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Van der Waerden spaces

A ⊆ N is an AP-set if A contains arithmetic
progressions of arbitrary length.
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Van der Waerden spaces

A ⊆ N is an AP-set if A contains arithmetic
progressions of arbitrary length.

• (van der Waerden theorem)
Sets that are not AP-sets form an ideal

Definition A. (Kojman)

A topological space X is called van der Waerden

if for every sequence 〈xn〉n∈ω in X there exists

a converging subsequence 〈xnk
〉k∈ω so that

{nk : k ∈ ω} is an AP-set.
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Hindman spaces

A ⊆ N is an IP-set if A contains all finite sums of
elements of some infinite set.
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Hindman spaces

A ⊆ N is an IP-set if A contains all finite sums of
elements of some infinite set.

• (Hindman theorem)
Sets that are not IP-sets form an ideal

Definition B.

A topological space X is called Hindman

if for every sequence 〈xn〉n∈ω in X there exists

a converging subsequence 〈xnk
〉k∈ω so that

{nk : k ∈ ω} is an IP-set.
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Hindman spaces

A ⊆ N is an IP-set if A contains all finite sums of
elements of some infinite set.

• (Hindman theorem)
Sets that are not IP-sets form an ideal

Definition B.

A topological space X is called Hindman

if for every sequence 〈xn〉n∈ω in X there exists

a converging subsequence 〈xnk
〉k∈ω so that

{nk : k ∈ ω} is an IP-set.

!!! only finite T2 spaces fullfill the condition!!!
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Hindman spaces

An IP-sequence in a topological space is a sequence

indexed by FS(D) for some infinite D ⊆ N.
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Hindman spaces

An IP-sequence in a topological space is a sequence

indexed by FS(D) for some infinite D ⊆ N.

An IP-sequence 〈xn〉n∈FS(D) in a topological space X
IP-converges to a point x ∈ X if for every
neighborhood U of x there exists m ∈ N such that

{xn : n ∈ FS(D \ m)} ⊆ U .
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Hindman spaces

An IP-sequence in a topological space is a sequence

indexed by FS(D) for some infinite D ⊆ N.

An IP-sequence 〈xn〉n∈FS(D) in a topological space X
IP-converges to a point x ∈ X if for every
neighborhood U of x there exists m ∈ N such that

{xn : n ∈ FS(D \ m)} ⊆ U .

Definition B. (Kojman)

A topological space X is called Hindman

if for every sequence 〈xn〉n∈ω in X there exists

an infinite set D ⊆ N such that 〈xn〉n∈FS(D)

IP-converges to some x ∈ X .
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Known facts

Theorem (Kojman)

• There exists a sequentially compact space which is
not van der Waerden.
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Known facts

Theorem (Kojman)

• There exists a sequentially compact space which is
not van der Waerden.

• There exists a sequentially compact space which is
not Hindman.

Proof. Consider the one-point compactification of

Ψ(A) for a suitable MAD family A.
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Ψ-spaces

For a given maximal almost disjoint (MAD) family A
of infinite subsets of N we define the space Ψ(A) as
follows:
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Ψ-spaces

For a given maximal almost disjoint (MAD) family A
of infinite subsets of N we define the space Ψ(A) as
follows:

• The underlying set is N ∪ {pA : A ∈ A}.

• Every point in N is isolated.

• Every point pA has neighborhood base of all sets

{pA} ∪ A \ K where K is a finite subset of A.

Note: Ψ(A) is regular, first countable and separable.
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Known facts

Theorem (Kojman)

If a Hausdorff space X satisfies the following condition

(∗) The closure of every countable set in X is compact
and first-countable.

Then X is both van der Waerden and Hindman.
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Known facts

Theorem (Kojman)

If a Hausdorff space X satisfies the following condition

(∗) The closure of every countable set in X is compact
and first-countable.

Then X is both van der Waerden and Hindman.

For example, compact metric spaces or every succesor
ordinal with the order topology satisfy (∗).
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Known facts + questions

Theorem (Kojman, Shelah)
(CH) There exists a van der Waerden space which is not
Hindman.
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Known facts + questions

Theorem (Kojman, Shelah)
(CH) There exists a van der Waerden space which is not
Hindman.

Theorem (Jones)
(MAσ−cent.) There exists a van der Waerden space
which is not Hindman.

(Jones) Is it consistent that there is a Hindman space
which is not a van der Waerden space?
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Known facts + questions

Theorem (Kojman, Shelah)
(CH) There exists a van der Waerden space which is not
Hindman.

Theorem (Jones)
(MAσ−cent.) There exists a van der Waerden space
which is not Hindman.

(Jones) Is it consistent that there is a Hindman space
which is not a van der Waerden space?

Is it possible to strentghen the result of Jones?
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I1/n-spaces

I1/n= {A ⊆ N :
∑

a∈A
1
a < ∞}
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1
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• I1/n is an Fσ-ideal like van der Waerden ideal.
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I1/n-spaces

I1/n= {A ⊆ N :
∑

a∈A
1
a < ∞}

• I1/n is an Fσ-ideal like van der Waerden ideal.

Definition A. (Kojman)

A topological space X is called van der Waerden

if for every sequence 〈xn〉n∈ω in X there exists

a converging subsequence 〈xnk
〉k∈ω so that

{nk : k ∈ ω} is an AP-set.
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I1/n-spaces

I1/n= {A ⊆ N :
∑

a∈A
1
a < ∞}

• I1/n is an Fσ-ideal like van der Waerden ideal.

Definition C.

A topological space X is called I1/n-space

if for every sequence 〈xn〉n∈ω in X there exists a

converging subsequence 〈xnk
〉k∈ω so that

{nk : k ∈ ω} does not belong to I1/n.
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I1/n-spaces

Theorem 1.

If a Hausdorff space X satisfies the following condition

(∗) The closure of every countable set in X is compact
and first-countable.

Then X is an I1/n-space.
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I1/n-spaces

Theorem 1.

If a Hausdorff space X satisfies the following condition

(∗) The closure of every countable set in X is compact
and first-countable.

Then X is an I1/n-space.

Theorem 2.

There exists a sequentially compact space which is not
an I1/n-space.
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I1/n & van der Waerden spaces

Erdős-Turán Conjecture.

Every set A 6∈ I1/n is an AP-set.

If Erdős-Turán Conjecture is true then
every I1/n-space is van der Waerden.
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I1/n & van der Waerden spaces

Erdős-Turán Conjecture.

Every set A 6∈ I1/n is an AP-set.

If Erdős-Turán Conjecture is true then
every I1/n-space is van der Waerden.

Theorem 3.

(MAσ−cent.) There exists a van der Waerden space

which is not an I1/n-space.
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I1/n & Hindman spaces

There is no inclusion between I1/n and Hindman ideal.
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I1/n & Hindman spaces

There is no inclusion between I1/n and Hindman ideal.

Theorem 4.

(MAσ−cent.) There exists an I1/n-space which is not

Hindman.
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I1/n & Hindman spaces

There is no inclusion between I1/n and Hindman ideal.

Theorem 4.

(MAσ−cent.) There exists an I1/n-space which is not

Hindman.

Proposition

(MAσ−cent.) There exists a MAD family A consisting of
non-IP-sets so that for every B ⊆ N, B 6∈ I1/n and

every finite-to-one function f : B → N there exists

C ⊆ B, C 6∈ I1/n and A ∈ A so that f [C] ⊆ A.
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I1/n & Hindman spaces

Question

Is it consistent that there is a Hindman space which is
not an I1/n-space?
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Question

Is it consistent that there is a Hindman space which is
not an I1/n-space?

A ⊆ N is an ip-rich set if A contains all finite sums of
elements of arbitrarily large finite sets.
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I1/n & Hindman spaces

Question

Is it consistent that there is a Hindman space which is
not an I1/n-space?

A ⊆ N is an ip-rich set if A contains all finite sums of
elements of arbitrarily large finite sets.

• Every IP-set is by definition ip-rich

• (Folkman-Rado-Sanders)
Sets that are not ip-rich form an ideal
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I1/n & Hindman spaces

Question

Is it consistent that there is a Hindman space which is
not an I1/n-space?

A ⊆ N is an ip-rich set if A contains all finite sums of
elements of arbitrarily large finite sets.

• Every IP-set is by definition ip-rich

• (Folkman-Rado-Sanders)
Sets that are not ip-rich form an ideal

• Ideal Iipr is an Fσ-ideal
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I1/n & Iipr-spaces

Definition D.

A topological space X is called Iipr-space

if for every sequence 〈xn〉n∈ω in X there exists a

converging subsequence 〈xnk
〉k∈ω so that

{nk : k ∈ ω} is an ip-rich set.
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I1/n & Iipr-spaces

Definition D.

A topological space X is called Iipr-space

if for every sequence 〈xn〉n∈ω in X there exists a

converging subsequence 〈xnk
〉k∈ω so that

{nk : k ∈ ω} is an ip-rich set.

Theorem 7.

(MAσ−cent.) There exists an Iipr-space which is not

an I1/n-space.
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Weak I-ultrafilters

Definition (Baumgartner)

Let I be a family of subsets of a set X such that I
contains all singletons and is closed under subsets.
An ultrafilter U on N is called an I-ultrafilter
if for every F : N → X there exists A ∈ U
such that F [A] ∈ I .
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Weak I-ultrafilters

Definition E.

Let I be a family of subsets of a set X such that I
contains all singletons and is closed under subsets.
An ultrafilter U on N is called an weak I-ultrafilter
if for every finite-to-one F : N → X there exists

A ∈ U such that F [A] ∈ I .
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Weak I-ultrafilters

Definition E.

Let I be a family of subsets of a set X such that I
contains all singletons and is closed under subsets.
An ultrafilter U on N is called an weak I-ultrafilter
if for every finite-to-one F : N → X there exists

A ∈ U such that F [A] ∈ I .

Definition (Hindman)

An ultrafilter U on N is called weakly summable if
every U ∈ U is an IP-set.
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I1/n-ultrafilters

Theorem 8.

(MActble) There exists an I1/n-ultrafilter U ∈ N
∗ such

that every U ∈ U is an ip-rich set.
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I1/n-ultrafilters

Theorem 8.

(MActble) There exists an I1/n-ultrafilter U ∈ N
∗ such

that every U ∈ U is an ip-rich set.

Theorem 9.
(MActble) There exists a weak I1/n-ultrafilter U ∈ N

∗

which is weakly summable ultrafilter.
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I1/n-ultrafilters

Theorem 8.

(MActble) There exists an I1/n-ultrafilter U ∈ N
∗ such

that every U ∈ U is an ip-rich set.

Theorem 9.
(MActble) There exists a weak I1/n-ultrafilter U ∈ N

∗

which is weakly summable ultrafilter.

Question
Is it consistent that there is a weakly summable
I1/n-ultrafilter?
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