Remarks about van der Waerden ideal

Jana Flašková1

1Department of Mathematics
University of West Bohemia in Pilsen

Workshop on Set Theory and its Applications
to Topology and Real Analysis
July 2013, Gdańsk
An arithmetic progression of length l is the finite sequence \(\{a + id : i = 0, 1, \ldots, l - 1\} \) where $a, d \in \mathbb{N}$.

Van der Waerden Theorem (finite version).
For any given natural numbers k and l, there is some natural number $W(k, l)$ such that if the integers \(\{1, 2, \ldots, W(k, l)\} \) are colored, each with one of k different colors, then there exists an arithmetic progression of length at least l, all of which elements are of the same color.
Van der Waerden theorem and AP-sets

Definition.
A set $A \subseteq \mathbb{N}$ is called an AP-set if it contains arbitrary long arithmetic progressions.

Van der Waerden Theorem (infinite version).
If an AP-set is partitioned into finitely many pieces then at least one of them is again an AP-set.

Sets which are not AP-sets form a proper ideal on \mathbb{N} — van der Waerden ideal denoted by \mathcal{W}
Van der Waerden ideal and other ideals

Szemerédi Theorem.

$$\mathcal{W} \subseteq \mathcal{Z} \quad \text{where} \quad \mathcal{Z} = \{ A \subseteq \mathbb{N} : \limsup_{n \to \infty} \frac{|A \cap n|}{n} = 0 \}$$

Erdős Conjecture.

$$\mathcal{W} \subseteq \mathcal{I}_{1/n} \quad \text{where} \quad \mathcal{I}_{1/n} = \{ A \subseteq \mathbb{N} : \sum_{a \in A} \frac{1}{a} < \infty \}$$
What sets belong to \mathcal{W}?

Example A. $\{n! : n \in \omega\}$ or $\{2^n : n \in \omega\}$ do not contain arithmetic progressions of length 3.
What sets belong to \mathcal{W}?

Example A. $\{n! : n \in \omega\}$ or $\{2^n : n \in \omega\}$ do not contain arithmetic progressions of length 3.

Example B. $\{n^2 : n \in \omega\}$ contains infinitely many arithmetic progressions of length 3 (known by Pythagoras), but no arithmetic progression of length 4 (proved by Euler).
What sets belong to \mathcal{W}?

Example A. $\{n! : n \in \omega\}$ or $\{2^n : n \in \omega\}$ do not contain arithmetic progressions of length 3.

Example B. $\{n^2 : n \in \omega\}$ contains infinitely many arithmetic progressions of length 3 (known by Pythagoras), but no arithmetic progression of length 4 (proved by Euler).

Example C. The set of the prime numbers does not belong to the van der Waerden ideal (Green-Tao).
Van der Waerden ideal \mathcal{W}

The van der Waerden ideal \mathcal{W} is

- **a tall ideal** — because every infinite $A \subseteq \mathbb{N}$ contains an infinite subset with no arithmetic progressions of length 3

- **not a P-ideal** — consider for example the sets

$$A_k = \{2^n + k : n \in \omega\} \text{ for } k \in \omega$$
Van der Waerden ideal \mathcal{W}

The van der Waerden ideal \mathcal{W} is

- F_σ-ideal — because $\mathcal{W} = \bigcup_{n \in \mathbb{N}} \mathcal{W}_n$ where

 $\mathcal{W}_n = \{ A \subseteq \mathbb{N} : A \text{ contains no a. p. of length } n \}$
Van der Waerden ideal \mathcal{W}

The van der Waerden ideal \mathcal{W} is

- F_σ-ideal — because $\mathcal{W} = \bigcup_{n \in \mathbb{N}} \mathcal{W}_n$ where

 $$\mathcal{W}_n = \{A \subseteq \mathbb{N} : A \text{ contains no a. p. of length } n\}$$

The family \mathcal{W}_n

- is not an ideal for every $n \in \mathbb{N}$
- generates a proper ideal $\langle \mathcal{W}_n \rangle$
Strictly increasing sequence of ideals

The ideal $\langle \mathcal{W}_n \rangle$ is a tall F_σ-ideal for every $n \geq 3$.

Fact.

$$\mathcal{W} = \bigcup_{n \geq 3} \langle \mathcal{W}_n \rangle$$

and $\langle \mathcal{W}_n \rangle \subseteq \langle \mathcal{W}_{n+1} \rangle$ for every $n \in \mathbb{N}$.
Proposition 1.

For every $n \geq 3$ there exists $A \subset \mathbb{N}$ such that

$$A \in \mathcal{W}_{n+1} \setminus \langle \mathcal{W}_n \rangle$$
Proposition 1.
For every $n \geq 3$ there exists $A \subset \mathbb{N}$ such that

$$A \in \mathcal{W}_{n+1} \setminus \langle \mathcal{W}_n \rangle$$

Proof. Consider

$$A = \left\{ \sum_{i=0}^{k} c_i \cdot n^{2i} : k \in \omega, c_i = 0, \ldots, n - 1, c_k \neq 0 \right\}$$
Strictly increasing sequence of ideals

Claim 1. Show $A \in \mathcal{W}_{n+1}$ (straightforward calculation)

Claim 2. Show $A \notin \langle \mathcal{W}_n \rangle$ (use Hales-Jewett theorem)
Strictly increasing sequence of ideals

Claim 1. Show $A \in \mathcal{W}_{n+1}$ (straightforward calculation)

Claim 2. Show $A \notin \langle \mathcal{W}_n \rangle$ (use Hales-Jewett theorem)

Let $L(n) \ldots$ be the set of finite words in the alphabet $\{0, 1, \ldots, n - 1\}$.

A variable word $w(x)$ is a finite word in the alphabet $\{0, 1, \ldots, n - 1, x\}$ in which the variable x occurs at least once.
Hales-Jewett theorem.

For every $n, r \in \mathbb{N}$ there exists a number $HJ(n, r)$ such that if words in $L(n)$ of length $HJ(n, r)$ are colored by r colors then there exists a variable word $w(x)$ such that $w(0), w(1), \ldots, w(n - 1)$ have the same color.

The symbol $w(i)$ denotes the word in $L(n)$ which is produced from $w(x)$ by replacing all the occurrences of the variable x by the letter of the alphabet in brackets.
Some questions

Conjecture. \(A \in \langle \mathcal{W}_n \rangle \) if and only if there exists \(k \in \mathbb{N} \) such that \(A \) does not contain a copy of \(n^k \).
Some questions

Conjecture. $A \in \langle \mathcal{W}_n \rangle$ if and only if there exists $k \in \mathbb{N}$ such that A does not contain a copy of n^k.

Question 1. Is it true that whenever a set A does not contain a copy of 3^2 then $A \in \langle \mathcal{W}_3 \rangle$?
Some questions

Conjecture. $A \in \langle W_n \rangle$ if and only if there exists $k \in \mathbb{N}$ such that A does not contain a copy of n^k.

Question 1. Is it true that whenever a set A does not contain a copy of 3^2 then $A \in \langle W_3 \rangle$?

Question 2. Does the set $\{n^2 : n \in \omega\}$ belong to the ideal $\langle W_3 \rangle$?
The square of squares...

\[a^2 - d_1 - d_2 \quad a^2 - d_2 \quad a^2 + d_1 - d_2 \]

\[a^2 - d_1 \quad a^2 \quad a^2 + d_1 \]

\[a^2 - d_1 + d_2 \quad a^2 + d_2 \quad a^2 + d_1 + d_2 \]
...transforms...

\[a^2 + d_1 - d_2 \]

\[a^2 - d_2 \quad \quad a^2 + d_1 \]

\[a^2 - d_1 - d_2 \quad a^2 \quad a^2 + d_1 + d_2 \]

\[a^2 - d_1 \quad a^2 + d_2 \]

\[a^2 - d_1 + d_2 \]
...transforms...

<table>
<thead>
<tr>
<th>Expression</th>
<th>Expression</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a^2 - d_2$</td>
<td>$a^2 + d_1 - d_2$</td>
<td>$a^2 + d_1$</td>
</tr>
<tr>
<td>$a^2 - d_1 - d_2$</td>
<td>a^2</td>
<td>$a^2 + d_1 + d_2$</td>
</tr>
<tr>
<td>$a^2 - d_1$</td>
<td>$a^2 - d_1 + d_2$</td>
<td>$a^2 + d_2$</td>
</tr>
</tbody>
</table>
...into a magic square of squares

\[
\begin{array}{ccc}
 a^2 + d_1 & a^2 + d_1 - d_2 & a^2 - d_2 \\
 a^2 - d_1 - d_2 & a^2 & a^2 + d_1 + d_2 \\
 a^2 + d_2 & a^2 - d_1 + d_2 & a^2 - d_1
\end{array}
\]
Problem 1. Can a 3x3 magic square be constructed with nine distinct square numbers?

Asked by Martin LaBar (1984), republished by Martin Gardner (1996) who offered $100 to the first person to construct such a square (or to prove its impossibility).

Problem 2. Provide a new example of 3x3 magic square with seven distinct square entries different from rotations, symmetries and k^2 multiples of the known example or provide any example with eight square entries.

Christian Boyer offers 1000€ prize + a bottle of champagne since 2010 (was only 100€ from 2005 to 2009).