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Q-points and rapid ultrafilters

Definition.
A free ultrafilter U is called a Q-point if for every {Qi : i ∈ ω},
a partition of ω into finite sets, there exists U ∈ U such that
(∀i ∈ ω) |U ∩Qi | ≤ 1.

A free ultrafilter U is called rapid if for every {Qi : i ∈ ω},
a partition of ω into finite sets, there exists U ∈ U such that
(∀i ∈ ω) |U ∩Qi | ≤ i .

Alternative definition of rapid ultrafilters:
A free ultrafilter U is called rapid if the enumeration functions of
its sets form a dominating family in (ωω,≤∗).



Existence of Q-points and rapid ultrafilters

Every Q-point is rapid, but the converse is not true.

Theorem (Booth?).
(CH) Q-points exist.

Theorem (Miller).
In Laver’s model there are no rapid ultrafilters.

In every model where Q-points are known not to exist,
rapid ultrafilters do not exist either.



Generic existence

Definition (Canjar).
We say that Q-points (respectively rapid ultrafilters) exist
generically if every filter of character < d is included in a
Q-point (respectively rapid ultrafilter).

Theorem (Canjar).
The following are equivalent:
• cov(M) = d,
• Q-points exist generically,
• Rapid ultrafilters exist generically.



Product of ultrafilters

Definition.
Let U and V, n ∈ ω, be ultrafilters on ω.
The product of ultrafilters U and V, denoted by U × V, is an
ultrafilter on ω × ω defined by A ∈ U × V if and only if
{n : {m : 〈n,m〉 ∈ A} ∈ V} ∈ U .

It is known that U × V is never a Q-point.

Theorem (Miller).
U × V is a rapid ultrafilter if and only if V is rapid.



AP-sets and van der Waerden ideal

Definition.
A set A ⊆ ω is called an AP-set if it contains arbitrary long
arithmetic progressions.

Sets which are not AP-sets form a proper ideal on ω.
It is van der Waerden idealW.

The van der Waerden idealW is Fσ-ideal, not a P-ideal.



Difference between Q-points and rapid ultrafilters

Lemma 1.
Every Q-point has a nonempty intersection with the idealW.

Proof of Lemma 1.
1. Let ω =

⋃
n∈ω In where In = [2n,2n+1).

2. ∃U0 in the ultrafilter such that |U0 ∩ In| ≤ 1 for every n.
3. Either U1 =

⋃
n odd In or U2 =

⋃
n even In is in the ultrafilter.

4. The set U = U0 ∩ Ui is inW.

Theorem 2.
(MActble) There is a rapid ultrafilter U such that U ∩W = ∅.



Proof of Theorem 2
An alternative characterization of rapid ultrafilters

Definition.
For a function g : ω → [0,∞) with

∑
n∈ω

g(n) =∞ the family

Ig = {A ⊆ ω :
∑
a∈A

g(a) < +∞}

is a summable ideal determined by function g.

A summable ideal Ig is tall if and only if lim
n→∞

g(n) = 0.

Theorem (Vojtáš).
An ultrafilter U ∈ ω∗ is rapid if and only if U ∩ Ig 6= ∅
for every tall summable ideal Ig .



Proof of Theorem 2
Outline of the construction

1. List all tall summable ideals as {Igα : α < c}.

2. For α < c construct filter bases Fα such that for every α < c
the following hold:

(i) F0 is the Fréchet filter
(ii) Fα ⊇ Fβ whenever α ≥ β
(iii) Fγ =

⋃
α<γ Fα for γ limit

(iv) (∀α) |Fα| ≤ |α+ 1| · ω
(v) (∀α) (∀F ∈ Fα) F is an AP-set
(vi) (∀α) (∃F ∈ Fα+1) F ∈ Igα

3. At successor stage use the following lemma:



Proof of Theorem 2
Succesor stage

Lemma 2a.
(MActble) Assume Ig is a tall summable ideal, F is a filter base
on ω with |F| < c and F ∩W = ∅.
Then there exists G ∈ [ω]ω such that G ∈ Ig and G ∩ F is an
AP-set for every F ∈ F .

Proof of Lemma 2a:
If F ∩ Ig = ∅ then consider P = {K ∈ [ω]<ω :

∑
a∈K

g(a) < 1}

with a partial order ≤P defined by: K ≤P L if and only if K = L
or K ⊃ L and min(K \ L) > max L.
DF ,k = {K ∈ P : K ∩ F contains an a. p. of length k} are dense



W-ultrafilters

Definition.
An ultrafilter U ∈ ω∗ is called

a weakW-ultrafilter if for every finite-to-one f : ω → ω there
exists U ∈ U such that f [U] ∈ W.
anW-ultrafilter if for every f : ω → ω there exists U ∈ U
such that f [U] ∈ W.

EveryW-ultrafilter is a weakW-ultrafilter.

Every weakW-ultrafilter has a nonempty intersection with the
van der Waerden ideal.



W-ultrafilters and Q-points

Lemma 3.
Every Q-point is a weakW-ultrafilter.

Proposition 4.
(MActble) There is a Q-point which is not aW-ultrafilter.

Theorem 5.
(MActble) There is aW-ultrafilter which is not a Q-point.



Proof of Theorem 5.
Property (♠)

Definition.
A filter base F has property (♠) if

(∀F ∈ F) (∀k ∈ ω) (∃n ∈ ω) |F ∩ [2n,2n+1)| > k .

Lemma 5a.
Every filter base F which has property (♠) can be extended
into an ultrafilter which is not a Q-point.



Proof of Theorem 5.
Outline of the construction

1. List all functions ωω = {fα : α < c}.

2. For α < c construct filter bases Fα such that for every α < c
the following hold:

(i) F0 is the Fréchet filter
(ii) Fα ⊇ Fβ whenever α ≥ β
(iii) Fγ =

⋃
α<γ Fα for γ limit

(iv) (∀α) |Fα| ≤ |α+ 1| · ω
(v) (∀α) Fα has property (♠)

(vi) (∀α) (∃F ∈ Fα+1) fα[F ] ∈ W

3. At successor stage use the following lemma:



Proof of Theorem 5.
Successor stage

Lemma 5b.
(MActble) Assume F is a filter base with |F| < c with the
property (♠). Assume f ∈ ωω.
Then there is G ∈ [ω]ω such that f [G] ∈ W and the filter base
generated by F and G has property (♠).

Proof of Lemma 5b:
If neither a set from F nor f−1[K ] for some finite set K has the
required property then consider
P = {K ∈ [ω]<ω : f [K ] contains no a. p. of length 3}
with a partial order ≤P defined by: K ≤P L if and only if K = L
or K ⊃ L and min(K \ L) > max L.
DF ,k = {K ∈ P : (∃n ∈ ω)|K ∩ F ∩ [2n,2n+1)| ≥ k} are dense



Questions

Theorem 2.
(MActble) There is a rapid ultrafilter U such that U ∩W = ∅.

Question A.
Does there consistently exist an idempotent ultrafilter which is a
rapid ultrafilter?

Theorem 5.
(MActble) There is aW-ultrafilter which is not a Q-point.

Question B.
Does there (consistently) exist aW-ultrafilter which is not a
rapid ultrafilter?
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