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Van der Waerden spaces

A C Nis an AP-set if A contains arithmetic
progressions of arbitrary length.
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Van der Waerden spaces

A C Nis an AP-set if A contains arithmetic
progressions of arbitrary length.

e (van der Waerden theorem)
Sets that are not AP-sets form an ideal

Definition A. (Kojman)

A topological space X is called van der Waerden
if for every sequence (x,,),c, in X there exists

a converging subsequence (X, ) ke, SO that

{ny : k € w} is an AP-set.
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Hindman spaces

A C Nis an IP-set if A contains all finite sums of
elements of some infinite set.
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Hindman spaces

A C Nis an IP-set if A contains all finite sums of
elements of some infinite set.

e (Hindman theorem)
Sets that are not IP-sets form an 1deal
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Hindman spaces

A C Nis an IP-set if A contains all finite sums of
elements of some infinite set.

e (Hindman theorem)
Sets that are not IP-sets form an 1deal

A topological space X is called Hindman

if for every sequence (x,,),c, in X there exists
a converging subsequence (X, )re, SO that
{ng : k € w} is an IP-set.
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Hindman spaces

A C Nis an IP-set if A contains all finite sums of
elements of some infinite set.

e (Hindman theorem)
Sets that are not IP-sets form an 1deal

A topological space X is called Hindman

if for every sequence (x,,),c, in X there exists
a converging subsequence (X, )re, SO that
{ng : k € w}is an IP-set.

11 only finite T spaces fullfill the condition!!!
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Hindman spaces

An IP-sequence 1n a topological space 1s a sequence
indexed by F'S(D) for some infinite D C N.
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Hindman spaces

An in a topological space 1s a sequence
indexed by F'S(D) for some infinite D C N.

An IP-sequence (,),crs(p) in a topological space X

to a point x € X if for every
neighborhood U of x there exists m € N such that

{x, . ne FS(D\m)} CU.
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Hindman spaces

An in a topological space 1s a sequence
indexed by F'S(D) for some infinite D C N.

An IP-sequence (,),crs(p) in a topological space X

to a point x € X if for every
neighborhood U of x there exists m € N such that

{x, . ne FS(D\m)} CU.

A topological space X is called

if for every sequence (x,,),c, in X there exists
an infinite set D C N such that (z,,) e rg(D)
IP-converges to some x € X.
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Known facts

Theorem (Kojman)

e There exists a sequentially compact space which 1s
not van der Waerden.
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Theorem (Kojman)

e There exists a sequentially compact space which 1s
not van der Waerden.

e There exists a sequentially compact space which 1s
not Hindman.
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Known facts

Theorem (Kojman)

e There exists a sequentially compact space which 1s
not van der Waerden.

e There exists a sequentially compact space which 1s
not Hindman.

Proof. Consider the one-point compactification of
U (A) for a suitable MAD family .A.
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W-spaces

For a given maximal almost disjoint (MAD) family A

of infinite subsets of N we define the space as
follows:
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The underlying setis NU {p4 : A € A}.
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W-spaces

For a given maximal almost disjoint (MAD) family A

of infinite subsets of N we define the space as
follows:

The underlying setis NU {p4 : A € A}.
Every point in N is isolated.

Every point p4 has neighborhood base of all sets
{pa} U A\ K where K is a finite subset of A.
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W-spaces

For a given maximal almost disjoint (MAD) family A

of infinite subsets of N we define the space as
follows:

The underlying setis NU {p4 : A € A}.
Every point in N is isolated.

Every point p4 has neighborhood base of all sets
{pa} U A\ K where K is a finite subset of A.

Note: W(.A) is regular, first countable and separable.
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Known facts

Theorem (Koyman)
If a Hausdorff space X satisfies the following condition

(x) The closure of every countable set in X is compact
and first-countable.

Then X i1s both van der Waerden and Hindman.
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Known facts

Theorem (Koyman)
If a Hausdorff space X satisfies the following condition

(x) The closure of every countable set in X is compact
and first-countable.

Then X i1s both van der Waerden and Hindman.

For example, compact metric spaces or every succesor
ordinal with the order topology satisty ().
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Known facts + questions

Theorem (Kojyman, Shelah)
(CH) There exists a van der Waerden space which 1s not
Hindman.
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Known facts + questions

Theorem (Kojyman, Shelah)

(CH) There exists a van der Waerden space which 1s not
Hindman.

Theorem (Jones)

(MA, _.ent.) There exists a van der Waerden space
which 1s not Hindman.
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Known facts + questions

Theorem (Kojman, Shelah)
(CH) There exists a van der Waerden space which 1s not
Hindman.

Theorem (Jones)

(MA, _.ent.) There exists a van der Waerden space
which 1s not Hindman.

(Jones) Is 1t consistent that there 1s a Hindman space
which 1s not a van der Waerden space?
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Known facts + questions

Theorem (Kojyman, Shelah)

(CH) There exists a van der Waerden space which 1s not
Hindman.

Theorem (Jones)

(MA, _.ent.) There exists a van der Waerden space
which 1s not Hindman.

(Jones) Is 1t consistent that there 1s a Hindman space
which 1s not a van der Waerden space?

Is 1t possible to strentghen the result of Jones?
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11 /n-Spaces

Ly = {ACN: EaeA% < 00§
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® 7y, 1s an F;-ideal like van der Waerden ideal.
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11 /n-Spaces

z—1/71 {ACN EaeA <OO}

® 7y, 1s an F;-ideal like van der Waerden ideal.

Definition A. (Kojman)

A topological space X is called van der Waerden
if for every sequence (x,,),c. in X there exists

a converging subsequence (X, )re., SO that

{ny : k € w}is an AP-set.
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11 /n-Spaces

Il/n {ACN Z A%<OO}

® 7y, 1s an F;-ideal like van der Waerden ideal.

Definition C.
A topological space X is called 7, -space

if for every sequence (x,),c, in X there exists a
converging subsequence (,, ) e SO that
{ny : k € w} does not belong to Z /,,.

227nd Summer Conference on Topoloev and its Apnlications

—n. 9/]



11 /n-Spaces

Theorem 1.
If a Hausdorff space X satisfies the following condition

(x) The closure of every countable set in X is compact
and first-countable.

Then X is an Z; /,,-space.
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11 /n-Spaces

Theorem 1.
If a Hausdorff space X satisfies the following condition

() The closure of every countable set in X is compact
and first-countable.

Then X is an Z; /,,-space.

Theorem 2.

T'here exists a sequentially compact space which 1s not
an Ly /,-space.
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71/n & van der Waerden spaces

Erdos-Turan Conjecture.
Every set A € 7, /, is an AP-set.

If Erdos-Turan Conjecture 1s true then
every 1y ,-space is van der Waerden.
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11/n & van der Waerden spaces

Erdos-Turan Conjecture.
Every set A € 7, /, is an AP-set.

If Erdos-Turan Conjecture 1s true then
every 1y ,-space is van der Waerden.

Theorem 3.

(MA, _cent.) There exists a van der Waerden space
which is not an Z, ;,,-space.
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11 /n» & Hindman spaces

There is no inclusion between Z; s, and Hindman ideal.
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11/n» & Hindman spaces

There is no inclusion between Z; s, and Hindman ideal.

Theorem 4.

(MA,_cent.) There exists an Z, /,,-space which is not
Hindman.
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11/n» & Hindman spaces
There is no inclusion between Z; s, and Hindman ideal.

Theorem 4.

(MA,_cent.) There exists an Z; ,,-space which is not
Hindman.

Proposition

(MA, _cent.) There exists a MAD family A consisting of
non-IP-sets so that forevery B C N, B ¢ 1, /n and

every finite-to-one function f : B — N there exists
CCB,C¢gIy,and A€ Asothat f|C] C A
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11/n» & Hindman spaces

Question

Is 1t consistent that there 1s a Hindman space which 1s
not an Zy ;,-space?
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11/n» & Hindman spaces

Question

Is 1t consistent that there 1s a Hindman space which 1s
not an Zy ;,-space?

A C Nisan if A contains all finite sums of
elements of arbitrarily large finite sets.
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11/n» & Hindman spaces

Question

Is 1t consistent that there 1s a Hindman space which 1s
not an Zy ;,-space?

A C Nis an ip-rich set if A contains all finite sums of

elements of arbitrarily large finite sets.

e Every IP-set 1s by definition 1p-rich
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11/n» & Hindman spaces

Question

Is 1t consistent that there 1s a Hindman space which 1s
not an Zy ;,-space?

A C Nis an ip-rich set if A contains all finite sums of
elements of arbitrarily large finite sets.

e Every IP-set 1s by definition 1p-rich

e (Folkman-Rado-Sanders)
Sets that are not 1p-rich form an 1deal
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11/n» & Hindman spaces

Question

Is 1t consistent that there 1s a Hindman space which 1s
not an Zy ;,-space?

A C Nis an ip-rich set if A contains all finite sums of
elements of arbitrarily large finite sets.

e Every IP-set 1s by definition 1p-rich

e (Folkman-Rado-Sanders)
Sets that are not 1p-rich form an 1deal

e Ideal Z;,, is an F-ideal
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Ly/m & L;-spaces

A topological space X is called

if for every sequence (x,,),c, in X there exists a
converging subsequence (', )rcw SO that
{ny : k € w} is an ip-rich set.
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Ly/m & L;-spaces

A topological space X is called

if for every sequence (x,,),c, in X there exists a
converging subsequence (', )rcw SO that

{ny : k € w} is an ip-rich set.

Theorem 7.

(MA,_cent.) There exists an Z;,.-space which is not
an Ly /,-space.
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Weak 7 -ultrafilters

Definition (Baumgartner)

Let Z be a family of subsets of a set X such that Z
contains all singletons and 1s closed under subsets.
An ultrafilter ¢/ on N is called an 7 -ultrafilter

if for every I' : N — X there exists A € U

such that F'|A] € 7.
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Weak 7 -ultrafilters

Let Z be a family of subsets of a set X such that Z
contains all singletons and 1s closed under subsets.
An ultrafilter (/ on N is called an

if for every finite-to-one F' : N — X there exists

A € U such that F|A| € T.
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Weak 7 -ultrafilters

Definition E.

Let Z be a family of subsets of a set X such that Z

contains all singletons and 1s closed under subsets.

An ultrafilter ¢/ on N is called an weak 7-ultrafilter
if for every finite-to-one F' : N — X there exists

A € U such that F'|A| € 7.

Definition (Hindman)

An ultrafilter I/ on N is called weakly summable if
every U € U is an IP-set.
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11 jn-ultrafilters

Theorem 8.

(MAp1e) There exists an Z; /,,-ultrafilter &/ € N* such
that every U € U is an ip-rich set.
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11 jn-ultrafilters

Theorem 8.

(MAp1e) There exists an Z; /,,-ultrafilter &/ € N* such
that every U € U is an ip-rich set.

Theorem 9.
(MA_ip1e) There exists a weak Z; p-ultrafilter i € N*
which 1s weakly summable ultrafilter.
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11 jn-ultrafilters

Theorem 8.

(MAp1e) There exists an Z; /,,-ultrafilter &/ € N* such
that every U € U is an ip-rich set.

Theorem 9.
(MA_ip1e) There exists a weak Z; p-ultrafilter i € N*

which 1s weakly summable ultrafilter.

Question
Is 1t consistent that there 1s a weakly summable
11 jp-ultrafilter?
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