Hindman spaces and summable ultrafilters

Jana Flašková
flaskova@kma.zcu.cz

University of West Bohemia, Pilsen
Czech Republic
Van der Waerden spaces

$A \subseteq \mathbb{N}$ is an AP-set if A contains arithmetic progressions of arbitrary length.
Van der Waerden spaces

$A \subseteq \mathbb{N}$ is an AP-set if A contains arithmetic progressions of arbitrary length.

- (van der Waerden theorem)
 Sets that are not AP-sets form an ideal
Van der Waerden spaces

\[A \subseteq \mathbb{N} \text{ is an AP-set if } A \text{ contains arithmetic progressions of arbitrary length.} \]

- (van der Waerden theorem)
 Sets that are not AP-sets form an ideal

Definition A. (Kojman)

A topological space \(X \) is called van der Waerden if for every sequence \(\langle x_n \rangle_{n \in \omega} \) in \(X \) there exists a converging subsequence \(\langle x_{n_k} \rangle_{k \in \omega} \) so that \(\{ n_k : k \in \omega \} \) is an AP-set.
Hindman spaces

$A \subseteq \mathbb{N}$ is an IP-set if A contains all finite sums of elements of some infinite set.
Hindman spaces

$A \subseteq \mathbb{N}$ is an IP-set if A contains all finite sums of elements of some infinite set.

- (Hindman theorem)
 Sets that are not IP-sets form an ideal
Hindman spaces

\(A \subseteq \mathbb{N} \) is an **IP-set** if \(A \) contains all finite sums of elements of some infinite set.

- (Hindman theorem)
 Sets that are not IP-sets form an ideal

Definition A. (Kojman)

A topological space \(X \) is called **van der Waerden** if for every sequence \(\langle x_n \rangle_{n \in \omega} \) in \(X \) there exists a converging subsequence \(\langle x_{n_k} \rangle_{k \in \omega} \) so that \(\{ n_k : k \in \omega \} \) is an **AP-set**.
Hindman spaces

\[A \subseteq \mathbb{N} \] is an \textbf{IP-set} if \(A \) contains all finite sums of elements of some infinite set.

- (Hindman theorem)
 Sets that are not IP-sets form an ideal

A topological space \(X \) is called \textbf{Hindman} if for every sequence \(\langle x_n \rangle_{n \in \omega} \) in \(X \) there exists a converging subsequence \(\langle x_{n_k} \rangle_{k \in \omega} \) so that \(\{n_k : k \in \omega\} \) is an \textbf{IP-set}.
Hindman spaces

A ⊆ ℕ is an **IP-set** if A contains all finite sums of elements of some infinite set.

- (Hindman theorem)
 Sets that are not IP-sets form an ideal

A topological space X is called **Hindman** if for every sequence ⟨xₙ⟩ₙ∈ω in X there exists a converging subsequence ⟨xₙₖ⟩ₖ∈ω so that {nₖ : k ∈ ω} is an **IP-set**.

!!! only finite T₂ spaces fullfill the condition!!!
Hindman spaces

An **IP-sequence** in a topological space is a sequence indexed by $FS(D)$ for some infinite $D \subseteq \mathbb{N}$.
Hindman spaces

An **IP-sequence** in a topological space is a sequence indexed by $FS(D)$ for some infinite $D \subseteq \mathbb{N}$.

An IP-sequence $\langle x_n \rangle_{n \in FS(D)}$ in a topological space X **IP-converges** to a point $x \in X$ if for every neighborhood U of x there exists $m \in \mathbb{N}$ such that $\{x_n : n \in FS(D \setminus m)\} \subseteq U$.
Hindman spaces

An IP-sequence in a topological space is a sequence indexed by $FS(D)$ for some infinite $D \subseteq \mathbb{N}$.

An IP-sequence $\langle x_n \rangle_{n \in FS(D)}$ in a topological space X IP-converges to a point $x \in X$ if for every neighborhood U of x there exists $m \in \mathbb{N}$ such that $\{x_n : n \in FS(D \setminus m)\} \subseteq U$.

Definition B. (Kojman)

A topological space X is called Hindman if for every sequence $\langle x_n \rangle_{n \in \omega}$ in X there exists an infinite set $D \subseteq \mathbb{N}$ such that $\langle x_n \rangle_{n \in FS(D)}$ IP-converges to some $x \in X$.
Known facts

Theorem (Kojman)

- There exists a sequentially compact space which is not van der Waerden.
Known facts

Theorem (Kojman)

- There exists a sequentially compact space which is not van der Waerden.
- There exists a sequentially compact space which is not Hindman.
Known facts

Theorem (Kojman)

- There exists a sequentially compact space which is not van der Waerden.
- There exists a sequentially compact space which is not Hindman.

Proof. Consider the one-point compactification of $\Psi(\mathcal{A})$ for a suitable MAD family \mathcal{A}.
Ψ-spaces

For a given maximal almost disjoint (MAD) family A of infinite subsets of \mathbb{N} we define the space $\Psi(A)$ as follows:
Ψ-spaces

For a given maximal almost disjoint (MAD) family \mathcal{A} of infinite subsets of \mathbb{N} we define the space $\Psi(\mathcal{A})$ as follows:

- The underlying set is $\mathbb{N} \cup \{p_A : A \in \mathcal{A}\}$.

Ψ-spaces

For a given maximal almost disjoint (MAD) family \mathcal{A} of infinite subsets of \mathbb{N} we define the space $\Psi(\mathcal{A})$ as follows:

- The underlying set is $\mathbb{N} \cup \{p_A : A \in \mathcal{A}\}$.
- Every point in \mathbb{N} is isolated.
For a given maximal almost disjoint (MAD) family \mathcal{A} of infinite subsets of \mathbb{N} we define the space $\Psi(\mathcal{A})$ as follows:

- The underlying set is $\mathbb{N} \cup \{p_A : A \in \mathcal{A}\}$.
- Every point in \mathbb{N} is isolated.
- Every point p_A has neighborhood base of all sets $\{p_A\} \cup A \setminus K$ where K is a finite subset of A.
\textbf{Ψ-spaces}

For a given maximal almost disjoint (MAD) family \mathcal{A} of infinite subsets of \mathbb{N} we define the space $\Psi(\mathcal{A})$ as follows:

- The underlying set is $\mathbb{N} \cup \{p_A : A \in \mathcal{A}\}$.
- Every point in \mathbb{N} is isolated.
- Every point p_A has neighborhood base of all sets $\{p_A\} \cup A \setminus K$ where K is a finite subset of A.

Note: $\Psi(\mathcal{A})$ is regular, first countable and separable.
Known facts

Theorem (Kojman)
If a Hausdorff space X satisfies the following condition

(*) The closure of every countable set in X is compact and first-countable.

Then X is both van der Waerden and Hindman.
Known facts

Theorem (Kojman)
If a Hausdorff space X satisfies the following condition

(*) The closure of every countable set in X is compact and first-countable.

Then X is both van der Waerden and Hindman.

For example, compact metric spaces or every successor ordinal with the order topology satisfy (*).
Known facts + questions

Theorem (Kojman, Shelah)
(CH) There exists a van der Waerden space which is not Hindman.
Known facts + questions

Theorem (Kojman, Shelah)
(CH) There exists a van der Waerden space which is not Hindman.

Theorem (Jones)
(MA$_{\sigma-\text{cent.}}$) There exists a van der Waerden space which is not Hindman.
Known facts + questions

Theorem (Kojman, Shelah)
(CH) There exists a van der Waerden space which is not Hindman.

Theorem (Jones)
(MA_{\sigma-\text{cent.}}) There exists a van der Waerden space which is not Hindman.

(Jones) Is it consistent that there is a Hindman space which is not a van der Waerden space?
Known facts + questions

Theorem (Kojman, Shelah)
(CH) There exists a van der Waerden space which is not Hindman.

Theorem (Jones)
(MA$_{\sigma-cent.}$) There exists a van der Waerden space which is not Hindman.

(Jones) Is it consistent that there is a Hindman space which is not a van der Waerden space?

Is it possible to strengthen the result of Jones?
\(\mathcal{I}_{1/n} \)-spaces

\[
\mathcal{I}_{1/n} = \{ A \subseteq \mathbb{N} : \sum_{a \in A} \frac{1}{a} < \infty \}
\]
$\mathcal{I}_{1/n}$-spaces

$$\mathcal{I}_{1/n} = \{ A \subseteq \mathbb{N} : \sum_{a \in A} \frac{1}{a} < \infty \}$$

- $\mathcal{I}_{1/n}$ is an F_σ-ideal like van der Waerden ideal.
$I_{1/n}$-spaces

$I_{1/n} = \{ A \subseteq \mathbb{N} : \sum_{a \in A} \frac{1}{a} < \infty \}$

- $I_{1/n}$ is an F_σ-ideal like van der Waerden ideal.

Definition A. (Kojman)

A topological space X is called van der Waerden if for every sequence $\langle x_n \rangle_{n \in \omega}$ in X there exists a converging subsequence $\langle x_{n_k} \rangle_{k \in \omega}$ so that $\{ n_k : k \in \omega \}$ is an AP-set.
\(\mathcal{I}_{1/n} \)-spaces

\[\mathcal{I}_{1/n} = \{ A \subseteq \mathbb{N} : \sum_{a \in A} \frac{1}{a} < \infty \} \]

- \(\mathcal{I}_{1/n} \) is an \(F_\sigma \)-ideal like van der Waerden ideal.

Definition C.

A topological space \(X \) is called \(\mathcal{I}_{1/n} \)-space if for every sequence \(\langle x_n \rangle_{n \in \omega} \) in \(X \) there exists a converging subsequence \(\langle x_{n_k} \rangle_{k \in \omega} \) so that \(\{ n_k : k \in \omega \} \) does not belong to \(\mathcal{I}_{1/n} \).
Theorem 1.
If a Hausdorff space \(X \) satisfies the following condition
\((\ast)\) The closure of every countable set in \(X \) is compact and first-countable.

Then \(X \) is an \(I_{1/n} \)-space.
\(I_{1/n} \)-spaces

Theorem 1.
If a Hausdorff space \(X \) satisfies the following condition

(\(\ast \)) The closure of every countable set in \(X \) is compact and first-countable.

Then \(X \) is an \(I_{1/n} \)-space.

Theorem 2.
There exists a sequentially compact space which is not an \(I_{1/n} \)-space.
$\mathcal{I}_{1/n} \& \text{van der Waerden spaces}$

Erdős-Turán Conjecture.
Every set $A \notin \mathcal{I}_{1/n}$ is an AP-set.

If Erdős-Turán Conjecture is true then every $\mathcal{I}_{1/n}$-space is van der Waerden.
\(\mathcal{I}_{1/n} \) & van der Waerden spaces

Erdős-Turán Conjecture.
Every set \(A \notin \mathcal{I}_{1/n} \) is an AP-set.

If Erdős-Turán Conjecture is true then every \(\mathcal{I}_{1/n} \)-space is van der Waerden.

Theorem 3.
\((\text{MA}_{\sigma-\text{cent.}})\) There exists a van der Waerden space which is not an \(\mathcal{I}_{1/n} \)-space.
\[\mathcal{I}_{1/n} \] & Hindman spaces

There is no inclusion between \(\mathcal{I}_{1/n} \) and Hindman ideal.
$I_{1/n}$ & Hindman spaces

There is no inclusion between $I_{1/n}$ and Hindman ideal.

Theorem 4.

$(\text{MA}_{\sigma-\text{cent.}})$ There exists an $I_{1/n}$-space which is not Hindman.
\(\mathcal{I}_{1/n} \) & Hindman spaces

There is no inclusion between \(\mathcal{I}_{1/n} \) and Hindman ideal.

Theorem 4.

(MA\(\sigma\)-cent.) There exists an \(\mathcal{I}_{1/n} \)-space which is not Hindman.

Proposition

(MA\(\sigma\)-cent.) There exists a MAD family \(A \) consisting of non-IP-sets so that for every \(B \subseteq \mathbb{N}, B \notin \mathcal{I}_{1/n} \) and every finite-to-one function \(f : B \to \mathbb{N} \) there exists \(C \subseteq B, C \notin \mathcal{I}_{1/n} \) and \(A \in \mathcal{A} \) so that \(f[C] \subseteq A \).
$\mathcal{I}_{1/n}$ & Hindman spaces

Question
Is it consistent that there is a Hindman space which is not an $\mathcal{I}_{1/n}$-space?
Question
Is it consistent that there is a Hindman space which is not an $\mathcal{I}_{1/n}$-space?

$A \subseteq \mathbb{N}$ is an **ip-rich set** if A contains all finite sums of elements of arbitrarily large finite sets.
$\mathcal{I}_{1/n}$ & Hindman spaces

Question

Is it consistent that there is a Hindman space which is not an $\mathcal{I}_{1/n}$-space?

$A \subseteq \mathbb{N}$ is an **ip-rich set** if A contains all finite sums of elements of arbitrarily large finite sets.

- Every IP-set is by definition ip-rich
I_{1/n} & Hindman spaces

Question

Is it consistent that there is a Hindman space which is not an I_{1/n}-space?

\(A \subseteq \mathbb{N} \) is an **ip-rich set** if \(A \) contains all finite sums of elements of arbitrarily large finite sets.

- Every IP-set is by definition ip-rich
- (Folkman-Rado-Sanders)
 Sets that are not ip-rich form an ideal
\(\mathcal{I}_{1/n} \) & Hindman spaces

Question
Is it consistent that there is a Hindman space which is not an \(\mathcal{I}_{1/n} \)-space?

\(A \subseteq \mathbb{N} \) is an **ip-rich set** if \(A \) contains all finite sums of elements of arbitrarily large finite sets.

- Every IP-set is by definition ip-rich
- (Folkman-Rado-Sanders) Sets that are not ip-rich form an ideal
- Ideal \(\mathcal{I}_{ipr} \) is an \(F_\sigma \)-ideal
\textbf{Definition D.}

A topological space \(X \) is called an \(\mathcal{I}_{ipr} \)-space if for every sequence \(\langle x_n \rangle_{n \in \omega} \) in \(X \) there exists a converging subsequence \(\langle x_{n_k} \rangle_{k \in \omega} \) so that \(\{n_k : k \in \omega\} \) is an ip-rich set.
\(\mathcal{I}_{1/n} \) & \(\mathcal{I}_{ipr} \)-spaces

Definition D.
A topological space \(X \) is called \(\mathcal{I}_{ipr} \)-space if for every sequence \(\langle x_n \rangle_{n \in \omega} \) in \(X \) there exists a converging subsequence \(\langle x_{n_k} \rangle_{k \in \omega} \) so that \(\{ n_k : k \in \omega \} \) is an ip-rich set.

Theorem 7.
(\(\text{MA}_{\sigma-\text{cent.}} \)) There exists an \(\mathcal{I}_{ipr} \)-space which is not an \(\mathcal{I}_{1/n} \)-space.
Weak \mathcal{I}-ultrafilters

Definition (Baumgartner)
Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets. An ultrafilter \mathcal{U} on \mathbb{N} is called an \mathcal{I}-ultrafilter if for every $F: \mathbb{N} \to X$ there exists $A \in \mathcal{U}$ such that $F[A] \in \mathcal{I}$.
Weak \mathcal{I}-ultrafilters

Definition E.
Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets. An ultrafilter \mathcal{U} on \mathbb{N} is called an weak \mathcal{I}-ultrafilter if for every finite-to-one $F : \mathbb{N} \to X$ there exists $A \in \mathcal{U}$ such that $F[A] \in \mathcal{I}$.
Weak \mathcal{I}-ultrafilters

Definition E.
Let \mathcal{I} be a family of subsets of a set X such that \mathcal{I} contains all singletons and is closed under subsets. An ultrafilter \mathcal{U} on \mathbb{N} is called an weak \mathcal{I}-ultrafilter if for every finite-to-one $F : \mathbb{N} \to X$ there exists $A \in \mathcal{U}$ such that $F[A] \in \mathcal{I}$.

Definition (Hindman)
An ultrafilter \mathcal{U} on \mathbb{N} is called weakly summable if every $U \in \mathcal{U}$ is an IP-set.
\(\mathcal{I}_{1/n} \)-ultrafilters

Theorem 8.

(MA\text{ctble}) There exists an \(\mathcal{I}_{1/n} \)-ultrafilter \(\mathcal{U} \in \mathbb{N}^* \) such that every \(U \in \mathcal{U} \) is an ip-rich set.
$\mathcal{I}_{1/n}$-ultrafilters

Theorem 8.
$(\text{MA}_{\text{ctble}})$ There exists an $\mathcal{I}_{1/n}$-ultrafilter $\mathcal{U} \in \mathbb{N}^*$ such that every $U \in \mathcal{U}$ is an ip-rich set.

Theorem 9.
$(\text{MA}_{\text{ctble}})$ There exists a weak $\mathcal{I}_{1/n}$-ultrafilter $\mathcal{U} \in \mathbb{N}^*$ which is weakly summable ultrafilter.
$\mathcal{I}_{1/n}$-ultrafilters

Theorem 8.
\((\text{MA}_{\text{ctble}})\) There exists an $\mathcal{I}_{1/n}$-ultrafilter $\mathcal{U} \in \mathbb{N}^*$ such that every $U \in \mathcal{U}$ is an ip-rich set.

Theorem 9.
\((\text{MA}_{\text{ctble}})\) There exists a weak $\mathcal{I}_{1/n}$-ultrafilter $\mathcal{U} \in \mathbb{N}^*$ which is weakly summable ultrafilter.

Question
Is it consistent that there is a weakly summable $\mathcal{I}_{1/n}$-ultrafilter?
References

