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Abstract. We investigate ultrafilter sums of I -ultrafilters
and weak I -ultrafilters. We prove that I -ultrafilters are
closed under I -sums if I is a P -ideal on ω. We give two
examples of ideals such that corresponding I -ultrafilters are
not closed even under products.

Introduction

The definition of I -ultrafilter was given by Baumgartner in [1].

Definition A. Let I be a family of subsets of a set X such that
I contains all singletons and is closed under subsets. Given an
ultrafilter U on ω, we say that U is an I -ultrafilter if for any
F : ω → X there is A ∈ U such that F [A] ∈ I .

Baumgartner defined in his article discrete ultrafilters, scattered
ultrafilters, measure zero ultrafilters and nowhere dense ultrafilters
which he obtained by taking X = 2ω, the Cantor set, and I the
collection of discrete sets, scattered sets, sets with closure of mea-
sure zero, nowhere dense sets respectively. Another example of
I -ultrafilters are ordinal ultrafilters which he defined also in [1] by
taking X = ω1 and I = {A ⊆ ω1 : A has order type ≤ α} for an
indecomposable ordinal α.

We study in this paper I -ultrafilters in the setting X = N and
I is an ideal on N or another family of “small” subsets of natural
numbers that contains all finite sets and is closed under subsets. We
consider also two modifications of the notion: weak I -ultrafilters
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and I -close ultrafilters, which we obtain by restricting the family
of functions in definition.

Definition B. Let I be a family of subsets of a set X such that
I contains all singletons and is closed under subsets. Given an
ultrafilter U on ω, we say that U is a weak I -ultrafilter (I -close
ultrafilter) if for any finite-to-one (one-to-one) function F : ω → X
there is A ∈ U such that F [A] ∈ I .

Baumgartner in [1] studied closure of I -ultrafilters under ultra-
filter sums for the case X = R and I a family of subsets of R. The
main purpose of this article is to investigate the closure of (weak)
I -ultrafilters and I -close ultrafilters under ultrafilter sums and
products for the case X = ω (or N) and I is an ideal on ω (or N).

So let us first recall the definition of ultrafilter sums and products
(for details see [2]).

Definition C. If U and Vn, n ∈ N, are ultrafilters on N then∑
U 〈Vn : n ∈ N〉 is the ultrafilter on N×N defined by M ∈

∑
U 〈Vn :

n ∈ N〉 if and only if {n : {m : 〈n,m〉 ∈ M} ∈ Vn} ∈ U . We often
identify isomorphic ultrafilters so we regard

∑
U 〈Vn : n ∈ N〉 as

an ultrafilter on N. The ultrafilter
∑

U 〈Vn : n ∈ N〉 is called the
U -sum of ultrafilters Vn, n ∈ N. If Vn = V for every n ∈ N then
we write

∑
U 〈Vn : n ∈ N〉 = U · V and ultrafilter U · V is called

the product of ultrafilters U and V .

Notation. Let us introduce the following notation often used in
the sequel: For every M ⊆ N×N let M(n) = {m : 〈n,m〉 ∈M} and

M̃ = {n : M(n) ∈ Vn}. With this notation we have M ∈
∑

U {Vn :

n ∈ N} if and only if M̃ ∈ U .

Definition D. Let C and D be classes of ultrafilters. We say that
C is closed under D-sums provided that whenever {Vn : n ∈ ω} ⊆ C
and U ∈ D then

∑
U 〈Vn : n ∈ ω〉 ∈ C. If D is a class of I -

ultrafilters then we simply say that C is closed under I -sums.

1. Small subsets of natural numbers

We denote by N the set of all natural numbers (without zero). Let
us recall that a set A ⊆ N has asymptotic density zero if d∗(A) =

lim supn→∞
|A∩n|

n = 0. All sets with asymptotic density zero form
an ideal on N that we call the density ideal and denote as Z0. The
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summable ideal I1/n is the family {A ⊆ N :
∑

a∈A
1
a < +∞}. It

is not difficult to prove that every set in the summable ideal has
asymptotic density zero. However, it suffices to consider the set of
all prime numbers to see that the converse is not true.

It is important for our future considerations that both the density
ideal and the summable ideal are P -ideals. Remember that an ideal
I ⊆ P(N) is a P -ideal if whenever An ∈ I , n ∈ ω, then there
exists A ∈ I which contains all but finitely many elements of each
An (we use the notation An ⊆∗ A for this).

Actually, Z0-close ultrafilters were introduced as 0-points by
Gryzlov who constructed such ultrafilters in ZFC (see [5], [6]).
Gryzlov’s result was strengthened in [4] where a summable ultrafil-
ter (an I1/n-close ultrafilter in our present terminology) was con-
structed in ZFC.

Definition 1.1. Let A be a subset of N with an increasing enu-
meration A = {an : n ∈ N}. We say that A is

(1) thin if limn→∞
an

an+1
= 0

(2) almost thin if limn→∞
an

an+1
< 1

(3) (SC)-set if limn→∞ an+1 − an =∞

It follows from the definition that every thin set is almost thin.
The converse is not true, see for example the set {2n : n ∈ ω}. It
is also easy to see that every almost thin set is an (SC)-set and
every (SC)-set belongs to the summable ideal I1/n. The set of all

squares of natural numbers {n2 : n ∈ ω} has property (SC) and it
is not almost thin. The set B = {n!, n! + 1 : n ∈ N} ∈ I1/n does
not have the (SC)-property. In fact, the set B witnesses the fact
that neither thin sets nor almost thin sets nor (SC)-sets form an
ideal on N.

We say that A ⊆ N contains an arithmetic progression of length
n if there exist a ∈ N and d > 0 such that all the members of
arithmetic progression a + j · d for j = 0, . . . , n − 1 belong to the
set A.

Definition 1.2. Van der Waerden ideal is the family W = {A ⊆
N : A does not contain arithmetic progressions of arbitrary length}.
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2. I -ultrafilters for P -ideals

Proposition 2.1. If
∑

U 〈Vn : n ∈ N〉 is an I -ultrafilter then U

is an I -ultrafilter and {n : Vn is an I -ultrafilter} ∈ U .

Proof. For arbitrary function f : N → N define f̃ : N × N → N
by f̃(n,m) = f(n). According to the assumption there exists set

M ∈
∑

U 〈Vn : n ∈ N〉 such that f̃ [M ] ∈ I . Consider M2 = {n :

M(n) 6= ∅}. It is obvious that M̃ ⊆M2 and since M̃ ∈ U we have

M2 ∈ U . Now observe that f [M2] = f̃ [M ] ∈ I and thus U is an
I -ultrafilter.

For the other part assume that {n : Vn is an I -ultrafilter} 6∈ U .
Then I0 = {n : Vn is not an I -ultrafilter} ∈ U . For every n ∈ I0

fix a function fn : N → N such that fn[V ] 6∈ I for every V ∈ Vn

and define g : N × N → N by g(n,m) = fn(m) if n ∈ I0 and
arbitrarily if n 6∈ I0. It remains to check that for every M ∈∑

U 〈Vn : n ∈ N〉 we have g[M ] 6∈ I to prove that
∑

U 〈Vn : n ∈ N〉
is not an I -ultrafilter. According to the assumption fn[M(n)] 6∈ I

if n ∈ M̃ ∩ I0. Now g[M ] ⊇ g[
⋃
{{n} ×M(n) : n ∈ M̃ ∩ I0}] =⋃

n∈M̃∩I0 fn[M(n)] 6∈ I . �

For P -ideals the necessary condition from Proposition 2.1 is also
a sufficient condition for I -ultrafilters to be closed under I -sums.

Proposition 2.2. Let I be a P -ideal on N. If U is an I -ultrafilter
and {n : Vn is I -ultrafilter} ∈ U then

∑
U 〈Vn : n ∈ N〉 is an I -

ultrafilter.

Proof. Suppose U is an I -ultrafilter and that for some U0 ∈ U the
ultrafilters Vn, n ∈ U0, are also I -ultrafilters. Let f : N × N → N
be an arbitrary function. We want to find M ∈

∑
U 〈Vn : n ∈ N〉

such that f [M ] ∈ I .
For every n ∈ U0 define fn : N → N by fn(m) = f(〈n,m〉) for

every m ∈ N. According to the assumption for every n ∈ U0 there
exists Vn ∈ Vn such that fn[Vn] ∈ I . Since I is a P -ideal there is
a set A ∈ I such that fn[Vn] ⊆∗ A for every n ∈ U0.

The set f−1
n [fn[Vn]] belongs obviously to Vn. Therefore either

f−1
n [fn[Un] ∩ A] or f−1

n [fn[Un] \ A] belongs to Vn for every n ∈ U0.
Define I0 = {n ∈ U0 : f−1

n [fn[Vn] ∩ A] ∈ Vn} and I1 = {n ∈ U0 :
f−1
n [fn[Vn] \ A] ∈ Vn}. Since U is an ultrafilter one of the sets I0,
I1 belongs to the ultrafilter U .
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Case A. I0 ∈ U

Put M = {{n} × f−1
n [fn[Vn]∩A] : n ∈ I0}. It is easy to see that

M ∈
∑

U 〈Vn : n ∈ N〉 and f [M ] =
⋃

n∈I0 fn[Vn] ∩A ⊆ A ∈ I .

Case B. I1 ∈ U

Since fn[Un] \ A is finite and Vn is an ultrafilter, there exists
kn ∈ fn[Un] \ A such that f−1

n {kn} ∈ Vn for every n ∈ I1. Define
g : N → N by g(n) = kn if n ∈ I1 and arbitrarily otherwise. Since
U is an I -ultrafilter there exists U ∈ U such that g[U ] ∈ I . It
remains to put M = {{n} × f−1

n {kn} : n ∈ I1 ∩ U}. It is easy to
check that M ∈

∑
U 〈Vn : n ∈ N〉 and f [M ] ⊆ g[U ] ∈ I . �

Proposition 2.3. Let I be a P -ideal on N. If {n : Vn is weak
I -ultrafilter} ∈ U then

∑
U 〈Vn : n ∈ N〉 is a weak I -ultrafilter.

Proof. Assume that U0 = {n : Vn is weak I -ultrafilter} ∈ U . For a
given finite-to-one function f : N×N→ N let fn be the restriction
of f onto {n} × N. For every n ∈ N the function fn is again
finite-to-one, so for every n ∈ U0 there exists Vn ∈ Vn such that
fn[Vn] ∈ I . Take A ∈ I such that fn[Vn] ⊆∗ A for every n ∈ U0

(such a set exists because I is a P -ideal). The function f is finite-
to-one hence we get Vn ⊆∗ f−1

n [A] for every n ∈ N. It follows that
Bn = f−1

n [A] ∈ Vn. Then the set M = {〈n, k〉 : n ∈ U0, k ∈ Bn}
belongs to

∑
U 〈Vn : n ∈ N〉 and f [M ] =

⋃
n∈U0

fn[Bn] = A ∈ I .
Hence

∑
U 〈Vn : n ∈ N〉 is a weak I -ultrafilter. �

Proposition 2.4. Let I be a P -ideal on N. If {n : Vn is I -close
ultrafilter} ∈ U then

∑
U 〈Vn : n ∈ N〉 is an I -close ultrafilter.

Proof. It suffices to replace words ’finite-to-one’ by ’one-to-one’ in
the previous proof. �

The following proposition is in some sense a counterpart for
Proposition 2.3.

Proposition 2.5. Let I be an ideal on N and assume there exists
function g : N→ N such that g(n) > n for every n ∈ N and A 6∈ I

implies g[A] 6∈ I for every A ⊆ N. If
∑

U 〈Vn : n ∈ N〉 is a weak
I -ultrafilter then {n : Vn is a weak I -ultrafilter} ∈ U .

Proof. We want to prove that if {n : Vn is weak I -ultrafilter} 6∈ U

then
∑

U 〈Vn : n ∈ N〉 is not a weak I -ultrafilter.
If U1 = {n : Vn is not weak I -ultrafilter} ∈ U then for every

n ∈ U1 there exists a finite-to-one function fn : N → N such that
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fn[V ] does not belong to the ideal I for every V ∈ Vn. Define
f : N × N → N so that f(n,m) = gn[fn(m)] whenever n ∈ U1 and
f is one-to-one on (N \U1)×N. It is not difficult to check that the
function f is finite-to-one. For every M ∈

∑
U 〈Vn : n ∈ N〉 there

exists n ∈ U1 and Vn ∈ Vn such that M ⊇ {n} × Vn and f [M ] ⊇
gn[fn[Vn]]. But the latter set is not in the ideal I according to the
assumption. Hence f [M ] 6∈ I for every M ∈

∑
U 〈Vn : n ∈ N〉 and∑

U 〈Vn : n ∈ N〉 is not a weak I -ultrafilter. �

Proposition 2.6. Let I be an ideal on N and assume A 6∈ I

implies A + 1 6∈ I and 2A 6∈ I for each A ⊆ N. If the ultrafilter∑
U 〈Vn : n ∈ N〉 is I -close then {n : Vn is I -close} ∈ U .

Proof. Assume for the contrary that {n : Vn is I -close} 6∈ U . Then
U1 = {n : Vn is not I -close} belongs to U and for every n ∈ U1

there exists a one-to-one function fn : N→ N such that fn[V ] does
not belong to the ideal I for every V ∈ Vn. Define f : N× N→ N
in the following way: f(n,m) = 2n(2fn(m) + 1). The function f is
one-to-one. For every M ∈

∑
U 〈Vn : n ∈ N〉 there exists n ∈ U1

and Vn ∈ Vn such that M ⊇ {n} × Vn and f [M ] ⊇ 2n(2fn[Vn] + 1).
But the latter set is not in the ideal I according to the assumption.
So f [M ] 6∈ I for every M ∈

∑
U 〈Vn : n ∈ N〉 and

∑
U 〈Vn : n ∈ N〉

is not an I -close ultrafilter. �

Corollary 2.7. Let I be a P -ideal on N as in Proposition 2.6.
Assume Vn, n ∈ N, and U are free ultrafilters on N. The ultrafilter∑

U 〈Vn : n ∈ N〉 is an I -close ultrafilter if and only if {n : Vn is
I -close} ∈ U .

Proof. Combine Proposition 2.4 and Proposition 2.6. �

Corollary 2.8. Assume I is a P -ideal on N as in Proposition 2.6.
For an ultrafilter V ∈ N∗ the following conditions are equivalent:

(1) V is an I -close ultrafilter.
(2) (∀U ∈ N∗) U · V is an I -close ultrafilter.
(3) (∃U ∈ N∗) U · V is an I -close ultrafilter.

Proof. If V is I -close then U ·V =
∑

U 〈Vn : n ∈ N〉 where Vn = V

for every n. Hence {n : Vn is an I -close ultrafilter} = N ∈ U

for every U ∈ N∗ and U · V is an I -close ultrafilter according to
Proposition 2.4.

The implication (2)⇒ (3) is trivial.
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If U · V is an I -close ultrafilter for some U ∈ N∗ then it follows
from Proposition 2.6 that V is an I -close ultrafilter. �

3. Some remarks on other ideals

In this chapter we will show that it is not possible to remove
from Corollary 2.8 the assumption on ideal I to be a P -ideal.
Ideals generated by thin sets and (SC)-sets are not P -ideals and it
turns out that thin ultrafilters and (SC)-ultrafilters are not closed
even under products.

Proposition 3.1. The ultrafilter U ·U is not an (SC)-close ultra-
filter for every U ∈ N∗.

Proof. Assume U is a free ultrafilter on N. Consider h : N×N→ N
defined by h(〈n,m〉) = 2M + M + n −m where M = max{n,m}.
Notice that h is a one-to-one function. We will show in the following
that h[U ] is not an (SC)-set for every U ∈ U · U .

Since U ∈ U · U we have Ũ ∈ U . Choose two distinct elements
n1, n2 ∈ Ũ and denote V = U(n1) ∩ U(n2). The set V is infinite
because it belongs to the free ultrafilter U . For every v ∈ V we have
〈n1, v〉, 〈n2, v〉 ∈ U . If v ≥ max{n1, n2} then h(〈n1, v〉) = 2v + n1,
h(〈n2, v〉) = 2v+n2 and h(〈n2, v〉)−h(〈n1, v〉) = n2−n1. So we have
infinitely pairs of elements in U such that h(u2)− h(u1) = n2−n1,
in particular h[U ] is not an (SC)-set. �

Corollary 3.2. For every U ∈ ω∗ the ultrafilter U · U is not:

(1) thin ultrafilter.
(2) weak thin ultrafilter.
(3) thin-close ultrafilter.
(4) weak (SC)-ultrafilter.
(5) (SC)-ultrafilter.

Van der Waerden ideal is not a P -ideal either. At the moment
we do not know if (weak) W -ultrafilters (W -close ultrafilters) are
closed under corresponding products and sums, but some necessary
conditions are clear.

Proposition 3.3. If U · V is a weak W-ultrafilter then U and V

are weak W-ultrafilters.
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Proof. If U is not a weak W-ultrafilter then there exists a finite-
to-one function g : N → N such that g[U ] 6∈ W for every U ∈ U .
Define G : N × N → N by G(n,m) = 2m(2g(n) + 1). It is easy to
check that function G is finite-to-one.

For every M ∈ U ·V we have M̃ ∈ U and hence g[M̃ ] 6∈ W . Thus

we can find for every k ∈ N a finite set K ⊆ M̃ such that g[K] is
an arithmetic progression of length k. Now, let V0 =

⋂
n∈K M(n).

From the definition of product, M̃ and M(n) we know that V0 ∈ V .
We have G[M ] ⊇ G[K ×V0] =

⋃
v∈V0

2v(2g[K] + 1). Obviously, the
latter set contains infinitely many arithmetic progressions of length
k since any shift of arithmetic progression is again an arithmetic
progression. It follows that G[M ] 6∈ W and U · V is not a weak
W-ultrafilter.

The other part follows from Proposition 2.5 for example if we
consider g(n) = n+ 1 or g(n) = 2n.

�

Proposition 3.4. If U · V is a W-close ultrafilter then U and V

are W-close ultrafilters.

Proof. It suffices to modify slightly the proof of Proposition 3.3.
Observe that if function g in the proof is one-to-one then G is also
one-to-one. The other part follows from Proposition 2.6. �
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