Some special points in Čech-Stone compactification of natural numbers

Jana Flašková
flaskova@kma.zcu.cz

University of West Bohemia, Pilsen
Czech Republic
Filters

Definition.

For a non-empty set X, a filter on X is a family $\mathcal{F} \subseteq \mathcal{P}(X)$ such that:

- $\mathcal{F} \neq \emptyset$ and $\emptyset \notin \mathcal{F}$
- if $F_1, F_2 \in \mathcal{F}$ then $F_1 \cap F_2 \in \mathcal{F}$
- if $F \in \mathcal{F}$ and $F \subseteq G \subseteq X$ then $G \in \mathcal{F}$.
Filters

Definition.
For a non-empty set X, a filter on X is a family $\mathcal{F} \subseteq \mathcal{P}(X)$ such that:

- $\mathcal{F} \neq \emptyset$ and $\emptyset \notin \mathcal{F}$
- if $F_1, F_2 \in \mathcal{F}$ then $F_1 \cap F_2 \in \mathcal{F}$
- if $F \in \mathcal{F}$ and $F \subseteq G \subseteq X$ then $G \in \mathcal{F}$.

If moreover \mathcal{F} satisfies
- for every $M \subseteq X$ either $M \in \mathcal{F}$ or $X \setminus M \in \mathcal{F}$
then \mathcal{F} is called an ultrafilter.
Ideals

Definition.
For a non-empty set X, an ideal on X is a family $\mathcal{I} \subseteq \mathcal{P}(X)$ such that:

- $\mathcal{I} \neq \mathcal{P}(X)$ and $\emptyset \in \mathcal{I}$
- if $A_1, A_2 \in \mathcal{I}$ then $A_1 \cup A_2 \in \mathcal{I}$
- if $A \in \mathcal{I}$ and $B \subseteq A \subseteq X$ then $B \in \mathcal{I}$.
Ideals

Definition.
For a non-empty set X, an ideal on X is a family $\mathcal{I} \subseteq \mathcal{P}(X)$ such that:

- $\mathcal{I} \neq \mathcal{P}(X)$ and $\emptyset \in \mathcal{I}$
- if $A_1, A_2 \in \mathcal{I}$ then $A_1 \cup A_2 \in \mathcal{I}$
- if $A \in \mathcal{I}$ and $B \subseteq A \subseteq X$ then $B \in \mathcal{I}$.

Examples:

$\mathcal{Z}_0 = \{ A \subseteq \mathbb{N} : \limsup_{n \to \infty} \frac{|A \cap n|}{n} = 0 \}$

$\mathcal{I}_{1/n} = \{ A \subseteq \mathbb{N} : \sum_{a \in A} \frac{1}{a} < \infty \}$
0-points

Definition A. (Gryzlov)

An ultrafilter \mathcal{U} on ω is called a 0-point if for every one-to-one function $f : \omega \rightarrow \mathbb{N}$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{Z}_0$.
0-points

Definition A. (Gryzlov)
An ultrafilter \mathcal{U} on ω is called a 0-point if for every one-to-one function $f : \omega \rightarrow \mathbb{N}$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{Z}_0$.

- (M. E. Rudin) Every P-point is a 0-point.
0-points

Definition A. (Gryzlov)
An ultrafilter \mathcal{U} on ω is called a 0-point if for every one-to-one function $f : \omega \to \mathbb{N}$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{Z}_0$.

• (M. E. Rudin) Every P-point is a 0-point.
• Every Q-point is a 0-point.
0-points

- (Shelah) There may be no P-points.
- (Miller) There may be no Q-points.
0-points

- (Shelah) There may be no P-points.
- (Miller) There may be no Q-points.

Theorem (Gryzlov)
0-points exist in ZFC.
0-points

- (Shelah) There may be no P-points.
- (Miller) There may be no Q-points.

Theorem (Gryzlov)
0-points exist in ZFC.

Theorem (Gryzlov)
There are 2^c many distinct 0-points.
Topological consequences

Problem 235. (Hart, van Mill)
For what nowhere dense sets $A \subseteq \omega^*$ do we have $\bigcup_{\pi \in S_{\omega}} \pi[A] \neq \omega^*$?
Problem 235. (Hart, van Mill)
For what nowhere dense sets $A \subseteq \omega^*$ do we have
$$\bigcup_{\pi \in S_\omega} \pi[A] \neq \omega^*?$$

Some consistent answers:
- For all if $\pi > c$.
- Not for all if P-points exist.
Topological consequences

Problem 235. (Hart, van Mill)
For what nowhere dense sets $A \subseteq \omega^*$ do we have
$\bigcup_{\pi \in S_\omega} \pi[A] \neq \omega^*$?

Some consistent answers:

- For all if $n > c$.
- Not for all if P-points exist.

Examples in ZFC:

- singletons
Problem 235. (Hart, van Mill)
For what nowhere dense sets $A \subseteq \omega^*$ do we have $\bigcup_{\pi \in S_\omega} \pi[A] \neq \omega^*$?

Some consistent answers:
- For all if $n > c$.
- Not for all if P-points exist.

Examples in ZFC:
- Singletons
- (Gryzlov) $A = \{ \mathcal{U} \in \omega^* : \mathcal{Z}_0^* \subseteq \mathcal{U} \}$.
Summable ultrafilters

Definition B.
An ultrafilter \mathcal{U} on ω is called a **summable ultrafilter** if for every one-to-one function $f : \omega \rightarrow \mathbb{N}$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}_{1/n}$.
Summable ultrafilters

Definition B.
An ultrafilter \mathcal{U} on ω is called a *summable ultrafilter* if for every one-to-one function $f : \omega \to \mathbb{N}$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}_{1/n}$.

- Every summable ultrafilter is a 0-point.
Summable ultrafilters

Definition B.

An ultrafilter \(\mathcal{U} \) on \(\omega \) is called a **summable ultrafilter** if for every one-to-one function \(f : \omega \to \mathbb{N} \) there exists \(U \in \mathcal{U} \) such that \(f[U] \in \mathcal{I}_{1/n} \).

- Every summable ultrafilter is a 0-point.
- Every \(Q \)-point is a summable ultrafilter.
Summable ultrafilters

Theorem 1.

(MA_{ctble}) There exists a P-point which is not a summable ultrafilter.
Summable ultrafilters

Theorem 1.
\((\text{MA}_{\text{ctble}})\) There exists a \(P\)-point which is not a summable ultrafilter.

Corollary 2.
It is consistent that there exists a 0-point which is not a summable ultrafilter.
Summable ultrafilters

Theorem 1.

(MA_{ctble}) There exists a P-point which is not a summable ultrafilter.

Corollary 2.

It is consistent that there exists a 0-point which is not a summable ultrafilter.

Question

Is there a 0-point which is not a summable ultrafilter in ZFC?
Summable ultrafilters

Theorem 3.
Summable ultrafilters exist in ZFC.
Summable ultrafilters

Theorem 3.
Summable ultrafilters exist in ZFC.

Corollary 4.
The set \(A = \{ U \in \omega^* : \mathcal{I}_{1/n}^* \subseteq U \} \) is a nowhere dense subset of \(\omega^* \) such that \(\bigcup_{\pi \in S_\omega} \pi[A] \neq \omega^* \).
Summable ultrafilters

Theorem 3.
Summable ultrafilters exist in ZFC.

Corollary 4.
The set \(A = \{ U \in \omega^* : \mathcal{I}_{1/n}^* \subseteq U \} \) is a nowhere dense subset of \(\omega^* \) such that \(\bigcup_{\pi \in S_\omega} \pi[A] \neq \omega^* \).

Proposition 5.
There exist \(2^c \) many distinct summable ultrafilters.
Construction

Definition.
A family $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is called

- a k-linked family if $F_0 \cap F_1 \cap \ldots \cap F_k$ is infinite whenever $F_i \in \mathcal{F}$, $i \leq k$.

- a centered system if \mathcal{F} is k-linked for every k i.e., if any finite subfamily of \mathcal{F} has an infinite intersection.
Construction

We say that $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is a \textbf{summable family} if for every one-to-one function $f : \omega \to \mathbb{N}$ there is $A \in \mathcal{F}$ such that $f[A] \in \mathcal{I}_{1/n}$.
Construction

We say that $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is a **summable family** if for every one-to-one function $f : \omega \rightarrow \mathbb{N}$ there is $A \in \mathcal{F}$ such that $f[A] \in \mathcal{I}_{1/n}$.

Proposition 6.
For every $k \in \mathbb{N}$ there exists a summable k-linked family $\mathcal{F}_k \subseteq \mathcal{P}(\omega)$.
Construction

Lemma 7.
If $F_k \subseteq \mathcal{P}(\omega)$ is a k-linked family then
\[
\mathcal{F} = \{ F \subseteq \omega : (\forall k)(\exists U^k \in \mathcal{F}_k) U^k \subseteq^* F \}
\]
is a centered system.

If every \mathcal{F}_k is summable then \mathcal{F} is summable.

More generally, if \mathcal{I} is a P-ideal and for every one-to-one function $f \in \omega \mathbb{N}$ and for every $k \in \mathbb{N}$ there exists $U^k \in \mathcal{F}_k$ such that $f[U^k] \in \mathcal{I}$ then there exists $U \in \mathcal{F}$ such that $f[U] \in \mathcal{I}$.
Problems

\[\mathcal{I}_g = \{ A \subseteq \mathbb{N} : \sum_{a \in A} g(a) < \infty \} \]

Question

Does there exist an ultrafilter \(\mathcal{U} \) on \(\omega \) such that for every one-to-one function there exists a set \(U \in \mathcal{U} \) such that \(f[U] \in \mathcal{I}_g \)?

In particular, for \(g(n) = \frac{1}{\sqrt{n}} \)?
Problems

\[\mathcal{I}_g = \{ A \subseteq \mathbb{N} : \sum_{a \in A} g(a) < \infty \} \]

Question
Does there exist an ultrafilter \(\mathcal{U} \) on \(\omega \) such that for every one-to-one function there exists a set \(U \in \mathcal{U} \) such that \(f[U] \in \mathcal{I}_g \)?
In particular, for \(g(n) = \frac{1}{\sqrt{n}} \)?

Question
Does there exist an ultrafilter \(\mathcal{U} \) on \(\omega \) such that for every finite-to-one function there exists a set \(U \in \mathcal{U} \) such that \(f[U] \in \mathcal{I}_{1/n}(\mathbb{Z}_0) \)?
References

