\(\mathcal{I} \)-ultrafilters
and summable ideals

Jana Flašková
flaskova@kma.zcu.cz

University of West Bohemia, Pilsen
Czech Republic
\(\mathcal{I}\)-ultrafilters

Definition A. (Baumgartner)

Let \(\mathcal{I}\) be a family of subsets of a set \(X\) such that \(\mathcal{I}\) contains all singletons and is closed under subsets. An ultrafilter \(\mathcal{U}\) on \(\omega\) is called an \(\mathcal{I}\)-ultrafilter if for every \(F: \omega \to X\) there exists \(A \in \mathcal{U}\) such that \(F[A] \in \mathcal{I}\).
I-ultrafilters

Definition A. (Baumgartner)

Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets. An ultrafilter \mathcal{U} on ω is called an \mathcal{I}-ultrafilter if for every $F : \omega \to X$ there exists $A \in \mathcal{U}$ such that $F[A] \in \mathcal{I}$.

- if $\mathcal{I} \subseteq \mathcal{J}$ then every \mathcal{I}-ultrafilter is a \mathcal{J}-ultrafilter
\(\mathcal{I}\)-ultrafilters

Definition A. (Baumgartner)

Let \(\mathcal{I}\) be a family of subsets of a set \(X\) such that \(\mathcal{I}\) contains all singletons and is closed under subsets. An ultrafilter \(\mathcal{U}\) on \(\omega\) is called an \(\mathcal{I}\)-ultrafilter if for every \(F: \omega \to X\) there exists \(A \in \mathcal{U}\) such that \(F[A] \in \mathcal{I}\).

- if \(\mathcal{I} \subseteq \mathcal{J}\) then every \(\mathcal{I}\)-ultrafilter is a \(\mathcal{J}\)-ultrafilter
- if \(\mathcal{U} \leq_{RK} \mathcal{V}\) and \(\mathcal{V}\) is an \(\mathcal{I}\)-ultrafilter then \(\mathcal{U}\) is also an \(\mathcal{I}\)-ultrafilter
I-ultrafilters

Definition A. (Baumgartner)

Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets. An ultrafilter \mathcal{U} on ω is called an \mathcal{I}-ultrafilter if for every $F : \omega \to X$ there exists $A \in \mathcal{U}$ such that $F[A] \in \mathcal{I}$.

- if $\mathcal{I} \subseteq \mathcal{J}$ then every \mathcal{I}-ultrafilter is a \mathcal{J}-ultrafilter
- if $\mathcal{U} \leq_{RK} \mathcal{V}$ and \mathcal{V} is an \mathcal{I}-ultrafilter then \mathcal{U} is also an \mathcal{I}-ultrafilter
- \mathcal{I}-ultrafilters and $\langle \mathcal{I} \rangle$-ultrafilters coincide

where $\langle \mathcal{I} \rangle$ is the ideal generated by \mathcal{I}
Weak \mathcal{I}-ultrafilters

Definition B.
Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets. An ultrafilter \mathcal{U} on ω is called

weak \mathcal{I}-ultrafilter if for every *finite-to-one* function $F : \omega \to X$ there exists $A \in \mathcal{U}$ such that $F[A] \in \mathcal{I}$.
Weak \mathcal{I}-ultrafilters

Definition B.
Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets. An ultrafilter \mathcal{U} on ω is called

weak \mathcal{I}-ultrafilter if for every finite-to-one function $F : \omega \to X$ there exists $A \in \mathcal{U}$ such that $F[A] \in \mathcal{I}$.

\mathcal{I}-friendly ultrafilter if for every one-to-one function $F : \omega \to X$ there exists $A \in \mathcal{U}$ such that $F[A] \in \mathcal{I}$.
Ideals on ω
Ideals on ω

Definition.

An ideal \mathcal{I} on ω is tall (dense) if for every infinite set $A \subseteq \omega$ there exists infinite $B \subseteq A$ such that $B \in \mathcal{I}$.
Ideals on ω

Definition.
An ideal \mathcal{I} on ω is **tall** (dense) if for every infinite set $A \subseteq \omega$ there exists infinite $B \subseteq A$ such that $B \in \mathcal{I}$.

Lemma 1.
If \mathcal{I} is not a tall ideal then there are no \mathcal{I}-ultrafilters.
Ideals on ω

Definition.
An ideal \mathcal{I} on ω is **tall (dense)** if for every infinite set $A \subseteq \omega$ there exists infinite $B \subseteq A$ such that $B \in \mathcal{I}$.

Lemma 1.
If \mathcal{I} is not a tall ideal then there are no \mathcal{I}-ultrafilters.

Proposition 2.
$(p = c)$ If \mathcal{I} is a tall ideal then \mathcal{I}-ultrafilters exist.
Summable ideals

Definition.

Given a function $g : \omega \to [0, \infty)$ such that $\sum_{n \in \omega} g(n) = \infty$ then the family $I_g = \{ A \subseteq \omega : \sum_{a \in A} g(a) < +\infty \}$

is a proper ideal which we call summable ideal determined by function g.
Summable ideals

- Every summable ideal is a P-ideal.
- Every summable ideal is an F_σ ideal.
Summable ideals

- Every summable ideal is a P-ideal.
- Every summable ideal is an F_σ ideal.

Observation.
A summable ideal is tall if and only if $\lim_{n \to \infty} g(n) = 0$.
Summable ideals

- Every summable ideal is a P-ideal.
- Every summable ideal is an F_{σ} ideal.

Observation.
A summable ideal is tall if and only if $\lim_{n \to \infty} g(n) = 0$.

We consider only tall summable ideals.
Rapid ultrafilters

Definition.
An ultrafilter \mathcal{U} on ω is called a rapid ultrafilter if the enumeration functions of its sets form a dominating family in (ω^ω, \leq^*).

Rapid ultrafilters

Definition.
An ultrafilter \mathcal{U} on ω is called a rapid ultrafilter if the enumeration functions of its sets form a dominating family in $(\omega \omega, \leq^*)$.

Theorem (Hrušák)
An ultrafilter $\mathcal{U} \in \omega^*$ is rapid if and only if $\mathcal{I}_g^* \not\leq_{KB} \mathcal{U}$ for every summable ideal \mathcal{I}_g.
Rapid ultrafilters

Definition.
An ultrafilter \mathcal{U} on ω is called a rapid ultrafilter if the enumeration functions of its sets form a dominating family in (ω^ω, \leq^*).

Theorem (Hrušák)
An ultrafilter $\mathcal{U} \in \omega^*$ is rapid if and only if $\mathcal{I}_g^* \not\leq_{KB} \mathcal{U}$ for every summable ideal \mathcal{I}_g.

Theorem (Vojtáš)
An ultrafilter $\mathcal{U} \in \omega^*$ is rapid if and only if $\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$ for every summable ideal \mathcal{I}_g.
Rapid ultrafilters

Theorem 3.
For an ultrafilter $\mathcal{U} \in \omega^*$ the following are equivalent:

- \mathcal{U} is rapid
- \mathcal{U} is a weak \mathcal{I}_g-ultrafilter for every summable ideal \mathcal{I}_g
- \mathcal{U} is an \mathcal{I}_g-friendly ultrafilter for every summable ideal \mathcal{I}_g
- $\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$ for every summable ideal \mathcal{I}_g
Rapid ultrafilters

Theorem 4.

(MA_{ctble}) There is an \mathcal{I}_g-ultrafilter which is not a rapid ultrafilter.
Rapid ultrafilters

Theorem 4.

\((\text{MA}_{\text{ctble}})\) There is an \(\mathcal{I}_g\)-ultrafilter which is not a rapid ultrafilter.

Theorem 5.

\((\text{MA}_{\text{ctble}})\) There is a rapid ultrafilter which is not an \(\mathcal{I}_g\)-ultrafilter.
Rapid ultrafilters

Theorem 4.
(MA$_{\text{ctble}}$) There is an \mathcal{I}_g-ultrafilter which is not a rapid ultrafilter.

Theorem 5.
(MA$_{\text{ctble}}$) There is a rapid ultrafilter which is not an \mathcal{I}_g-ultrafilter.

Theorem 5*.
(MA$_{\text{ctble}}$) For every tall ideal \mathcal{I} there is a Q-point which is not an \mathcal{I}-ultrafilter.
\mathcal{I}_g-ultrafilters

\mathcal{U} is an \mathcal{I}_g-ultrafilter

\Downarrow

\mathcal{U} is a weak \mathcal{I}_g-ultrafilter

\Downarrow

\mathcal{U} is an \mathcal{I}_g-friendly ultrafilter

\Downarrow

$\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$
\mathcal{I}_g-ultrafilters

\mathcal{U} is an \mathcal{I}_g-ultrafilter

\downarrow

\mathcal{U} is a weak \mathcal{I}_g-ultrafilter

\downarrow

\mathcal{U} is an \mathcal{I}_g-friendly ultrafilter

$\mathsf{ZFC} \downarrow \uparrow \mathsf{ZFC}$

$\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$
\mathcal{I}_g-ultrafilters

\mathcal{U} is an \mathcal{I}_g-ultrafilter

\[
\text{ZFC} \Downarrow \Updownarrow \text{MA}_{\text{ctble}}
\]

\mathcal{U} is a weak \mathcal{I}_g-ultrafilter

\[
\Downarrow
\]

\mathcal{U} is an \mathcal{I}_g-friendly ultrafilter

\[
\text{ZFC} \Downarrow \Updownarrow \text{ZFC}
\]

$\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$
\(\mathcal{I}_g \)-ultrafilters

\(\mathcal{U} \) is an \(\mathcal{I}_g \)-ultrafilter

\[\text{ZFC} \downarrow \uparrow \text{MA_{ctble}} \]

\(\mathcal{U} \) is a weak \(\mathcal{I}_g \)-ultrafilter

\[\text{ZFC} \downarrow \uparrow ??? \]

\(\mathcal{U} \) is an \(\mathcal{I}_g \)-friendly ultrafilter

\[\text{ZFC} \downarrow \uparrow \text{ZFC} \]

\(\mathcal{U} \cap \mathcal{I}_g \neq \emptyset \)
\mathcal{I}_g-ultrafilters

\mathcal{U} is an \mathcal{I}_g-ultrafilter
 \Downarrow

\mathcal{U} is a weak \mathcal{I}_g-ultrafilter
 \Downarrow

\mathcal{U} is an \mathcal{I}_g-friendly ultrafilter
 \Downarrow

$\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$
\mathcal{I}_g-ultrafilters

\mathcal{U} is an \mathcal{I}_g-ultrafilter

\implies

\mathcal{U} is a weak \mathcal{I}_g-ultrafilter

\implies

\mathcal{U} is an \mathcal{I}_g-friendly ultrafilter

\implies

$\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$

Proposition 2.

$(p = c)$ For every tall ideal \mathcal{I} there is an \mathcal{I}-ultrafilter.
\[\mathcal{I}_g \text{-ultrafilters} \]

\[\mathcal{U} \text{ is an } \mathcal{I}_g \text{-ultrafilter} \]
\[\Downarrow \]
\[\mathcal{U} \text{ is a weak } \mathcal{I}_g \text{-ultrafilter} \]
\[\Downarrow \]
\[\mathcal{U} \text{ is an } \mathcal{I}_g \text{-friendly ultrafilter} \]
\[\Downarrow \]
\[\mathcal{U} \cap \mathcal{I}_g \neq \emptyset \]

Theorem 6.

(MA\text{ctble}) For every summable ideal \(\mathcal{I}_g \) there is an \(\mathcal{I}_g \)-ultrafilter.
\mathcal{I}_g-ultrafilters

\mathcal{U} is an \mathcal{I}_g-ultrafilter

\Downarrow

\mathcal{U} is a weak \mathcal{I}_g-ultrafilter

\Downarrow

\mathcal{U} is an \mathcal{I}_g-friendly ultrafilter

\Downarrow

$\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$

Observation

For every summable ideal \mathcal{I}_g there is an ultrafilter $\mathcal{U} \in \omega^*$ such that $\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$.
\mathcal{I}_g-ultrafilters

\mathcal{U} is an \mathcal{I}_g-ultrafilter

\Rightarrow

\mathcal{U} is a weak \mathcal{I}_g-ultrafilter

\Rightarrow

\mathcal{U} is an \mathcal{I}_g-friendly ultrafilter

\Rightarrow

$\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$
\mathcal{I}_g-ultrafilters

\mathcal{U} is an \mathcal{I}_g-ultrafilter
\[\Downarrow\]
\mathcal{U} is a weak \mathcal{I}_g-ultrafilter
\[\Downarrow\]
\mathcal{U} is an \mathcal{I}_g-friendly ultrafilter
\[\Downarrow\]
$\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$

At least for some summable ideals \mathcal{I}_g-friendly ultrafilters exist in ZFC.
Some results

Theorem 7.

$\mathcal{I}_{1/n}$-friendly ultrafilters exist in ZFC.
Some results

Theorem 7.
$I_{1/n}$-friendly ultrafilters exist in ZFC.

Corollary 8.
If $I_{1/n} \subseteq I_g$ then I_g-friendly ultrafilters exist in ZFC.

Examples: $g(n) = \frac{1}{n \ln n}$
Some results

Theorem 7.
$I_{1/n}$-friendly ultrafilters exist in ZFC.

Corollary 8.
If $I_{1/n} \subseteq I_g$ then I_g-friendly ultrafilters exist in ZFC.

Examples: $g(n) = \frac{1}{n \ln n}$

Theorem 9.
If $g(n) = \frac{\ln p n}{n}$, $p \in \omega$, then I_g-friendly ultrafilters exist in ZFC.
Construction

Theorem 7.

$I_{1/n}$-friendly ultrafilters exist in ZFC.
Construction

Theorem 7.
\(\mathcal{I}_{1/n}\)-friendly ultrafilters exist in ZFC.

Definition.
A family \(\mathcal{F} \subseteq \mathcal{P}(\omega)\) is called

- a **\(k\)-linked family** if \(F_1 \cap \ldots \cap F_k\) is infinite whenever \(F_i \in \mathcal{F}, i \leq k\).

- a **centered system** if \(\mathcal{F}\) is \(k\)-linked for every \(k\) i.e., if any finite subfamily of \(\mathcal{F}\) has an infinite intersection.
Construction

We say that $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is a summable family if for every one-to-one function $f : \omega \to \mathbb{N}$ there is $A \in \mathcal{F}$ such that $f[A] \in \mathcal{I}_{1/n}$.
Construction

We say that $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is a **summable family** if for every one-to-one function $f : \omega \to \mathbb{N}$ there is $A \in \mathcal{F}$ such that $f[A] \in \mathcal{I}_{1/n}$.

Proposition 10.
For every $k \in \mathbb{N}$ there exists a summable k-linked family $\mathcal{F}_k \subseteq \mathcal{P}(\omega)$.
Lemma 11.

If $\mathcal{F}_k \subseteq \mathcal{P}(\omega)$ is a k-linked family then

$\mathcal{F} = \{ F \subseteq \omega : (\forall k)(\exists U^k \in \mathcal{F}_k) U^k \subseteq^* F \}$

is a centered system.
Construction

Lemma 11.
If $\mathcal{F}_k \subseteq \mathcal{P}(\omega)$ is a k-linked family then
$\mathcal{F} = \{ F \subseteq \omega : (\forall k)(\exists U^k \in \mathcal{F}_k) U^k \subseteq^* F \}$
is a centered system.

If every \mathcal{F}_k is summable then \mathcal{F} is summable.
Construction

Lemma 11.
If \(\mathcal{F}_k \subseteq \mathcal{P}(\omega) \) is a \(k \)-linked family then
\[
\mathcal{F} = \{ F \subseteq \omega : (\forall k)(\exists U^k \in \mathcal{F}_k)\ U^k \subseteq^* F \}
\]
is a centered system.

If every \(\mathcal{F}_k \) is summable then \(\mathcal{F} \) is summable.

More generally, if \(\mathcal{I} \) is a \(P \)-ideal and for every one-to-one function \(f \in \omega \mathbb{N} \) and for every \(k \in \mathbb{N} \) there exists \(U^k \in \mathcal{F}_k \) such that \(f[U^k] \in \mathcal{I} \) then there exists \(U \in \mathcal{F} \) such that \(f[U] \in \mathcal{I} \).
Some questions

Question.
Do \mathcal{I}_g-friendly ultrafilters exist in ZFC for every summable ideal \mathcal{I}_g? What about $g(n) = \frac{1}{\sqrt{n}}$ or $\frac{1}{\ln n}$?
Some questions

Question.
Do \mathcal{I}_g-friendly ultrafilters exist in ZFC for every summable ideal \mathcal{I}_g? What about $g(n) = \frac{1}{\sqrt{n}}$ or $\frac{1}{\ln n}$?

Question.
Is there an \mathcal{I}_g-friendly ultrafilter which is not an \mathcal{I}_h-friendly ultrafilter whenever $\mathcal{I}_g \not\subseteq \mathcal{I}_h$?
References

