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Abstract

We point out one of the differences between rapid ultrafilters and
Q@-points: Rapid ultrafilters may have empty intersection with the van
der Waerden ideal, whereas every QQ-point has a non-empty intersec-
tion with the van der Waerden ideal. Assuming Martin’s axiom for
countable posets we also construct a % -ultrafilter which is not a Q-
point.

1 Preliminaries

Let us first recall the definitions of the two classes of ultrafilters in question:
An ultrafilter % is a Q-point if for every partition {Q, : n € w} of w into
finite sets there exists A € % such that |[ANQ,| <1 for every n € w.

An ultrafilter % is a rapid ultrafilter if the enumeration functions of sets in
7% form a dominating family in (“w, <*), where the enumeration function of
a set A is the unique strictly increasing function e4 from w onto A.

Every Q-point is a rapid ultrafilter, but the converse is not true (see [Mi]).

Remember that a set A C w is called an AP-set if it contains arbitrary
long arithmetic progressions. It follows from the van der Waerden theorem
that sets which are not AP-sets form a proper ideal on w. We will refer to
this ideal as van der Waerden ideal and denote it by # . It is known that
the van der Waerden ideal is an F,-ideal.

An ideal .# on w is tall if for every infinite A C w there exists infinite B C A
such that B € .#. The van der Waerden ideal is clearly a tall ideal.

An ideal .# on w is a P-ideal if for every A, € #, n € w there exists A € ¥
such that A, \ A is finite for all n € w. It is easy to see that the van der
Waerden ideal is not a P-ideal (consider e.g. sets A, = {2! +n :i € w}).
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Baumgartner introduced .#-ultrafilters in [B]. We will repeat the defini-
tion and introduce a weaker notion of weak .#-ultrafilters. So, assume .# is
a tall ideal on w:

An ultrafilter  on w is called an .# -ultrafilter if for every function f : w — w
there exists U € % such that f[U] € 7.

An ultrafilter  on w is called a weak & -ultrafilter if for every finite-to-one
function f : w — w there exists U € % such that f[U] € .#.

It is obvious that every #-ultrafilter is a weak .#-ultrafilter and every weak
&-ultrafilter has nonempty intersection with the ideal .#.

2 Q-points and the van der Waerden ideal

In this section we examine the connection between QQ-points and the van
der Waerden ideal. First of all we prove that each @-point not only has a
nonempty intersection with the van der Waerden ideal, but it is in fact a
weak # -ultrafilter.

Proposition 2.1. Fvery Q-point is a weak W -ultrafilter.

Proof. Consider partition of w into finite sets w = (J,,c,, In where Iy = {0, 1}
and I,, = [27,2"F1) for every n > 1. Assume f : w — w is an arbitrary
finite-to-one function. If % is a @-point then there exists U € % such
that |[U N f71[I,]| < 1 for every n € w. Now enumerate (increasingly)
flU] = {uy : n € w}. Either Uy = fHuog : k € w} or Uy = fFHuogpy :
k € w} belongs to the ultrafilter 7. Without loss of generality we may
assume Uy € %. It follows from the definition that f[Up] does not contain
an arithmetic progression of length 3, thus f[Up] € # . O

Weak # -ultrafilter in the previous proposition cannot be replaced with
W -ultrafilter because QQ-points in general need not be #-ultrafilters. It
follows from Proposition 2.4.7 in [F] according to which assuming Martin’s
axiom for countable posets for every tall ideal .# there exists a Q-point which
is not an #-ultrafilter.

One can, of course, ask whether the implication in Proposition 2.1 can
be reversed. The answer is negative. If Martin’s axiom for countable posets
holds then there exists even a # -ultrafilter which is not a Q-point. We
will construct such an ultrafilter in the rest of this section starting with the
following rather technical statement:



Proposition 2.2. (MA_ ;) Assume .Z is a filter base of cardinality less
than ¢ with the following property

(@) (YF e Z)(Vkew)(@necw) |Fn2n, 27t > k.

Assume f € “w. Then there exists G € [w]* such that f|G] € # and the
filter base generated by F and G has property (#).

Proof. If there exists F' € % such that f[F] € #, let G = F. If there
exists K € [w]<¥ such that the filter base generated by .# and f~![K]
has property (#), then put G = f~![K]. In the following we will assume
that no such K exists. From this assumption it follows that for every K &€
[w]<¥ and for every F' € Z and for every k € w there exists n € w such
that | (F\ f~HK]) N [27,2""1)] > k. We construct a suitable G eventually
making use of Martin’s axiom.

Consider the set
P ={K € [w]*¥: f[K] contains no arithmetic progressions of length 3}

equipped with a partial order <p defined in the following way: K <p L if
and only if K = L or K D L and min(K \ L) > max L. For F € .# and
k € w define Dpy ={K € P: (In € w) |[K N F N[22 )| > k}.

Claim: Dy, is a dense subset of (P, <p) for every F' € Z, k € w.
Proof of the Claim. Let L € P be arbitrary. We want to find K € Dy, such
that K <p L. Let ng = max{n € w: L N [2",2""1]) # 0}.

Case 1. sup,c, |f[FN[2"2" )] =m < o0

For N = {i € w: i < 3-max f[L]} there exists n(N) > ng such that
[(F\ f NN [27(N) on(N)+1)| > k. (m4-1). According to the assumption
of Case L. | f[F N[2"(V) 2N)+1)]| < m. Now, it follows from Dirichlet’s box
principle that there exist

e fIF N2 onMNHh and I C (F\ f7HN]) 0 20, onV)+1y

such that |L'| > k, f[L'] = {l} and | > 3 -max f[L]. Put K = LUL'. Tt
remains to verify that K is as required:

1. Observe that K € P. Any arithmetic progression of length 3 in f[K]
contains [ (otherwise f[L]| contains an arithmetic progression of length
3 in contradiction to the assumption L € P). However, for every
a,b € f[L] we have
| — max{a,b} > 2-max f[L] > max f[L] > |a —b|.

Thus a, b and [ cannot form an arithmetic progression.



2. Obviously, K € D, because

KN Fr) onN+y > 1 q F o [2n®) o)+ >

3. Notice that K <p L because n(N) > ny and consequently

min(K \ L) = min L' > max L.

Case II. sup,,c,, |f[FN[2"2")]] = oo

According to the assumption of Case II. there exists n; > ng such that
FIFA 20, 20)] > 3 max fIL] + (L] + k). Let

Ag = {m € f[FN[2™, 2" :m > 3-max f[L]}.

Obviously, [4g| > (|L| + k)*. Now, choose l; € Ag for i = 0,...,k —1 so
that f[L]U{l; : i < k} contains no arithmetic progressions of length 3. This
can be done by induction on :

For i = 0 let lp = min Ag. The set By = f[L] U {lp} does not contain
arithmetic progressions of length 3 because f[L] did not and for arbitrary
a,b e f[L]

lo — max{a,b} > 2 - max f[L] > max f[L] > |a — b].

If0<i<k—1andl; € Ap for j < i are already known such that
B; = fI[L]U{l; : j < i} contains no arithmetic progressions of length 3,
define

A;i={m € Ay : (3a,b € B;) a,b,m form an arithmetic progression}.

Since | B;| = |L| + i the set A; has at most 3(|L| +4)(|L| + i — 1) elements.
So Ap \ A; # 0 and we may define I; = min(Ag \ 4;). It follows from the
construction that B;1 = B; U {l;} contains no arithmetic progressions of
length 3.

Finally, let L' = Fn[2m, 20+t )0 f~1[{l;:i < k}] and put K = LU L.
It remains to verify that K is as required:

1. Obviously, K € P because f[K] = f[L]U{l; : i < k} and the latter
set contains no arithmetic progressions of length 3.

2. Observe that K € Dpj, because

IKNFn@2m,2mt) > L] > k.



3. Notice that K <p L because n; > ng and consequently
min(K \ L) = min L' > max L. O Claim.

Since the family D = {Dpy : F € #,k € w} consists of dense subsets
of the countable poset P and |D| < ¢, it follows from Martin’s axiom for
countable posets that there is a D-generic filter 4.

Let G = |J{K : K € ¢}. It remains to verify that G is as required, i.e.

a) f[G] contains no arithmetic progressions of length 3, thus f[G] € #
b) (VF € Z) (Vk € w) (3n e w) [FNGN[27, 27| > k.

For a): Consider a,b,c € f[G] arbitrary. There exist K,, Kp, K. € ¢4 such
that a € f[K,], b € f[Kp] and ¢ € f[K,]. Since ¢ is a filter, there exists K¢ €
¢ which is <p-below all three sets K, Ky, K.. Thus a,b,c € f[Ky]. Because
Ky is an element of P, the set f[Ky] contains no arithmetic progressions of
length 3. In particular a, b and ¢ do not form an arithmetic progression.

For b): Take k > 1 arbitrary. For every K € ¢ N Dpj, we have G O K and
|[FNGN[272nth| > [Fn K n[27, 27| > k for some n. O

Lemma 2.3. Every filter base F which has property (#) introduced in
Proposition 2.2 can be extended into an ultrafilter which is not a Q-point.

Proof. The family {[27,2""!) : n € w} is a partition of w into finite sets
witnessing the fact that an ultrafilter with property (#) is not a Q-point.
Therefore we will show that every filter base .# with property (#) can be
extended into an ultrafilter with property (#). This can be accomplished
by transfinite induction on o < ¢ where in each non-limit step one subset of
w is considered and the filter base is extended by either the set itself or its
complement.

To this end, consider a filter base .# with property (#) and A C w:
Either (VF € .Z) (Vk € w) (3n € w)|F N AN 27,27 )| > k and then the
filter base #' generated by .# and A has property (#).

Or (3Fy € .7) (Fko € w) (Vn € w) |[FoNAN[2", 2" 1| < kg and then the filter
base #' generated by .# and w \ A has property (#). Indeed, since .Z has
property (#) for every F' € .Z and for every k € w there exists n € w such
that |F N Fy N [27, 27N > k + ko. However, |[F'N Fyn AN[27%, 27 )| < ko
and so |[FN(w\A)N[2%, 2" )| > |FNEFyn(w\A)n[2h, 27 ) >k O

Theorem 2.4. (MA y;,) There is a W -ultrafilter which is not a Q-point.



Proof. Enumerate “w as {f, : @ < ¢}. By transfinite induction on o < ¢ we
will construct filter bases %, so that the following conditions are satisfied:

i) Zp is the Fréchet filter
ii) #o C #3 whenever a < 3
iil) #y = Uy Fao for v limit
iv) (Vo) | Zo| < (lof +1) - w
v) (Va) Z, has property (#)
vi) (Vo) (3F € Fot1) falFl €W
Condition (i) starts the induction and (ii), (iv) allow it to keep going.
Limit stages are taken care of by condition (iii) so it remains to show that
successor stages can be handled.

N N N N N

Successor stage: Suppose we already know .%,. If there is A € %, such
that f,[A] € # then simply put Zo1 = Fo. If fo[F] & # for every F € Z,
then apply Proposition 2.2 to the filter base %, and the function f,. Let
Fao+1 be the filter base generated by %, and G.

Finally, let .7 = |J,..%a. Since the filter base .7 has property (#),
it can be extended into an ultrafilter which is not a @)-point according to
Lemma, 2.3. It is a # -ultrafilter which is not a Q-point because each ultra-
filter which extends .7 is a # -ultrafilter due to condition (vi). O

3 Rapid ultrafilters and the van der Waerden ideal

In this section we prove that rapid ultrafilters, unlike Q-points, may have an
empty intersection with the van der Waerden ideal. We will construct such
an ultrafilter assuming Martin’s axiom for countable posets in Theorem 3.4,
which is actually slightly stronger.

Let us start with the definition of summable ideals. They play an im-
portant role in an alternative characterization of rapid ultrafilters, which we
use later in the proof.

For a function g : w — (0,00) such that )  g(n) = +oo the family

new

Sy ={ACw: Y gla) < +oo)
acA

is a summable ideal on w determined by function g. A summable ideal .7,
is tall if and only if lim g(n) = 0.
n—oo
A characterization of rapid ultrafilters involving summable ultrafilters
can be found e.g. in [M-A] as Theorem 2.8.10. We restate it here in terms
of weak .#-ultrafilters.



Proposition 3.1 ([M-A]). The following statements are equivalent for an
ultrafilter % € w*:

1. % is a rapid ultrafilter
2. U is a weak S4-ultrafilter for every tall summable ideal 7,
3. U is a weak Z -ultrafilter for every tall analytic P-ideal .%

Notice that analytic ideals in the third clause of the previous proposition
are P-ideals. Since the van der Waerden ideal is not a P-ideal, the theorem
does not contradict the existence of rapid ultrafilters, whose intersection
with the van der Waerden ideal is empty.

Rapid ultrafilters which are disjoint with the van der Waerden ideal, i.e.
rapid ultrafilters which contain only AP-sets, do actually exist if we assume
Martin’s axiom for countable posets. Under the same assumption even more
is true and there exist hereditarily rapid ultrafilters consisting of AP-sets.
Hereditarily rapid ultrafilters, as the name suggests, form a subclass of rapid
ultrafilters, which we define as follows:

An ultrafilter 7 is a hereditarily rapid ultrafilter if it is a rapid ultrafilter
such that the ultrafilter f(%) generated by the sets { f[U] : U € %} is again
a rapid ultrafilter for every f € “w.

The characterization of rapid ultrafilters in Proposition 3.1 can be easily
reformulated to hereditarily rapid ultrafilters:

Proposition 3.2. The following statements are equivalent for % € w*:
1. % is a hereditarily rapid ultrafilter
2. U s an Ig-ultrafilter for every tall summable ideal 7
3. U is an Z-ultrafilter for every tall analytic P-ideal &

We will concentrate on the first two clauses of the previous proposition
and we will construct our ultimate goal — a hereditarily rapid ultrafilter
which does not intersect the van der Waerden ideal — as an ultrafilter which
is an Zg-ultrafilter for every tall summable ideal .#;. The following lemma
is crucial for the successor stages of the construction:

Lemma 3.3. (MA_ ;) Let F4 be a tall summable ideal. Assume .F is a
filter base, |F| < ¢, ZNW =0 and f € “w. Then there exists G € [w]*
such that f|G] € .74 and FFNG is an AP-set for every F € 7.



Proof. If there exists F' € .# such that f[F| € .7, put G = F. If there
exists K € [w]< such that F'N f~1[K] is an AP-set for every F € .Z, then
put G = f~[K]. In the following we will assume that no such set exists,
ie.

(&) for every K € [w]= there is Fx € .# such that Fx N f~'[K] € 7.

This also means that '\ f~!'[K] is an AP-set for every F € .Z.
Consider the set

P={K L™ Y o0) = (2- ) - max o(a))

a€f[K]

with a partial order <p defined by: K <p Lifand only if K = Lor K D L
and min(K \ L) > max L. Now, for every F € .Z and every k > 1 define
Dpy ={K € P: KNF contains an arithmetic progression of length k}.

Claim. Dpy, is dense in P for every F' € % and k > 1.

Proof of the Claim. Take L € P arbitrary. Since lim,_,. g(n) = 0 there
exists ny, € w such that for every n > ny,

1
g(n) < SILHT . |

235,90
According to the assumption (&) there exists F,, € .# such that F,, N
f7Y0,nz] € #. Tt follows that A,, = (FNF,,)\ f71[0,n] is an infinite
AP-set, thus one can choose an arithmetic progression L' C A,, such that
|L'| = k and min L’ > max L. Let K = L U L’. Observe that due to the
choice of L’ one has max g(a) = max g(a). To see that K € P notice that

ac f[K] ac f[L]
Y < Y g+ Y gla) <
a€f[K] acf[L] a€f[L']

1 /
< (2 - 2|L|> -argja[%]g(a) + | L] 'arer}a[tg,]g(a) <

1 1
<f(o__2 ). . <
< <2 2|L|) alél%g(a) ML agl%g(a) <

<2 ! < (2 !
= \P g ) 2 o) = 2 am ) i o)

It is obvious that K <p L. Also K € Dpy, because K N F' D L'NF
contains an arithmetic progression of length k. U Claim.



Since the family D = {Dpy, : F' € #,k > 1} consists of dense subsets
of the countable poset P and |D| < ¢, it follows from Martin’s axiom for
countable posets that there is a D-generic filter ¥.

Let G = |J{K : K € ¢}. It remains to verify that G is as required:

a) fIG] € Jy, ie. Zaef[G]g(a) < +oo
b) (VF € Z) GNF is an AP-set

For a): Enumerate f[G] = {uy : n € w}. For every n there exists K,, € 4
such that w, € f[K,]. We may assume K, ; <p K, (and thus f[K, 1] D
f[Kx]) for every n € w because ¢ is a filter. Since f[G] = U, ., f[Kn], we
get

n—oo n—oo acw

1
Z g(a) = lim Z g(a) < lim (2 — W) a?}%}{{n]g(a) < 2-maxg(a).
a€ f[G] a€ f[Kn]
For b): Take k > 1 arbitrary. For every K € ¢ N Dpj, we have G O K and
K N F contains an arithmetic progression of length k. Hence GN F' contains
arithmetic progressions of arbitrary length, i.e. G N F is an AP-set. O

Theorem 3.4. (MA_.) There is a hereditarily rapid ultrafilter % such
that w N W =.

Proof. Enumerate as {(fa,ga) : @ < ¢} all pairs (fa,ga) where f, € “w
and ., is a tall summable ideal. By transfinite induction on o < ¢ we will
construct filter bases %, so that the following conditions are satisfied:

(i) Fo is the Fréchet filter

(ii) Zo C F3 whenever a < 3

(iil) #y = Uqery Fo for v limit

(iv) (Ya) | Fal < (o] +1) -w

(v) Va) (VF € Z,) F is an AP-set
(v

)( )(HFGJOH-I)fa[ ]efga

Condition (i) starts the induction and (ii), (iv) allow it to keep going.
Limit stages are taken care of by condition (iii) so it remains to show that
successor stages can be handled.

Successor stage: Suppose we already know .%#,. If there is A € %, such
that fo[A] € .7, then simply put Foy1 = Fo. If fo[F] € 7, for every
F € #, then apply Lemma 3.3 to the ideal .7, the filter base %, and the
function f,. Let %411 be the filter base generated by %, and G.



Finally, let .7 = (J .. %o Since I is an AP-set for every F' € .# the
filter base % can be extended to an ultrafilter 2 which does not intersect
the van der Waerden ideal. Every ultrafilter which extends %, however, is
an ., -ultrafilter for every tall summable ideal .7,, because of condition
(vi). Thus % is a hereditarily rapid ultrafilter satisfying N % = 0. O

Corollary 3.5. (MA_s4.) There exists a rapid ultrafilter % such that %
contains only AP-sets. O
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