] is infinite) for every F ∈ Fα we will construct a suitable set eventually
making use of Martin’s Axiom.
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If there exists K ∈ [ω]<ω such that F ∩f−1
α [K] is infinite for every F ∈ Fα

then we let Fα+1 be the filter base generated by Fα and U = f−1
α [K]. In

the following we will assume that no such set exists, i.e. (♣) for every
K ∈ [ω]<ω there is FK ∈ Fα such that FK ∩ f−1

α [K] is finite. This means
also that F \ f−1

α [K] is infinite for every F ∈ Fα.

Consider P = {K ∈ [ω]<ω : (∀u, v ∈ fα[K]) if u < v then gα(v) < 1
2gα(u)}

and define a partial order ≤P on P in the following way: K ≤P L if and
only if K = L or K ⊃ L and minK \ L > maxL. For every F ∈ Fα and
k ∈ ω define DF,k = {K ∈ P : |F ∩K| ≥ k}.

Claim. DF,k = {K ∈ P : |F ∩K| ≥ k} is dense in P for every F ∈ Fα

and k ∈ ω.
Take arbitrary L ∈ P . Since limn→∞ gα(n) = 0 there exists nL > max fα[L]
such that for every n ≥ nL we have gα(n) ≤ 1

2 gα(max fα[L]). According to
the assumption (♣) the set F \ f−1

α [0, nL) is infinite and we can inductively
pick mi ∈ F \ f−1

α [0, nL) for i = 1, . . . , k so that m1 > maxL, mi+1 > mi,
fα(mi+1) > fα(mi) and gα(fα(mi+1)) < 1

2 gα(fα(mi)). Finally, let K =
L ∪ {mi : i = 1, . . . , k}. It is obvious that K ≤P L and K ∈ DF,k.

The family D = {DF,k : F ∈ Fα, k ∈ ω} consists of dense subsets of P
and has cardinality less than c. So there exists a D-generic filter G on P .
Let U =

⋃{K : K ∈ G}. It remains to check that U is the set to add to Fα.
(1) (∀F ∈ Fα) U ∩ F is infinite

For every k ∈ ω and every K ∈ G ∩DF,k we have U ⊃ K and |K ∩ F | ≥ k.
Thus U ∩ F is infinite.

(2) fα[U ] ∈ Igα

Enumerate fα[U ] = {un : n ∈ ω}. For every n ∈ ω there exists Kn ∈ G
such that un, un+1 ∈ fα[Kn]. Definition of P implies gα(un+1) < 1

2 gα(un).
Therefore ∑

n∈ω

gα(un) ≤
∑
n∈ω

1
2n

gα(u0) = 2 gα(u0)

and fα[U ] belongs to the ideal Igα .
Due to (1) filter base generated by Fα and U is a uniform filter base,

which will be taken as Fα+1 to complete the induction step.

Finally, let F =
⋃

α<cFα and consider an ultrafilter U ⊇ F . Because
of condition (v) in the construction, U is an Ig-ultrafilter for every tall
summable ideal Ig. ¤

We say that a free ultrafilter U is a hereditarily rapid ultrafilter if it is
a rapid ultrafilter such that for every V ≤RK U the ultrafilter V is again a
rapid ultrafilter.

It follows from Theorem 1.2 and Lemma 1.1 that the ultrafilter con-
structed in Theorem 2.1 is a hereditarily rapid ultrafilter. Although hered-
itarily rapid ultrafilters have been already constructed in [4], we present
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here a different construction because the existence of such ultrafilters is an
important prerequisite for the Theorem 4.2 in this paper.

3. Rapid ultrafilters need not be Ig-ultrafilters

It has been proved in [4] that assuming Martin’s axiom for countable
posets for every tall ideal I there exists a Q-point (and hence of course
rapid ultrafilter) which is not an I-ultrafilter. It follows that for every
summable ultrafilter Ig there exists under MActble a Q-point, which is not
an Ig-ultrafilter. In this chapter we strengthen the result and show that
assuming Martin’s Axiom for countable posets there is a Q-point which is
not an Ig-ultrafilter for all summable ideals at once. It is a consequence of
the more general Theorem 3.3. Several lemmas precede the main theorem
in this section to make its proof more transparent.

Let us recall that a family A = {Aα,n : α ∈ I, n ∈ ω} ⊆ P(ω) is called
independent with respect to a filter (or filter base) F if {Aα,n : n ∈ ω} is a
partition of ω into infinite sets for every α ∈ I and (∀F ∈ F) (∀M ∈ [I]<ω)
(∀f : M → ω) |F ∩⋂

β∈M Aβ,f(β)| = ω.

Lemma 3.1. (MActble) Assume F is filter base on ω with |F| < c and
family A = {Aβ,n : β ≤ α, n ∈ ω}, α < c, is independent with respect to F .
Then there exists a partition of ω into infinite sets {Aα+1,n : n ∈ ω} such
that A′ = A ∪ {Aα+1,n : n ∈ ω} is independent with respect to F .

Proof. Consider the set of all finite functions P = (<ωω,≤P ) with partial
order defined by σ2 ≤P σ1 if σ2 is an end extension of σ1. For every F ∈ F ,
M ∈ [α]<ω, f : M → ω and m,n ∈ ω let DF,M,f,m,n = {σ ∈ P : (∃k ≥ m)
k ∈ F ∩⋂

β∈M Aβ,f(β), k ∈ domσ and σ(k) = n}.
Claim. DF,M,f,m,n is dense in (P,≤P ) for every F ∈ F , M ∈ [α]<ω,

f : M → ω and m, n ∈ ω.
Take arbitrary ρ ∈ P . Since F ∩ ⋂

β∈M Aβ,f(β) is infinite there exists k ∈
F ∩⋂

β∈M Aβ,f(β) such that k > maxdom ρ and k ≥ m. Put σ = ρa〈k, n〉.
Obviously, σ ≤P ρ and σ ∈ DF,M,f,m,n.

The family D = {DF,M,f,m,n : F ∈ F , M ∈ [α]<ω, f : M → ω, m, n ∈ ω}
consists of dense subsets of P and has cardinality less than c. So there exists
a D-generic filter G on P .

Let g =
⋃{σ : σ ∈ G}. Observe that there are infinitely many k ∈

F ∩⋂
β∈M Aβ,f(β) such that g(k) = n. Thus {g−1(n) : n ∈ ω} is a partition

of ω into infinite sets. Let Aα+1,n = g−1(n) for every n ∈ ω. It follows
from the definition of {Aα+1,n : n ∈ ω} that A′ = A ∪ {Aα+1,n : n ∈ ω} is
independent with respect to F . ¤

Lemma 3.2. (MActble) Assume F is filter base on ω with |F| < c, family
A = {Aβ,n : β ≤ α, n ∈ ω}, α < c, is independent with respect to F and
Q = {Qi : i ∈ ω} is a partition of ω into finite sets.
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Then there exists H ⊆ ω such that |H ∩ Q| ≤ 1 for every Q ∈ Q and A is
independent with respect to the filter base F ′ generated by F and H.

Proof. Consider the set P = {K ∈ [ω]<ω : (∀Q ∈ Q) |K ∩ Q| ≤ 1} with
partial order defined by K ≤P L if K = L or K ⊃ L and min(K \ L) >
maxL. For every F ∈ F , M ∈ [α]<ω, f : M → ω and k ∈ ω let DF,M,f,k =
{K ∈ P : |K ∩ F ∩⋂

β∈M Aβ,f(β)| ≥ k}.
Claim: DF,M,f,k is dense in (P,≤P ) for every F ∈ F , M ∈ [α]<ω, f :

M → ω and k ∈ ω.
Whenever we take L ∈ P there is a finite set S ⊆ ω such that L ⊆ ⋃

i∈S Qi.
Since F ∩⋂

β∈M Aβ,f(β) is infinite there exists L′ ⊆ F ∩⋂
β∈M Aβ,f(β) such

that minL′ > max
⋃

i∈S Qi, |L′| ≥ k and |L′ ∩Q| ≤ 1 for every Q ∈ Q. Put
K = L ∪ L′. It is easy to see that K ≤P L and K ∈ DF,M,f,k. ¤

The family D = {DF,M,f,k : F ∈ F , M ∈ [α]<ω, f : M → ω, k ∈ ω}
consists of dense subsets of P and has cardinality less than c. So there
exists a D-generic filter G on P . Let H =

⋃{K : K ∈ G}. It remains to
check that H has the required properties:

(1) (∀Q ∈ Qα) |H ∩Q| ≤ 1
If u, v ∈ H then there is K ∈ G such that u, v ∈ K and according to the
definiton of P elements u, v belong to distinct sets from partition Q.

(2) (∀F ∈ F) (∀M ∈ [α]<ω) (∀f : M → ω) |H ∩ F ∩⋂
β∈M Aβ,f(β)| = ω

For every k ∈ ω and every K ∈ G ∩DF,M,f,k we have H ⊃ K and |K ∩ F ∩⋂
β∈M Aβ,f(β)| ≥ k. Thus H ∩ F ∩⋂

β∈M Aβ,f(β) is infinite and family A is
independent with respect to the filter base F ′ generated by F and H. ¤

Theorem 3.3. (MActble) Assume {Iα : α < c} is a family of tall ideals.
There is a Q-point which is not an Iα-ultrafilter for every α < c.

Proof. Enumerate all partitions of ω into finite sets as {Qα : α < c}. By
transfinite induction on α < c we will construct filter bases Fα and families
Aα = {Aβ,n : β ≤ α, n ∈ ω} such that {Aα,n : n ∈ ω} is a partition of ω into
infinite sets for every α < c and the following conditions are satisfied:

(i) F0 is the Fréchet filter, A0 is partition of ω into infinite sets
(ii) Fα ⊆ Fβ, Aα ⊆ Aβ whenever α ≤ β
(iii) Fγ =

⋃
α<γ Fα, Aγ =

⋃
α<γ Aα for γ limit

(iv) (∀α) |Fα| ≤ |α| · ω and |Aα| ≤ |α| · ω
(v) (∀α) Aα is independent with respect to Fα

(vi) (∀α) (∃F ∈ Fα+1) (∀Q ∈ Qα) |F ∩Q| ≤ 1
Conditions (i)–(iii) allow us to start and continue the induction, moreover

(iii) ensures that (iv)–(vi) are satisfied at limit stages of the construction. It
is neccesary to check conditions (iv)–(vi) at non-limit induction step only.

Induction step: Suppose we know already Fα and Aα. Due to (iv) and
(v) we may apply Lemma 3.1 to Fα and Aα and put Aα+1 = A′. The family
Aα+1 satisfies condition (iv) and is independent with respect to Fα. Now,
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we may apply Lemma 3.2 to Fα, Aα+1 and Qα and put Fα+1 = F ′. The
filter base Fα+1 satisfies (iv)–(vi).

Finally, let F =
⋃

α<cFα. Every ultrafilter which extends F is a Q-
point because of condition (vi). Let us show that F can be extended to an
ultrafilter which is not an Iα-ultrafilter for every α < c. For every X ∈ Iα

let GX
α =

⋃{Aα,n : n 6∈ X}. Family Gα = {GX
α : X ∈ Iα} is a filter base for

every α < c because it is closed under finite intersections.
Claim 1. G = F ∪⋃{Gα : α < c} has finite intersection property.

We have to check that GX1
α1
∩GX2

α2
∩· · ·∩GXk

αk
∩F is infinite whenever F ∈ F ,

GXi
αi
∈ Gαi . We may assume α1 < α2 < · · · < αk < c and F ∈ Fβ. Let

α = max{β, αi : i = 1, 2, . . . , k} and for every i = 1, 2, . . . , k choose ni 6∈ Xi.
The set F ∩ ⋂k

i=1 Aαi,ni is infinite because family Aα is independent with
respect to Fα ⊇ Fβ. It follows from GXi

αi
⊇ Aαi,ni that F ∩⋂k

i=1 GXi
αi

is also
infinite.

Let U be an ultrafilter which extends G. The ultrafilter U is obviously a
Q-point because it extends F . To complete the proof it remains to check
that U is not an Iα-ultrafilter for every α < c.

Claim 2. (∀α < c) U is not an Iα-ultrafilter.
Given α < c define fα : ω → ω by fα[Aα,n] = {n}. Assume for the contrary
that there exists U ∈ U such that fα[U ] = X ∈ Iα. Then GX

α = f−1
α [ω \X]

is disjoint from U and U is not an ultrafilter — a contradiction. ¤
Corollary 3.4. (MActble) There is a Q-point which is not an Ig-ultrafilter
for every (tall) summable ideal Ig.

Proof. This is an immediate consequence of Theorem 3.3 because there are
only c-many summable ideals. ¤

4. Ig-ultrafilters need not be Q-points

Unlike Q-points, Ig-ultrafilters are closed under sums and products. We
will use this fact to construct an Ig-ultrafilter which is not a Q-point. So
let us first recall the definition of ultrafilter sums and products (for details
see [2]).

Assume U and Vn, n ∈ ω, are ultrafilters on ω. There is an ultrafilter on
ω × ω denoted as

∑
U 〈Vn : n ∈ ω〉 defined by M ∈ ∑

U 〈Vn : n ∈ ω〉 if and
only if {n : {m : 〈n,m〉 ∈ A} ∈ Vn} ∈ U . Ultrafilter

∑
U 〈Vn : n ∈ ω〉 is

called the U-sum of ultrafilters Vn, n ∈ ω. If Vn = V for every n ∈ ω then
we write

∑
U 〈Vn : n ∈ ω〉 = U · V and ultrafilter U · V is called the product

of ultrafilters U and V.
The ultrafilter sum of Ig-ultrafilters is again an Ig-ultrafilter and product

of Ig-ultrafilters is again an Ig-ultrafilter for arbitrary summable ideal Ig

because summable ideals are P -ideals and the following proposition holds.

Proposition 4.1. Let I be a P -ideal on ω. If U is an I-ultrafilter and
{n : Vn is I-ultrafilter} ∈ U then

∑
U 〈Vn : n ∈ ω〉 is an I-ultrafilter.
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Proof. Suppose U is an I-ultrafilter and for some U0 ∈ U the ultrafilters Vn,
n ∈ U0, are also I-ultrafilters. Let f : ω × ω → ω be an arbitrary function.
We want to find M ∈ ∑

U 〈Vn : n ∈ ω〉 such that f [M ] ∈ I.
For every n ∈ U0 define fn : ω → ω by fn(m) = f(〈n,m〉) for every

m ∈ ω. According to the assumption for every n ∈ U0 there exists Vn ∈ Vn

such that fn[Vn] ∈ I. Since I is a P -ideal there is a set A ∈ I such that
fn[Vn] ⊆∗ A for every n ∈ U0.

The set f−1
n [fn[Vn]] belongs obviously to Vn. Therefore either f−1

n [fn[Vn]∩
A] or f−1

n [fn[Vn] \A] belongs to Vn for every n ∈ U0. Define I0 = {n ∈ U0 :
f−1

n [fn[Vn] ∩A] ∈ Vn} and I1 = {n ∈ U0 : f−1
n [fn[Vn] \ A] ∈ Vn}. Since U is

an ultrafilter one of the sets I0, I1 belongs to the ultrafilter U .
Case A. I0 ∈ U
Put M = {{n} × f−1

n [fn[Vn] ∩ A] : n ∈ I0}. It is easy to see that M ∈∑
U 〈Vn : n ∈ ω〉 and f [M ] =

⋃
n∈I0

fn[Vn] ∩A ⊆ A ∈ I.
Case B. I1 ∈ U
Since fn[Un]\A is finite and Vn is an ultrafilter, there exists kn ∈ fn[Un]\A

such that f−1
n {kn} ∈ Vn for every n ∈ I1. Define g : ω → ω by g(n) = kn if

n ∈ I1 and arbitrarily otherwise. Since U is an I-ultrafilter there exists U ∈
U such that g[U ] ∈ I. It remains to put M = {{n}× f−1

n {kn} : n ∈ I1 ∩U}.
It is easy to check that M ∈ ∑

U 〈Vn : n ∈ ω〉 and f [M ] ⊆ g[U ] ∈ I. ¤
Theorem 4.2. (MActble) There exists U ∈ ω∗ such that U is an Ig-ultrafilter
for every tall summable ideal Ig and U is not a Q-point.

Proof. According to Theorem 2.1 there exists an ultrafilter U ∈ ω∗ such
that U is an Ig-ultrafilter for every tall summable ideal Ig. By Proposition
4.1 the ultrafilter U × U is again an Ig-ultrafilter for every tall summable
ideal Ig, but it is not a Q-point because no product of two ultrafilters is a
Q-point. ¤

Unfortunately, one cannot use ultrafilter sums to construct Ig-ultrafilters
which are not rapid because rapid ultrafilters are closed under sums over
rapid ultrafilters. Thus it remains an open problem whether for every tall
summable ideal Ig there exists an Ig-ultrafilter which is not rapid.
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