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Filters

For a non-empty seX, a on X Is a family
F C P(X) such that:

F 4 0andd & F
If Fi, F5 c FthenFiNF, €¢ F
If '€ FandF C G C X thenG € F.
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F 4 0andd & F
If Fi, F5 c FthenFiNF, €¢ F
If '€ FandF C G C X thenG € F.

If moreoverF satisfies
foreveryM C X eitherM € ForX \ M € F
thenF iIs called an
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|deals

For a non-empty seX, an on X Is a family
7 C P(X) such that:

7T +#P(X)and) €
If Al,AQ c ZthenA,UA, €T
f AcZ7andB C A C X thenB € 7.
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|deals

For a non-empty seX, an on X Is a family
7 C P(X) such that:

7T +#P(X)and) €
If Al,AQ c ZthenA,UA, €T
f AcZ7andB C A C X thenB € 7.

Examples: ={A C N : limsup LA0n] ””" =0}

n—oo

={ACN: Y 1<oo}

acA
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0-points

An ultrafilteri/ onw Is called a If for every
one-to-one functiorf : w — N there existd/ € U
such thatf|U] € Z,.
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0-points

Definition A. (Gryzlov)

An ultrafilteri/ onw Is called a)-pointif for every
one-to-one functiorf : w — N there existd/ € U
such thatf|U] € Z,.

* (M. E. Rudin) EveryP-point Iis a0-point.
« Every(@-point is a0-point.

Advances in Set-theoretic tonoloav — p. 4/14



0-points
e (Shelah) There may be né-points.

e (Miller) There may be nd@)-points.
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0-points
e (Shelah) There may be né-points.

e (Miller) There may be nd@)-points.

Theorem (Gryzlov)
0-points exist in ZFC.

Theorem (Gryzlov)
There are& many distinctD-points.
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Topological consequences

Problem 235. (Hart, van Mill)
—or what nowhere dense sedsC w* do we have

JT&'ESw T‘-[A] 7é w*?
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Topological consequences

Problem 235. (Hart, van Mill)
—or what nowhere dense sedsC w* do we have

JT('ESw T‘-[A] 7é w*?

Some consistent answers:
e Forallifn > c.
e Not for all if P-points exist.

Examples in ZFC:
e singletons

o (Gryzlov) A={Ucw":Z; CU}.
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Summable ultrafilters

Definition B.

An ultrafilter/ onw iIs called asummable ultrafilter
If for every one-to-one functiort : w — N there

existsU < U such thatf|U| € 1, ,.
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Summable ultrafilters

An ultrafilter/ onw Is called a
If for every one-to-one functiort : w — N there
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Summable ultrafilters

An ultrafilter/ onw Is called a
If for every one-to-one functiort : w — N there

existsU < U such thatf|U| € 1, ,.

e Every summable ultrafilter is@point.

e Every(@-point is a summable ultrafilter.
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Summable ultrafilters

Theorem 1.

(MA ctple) There exists @-point which is not
a summable ultrafilter.
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Summable ultrafilters

Theorem 1.

(MA ctple) There exists @-point which is not
a summable ultrafilter.

Corollary 2.

It IS consistent that there exist®)goint which is not
a summable ultrafilter.

Question

Is there a)-point which Is not a summable ultrafilter
In ZFC?
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Summable ultrafilters

Theorem 3.
Summable ultrafilters exist in ZFC.
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Summable ultrafilters

Theorem 3.
Summable ultrafilters exist in ZFC.

Corollary 4.

Thesetd = {{/ € w* : I}, C U]} Iisanowhere dense
subset ofv* such that J, g 7|A] # w*.
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Summable ultrafilters

Theorem 3.
Summable ultrafilters exist in ZFC.

Corollary 4.

Thesetd = {{/ € w* : I}, C U]} Iisanowhere dense
subset ofv* such that J, g 7|A] # w*.

Proposition 5.
There exis® many distinct summable ultrafilters.
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Construction

A family 7 C P(w) is called

a If FonFiN...NF; IS Infinite
whenevert; €¢ F,1 < k.

a i F is k-linked for everyk
l.e., If any finite subfamily ofF has an infinite
Intersection.
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Construction

We say thatF C P(w) is a if for
every one-to-one functiofi: w — Nthere isA € F
such thatf[A]| € Z,,.
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Construction

We say thatF C P(w) is a if for
every one-to-one functiofi: w — Nthere isA € F
such thatf[A]| € Z,,.

Proposition 6.

For everyk € N there exists a summabielinked
family 7. C P(w).
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Construction

Lemma /.

If 7. C P(w) is ak-linked family then
F={F Cw: (Vk)3U* ¢ F.)U" C* F}
IS a centered system.

If every F;. Is summable therfF is summable.

More generally, If Is a P-ideal and for every
one-to-one functiorf € “N and for everyt € N there

existsU* € F;, such thatf[U*] € Z then there exists
U € F such thatf|U] € .
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Problems

Question

Does there exist an ultrafiltéf onw such that for
every one-to-one function there exists alGet U/
such thatf|U| € Z,?

In particular, forg(n) = %’?
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Problems

Question

Does there exist an ultrafiltéf onw such that for
every one-to-one function there exists alGet U/
such thatf|U| € Z,?

In particular, forg(n) = %’?

Question

Does there exist an ultrafiltéf onw such that for
everyfinite-to-onefunction there exists a sét €

such thatf|U] € 7,,,(Z0)?
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