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Abstract

We give a short elementary proof of Tutte and Nash-Williams’ charac-
terization of graphs with k edge-disjoint spanning trees.

We deal with graphs that may have parallel edges and loops; the vertex and
edge sets of a graph H are denoted by V (H) and E(H), respectively. Let G be a
graph. If P is a partition of V (G), we let G/P be the graph on the set P with an
edge joining distinct vertices P1, P2 ∈ P for every edge of G with one end in P1

and another in P2. Tutte [5] and Nash-Williams [3] proved the following classical
result:

Theorem 1. A graph G contains k pairwise edge-disjoint spanning trees if and
only if for every partition P of V (G), the graph G/P has at least k(|P|−1) edges.

An elegant proof of Theorem 1 is based on the matroid union theorem (see,
e.g., [4, Corollary 51.1a]); a relatively short elementary proof appears in [1, The-
orem 2.4.1]. In this paper, we give another elementary proof which is also short
and perhaps somewhat more straightforward. The argument directly translates
to an efficient algorithm to find either k disjoint spanning trees, or a proof that
none exist. To an extent, the method can also be applied to the packing of struc-
tures without the matroidal properties of spanning trees, as shown, e.g., in the
forthcoming paper [2].

Let k ≥ 1 and T = (T1, . . . , Tk) be an ordered partition of G into k spanning
subgraphs of G. We define the sequence P0, P1, . . . ,P∞ of partitions of V (G)
associated with T as follows. First, P0 = {V (G)}. For i ≥ 0, if there is c ∈
{1, . . . , k} such that the induced subgraph Tc[P ] is disconnected for some P ∈ Pi,
then ci is defined as the least such c and Pi+1 consists of the vertex sets of all

∗Department of Mathematics and Institute for Theoretical Computer Science (ITI),
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components of Tci
[Q], where Q ranges over all the classes of Pi. Otherwise, the

process ends by setting P∞ = Pi.
We define the level `(e) of an edge e ∈ E(G) (with respect to T) as the largest

i (possibly∞) such that both ends of e are contained in one class of Pi. An edge
e ∈ E(Tk) is superfluous (for T) if `(e) < ∞ and e is contained in some cycle of
Tk. We say that an edge leaves P ⊂ V (G) if it has precisely one end in P .

To keep the notation simple, the symbols Pi and `(e) (as well as P∞ and ci)
will relate to a partition T, while P′i and `′(e) relate to a partition T′. Thus,
for instance, the level `′(e) of an edge e with respect to T′ is defined using the
partitions P′i associated with T′.

Proof of Theorem 1. The necessity of the condition is clear. To prove the suf-
ficiency, we proceed by induction on k. The claim is trivially true for k = 0,
so assume k ≥ 1 and choose an ordered partition T = (T1, . . . , Tk) of G into
spanning subgraphs of G such that T1, . . . , Tk−1 are trees and the following holds:

(1) the number of components of Tk is as small as possible,

(2) either there is no superfluous edge for T, or the minimum level of a super-
fluous edge is as small as possible subject to (1).

If Tk is connected, then we are done. For the sake of a contradiction, suppose
that Tk has at least two components (i.e., |P1| ≥ 2). We prove that there exists
a superfluous edge for T. For all i = 1, . . . , k − 1 and P ∈ P := P∞, the graph
Ti[P ] is connected. Hence Ti/P is a tree and has exactly |P| − 1 edges. By the
assumption on G, the graph Tk/P has at least k(|P|−1)−(k−1)(|P|−1) = |P|−1
edges. Since Tk/P has |P| vertices and is disconnected, it must contain a cycle.
But then Tk contains a cycle as each Tk[P ] is connected for P ∈ P. All the edges
of this cycle joining different classes of P (there are at least two such edges) are
superfluous for T.

Let e ∈ E(Tk) be an edge of minimum level that is superfluous for T and
set m = `(e). Let P be the class of Pm containing both ends of e. Since e joins
different components of Tcm [P ], we have cm 6= k and the unique cycle C in Tcm +e
contains an edge leaving P . Thus, for an edge e′ of C of lowest possible level we
have j := `(e′) < `(e) = m. Let Q be the class of Pj containing both ends of e′;
note that (the vertex set of) C is contained within Q. We will exchange e for e′

in the respective sets Ti to eventually obtain the desired contradiction.
Let T′ be the partition obtained from T by replacing Tcm with T ′cm

= Tcm+e−e′

and Tk with T ′k = Tk − e + e′; we set T ′i = Ti for i /∈ {cm, k}. If the ends of e′ are
in different components of Tk (i.e., j = 0), then Tk− e + e′ has fewer components
than Tk, which is impossible. Thus, all of C is contained within one class R ∈ P1.
Furthermore, since e is superfluous for T, Tk[R] − e is connected and so e′ is
superfluous for T′.

Claim. For all i ≤ j, P′i = Pi.
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The proof is by induction on i, with the i = 0 case being trivial. We assume
that P′i = Pi and prove that every component of Tc[U ], where U ∈ Pi and c ≤ ci,
has the same vertex set as some component of T ′c[U ]. This will clearly imply the
Claim.

Let K be the vertex set of a component of Tc[U ]. First of all, T ′c contains no
edge leaving K, because Tc and T ′c only differ by edges contained within Q ∈ Pj,
which is either disjoint from K or contained in it. Thus, it suffices to prove that
T ′c[K] is connected. Furthermore, we may restrict our attention to c ∈ {cm, k}.
Suppose that T ′c[K] is disconnected; there are two cases.

Case 1: c = k and Tk[K] − e is disconnected. Since e is superfluous, it is
contained in a cycle D of Tk. By the assumption, D is not contained within
K ∈ Pi, so some edge f of D leaves K. However, f is then superfluous for T and
`(f) ≤ i < m, a contradiction.

Case 2: c = cm and Tcm [K]+e−e′ is disconnected. The class Q ∈ Pj containing
the cycle C is thus contained in K. But then C is a cycle in Tcm [K]+e containing
e′, so Tcm [K] + e − e′ cannot be disconnected. This contradiction concludes the
proof of the Claim.

We continue with the proof of the theorem. The above Claim implies that
`′(e′) ≥ j. On the other hand, if cj 6= k, then e′ joins different components of
T ′cj

[Q] and so we actually have `′(e′) = j < i, a contradiction with the choice of
e since we have seen that e′ is superfluous for T′. Thus, we conclude that cj = k.
Since Tk[R] is connected, the ends of e′ are joined by a path S in Tk[R]. However,
S is not contained within Q as e′ joins different components of Tk[Q]. Hence, S
contains an edge e′′ leaving Q. Observing that `(e′′) < j, we use the Claim to
obtain `′(e′′) = `(e′′) < j < `(e), a final contradiction with the minimality of e
since e′′ is superfluous for T′.
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