Nowhere dense sets corresponding to summable ideals

Jana Flašková
flaskova@kma.zcu.cz

University of West Bohemia, Pilsen
Czech Republic
Čech-Stone compactification of ω

Definition.
Čech-Stone compactification of ω is a compact topological space $\beta\omega$ such that:

- ω is a dense subspace of $\beta\omega$
- every (continuous) function $f : \omega \to [0, 1]$ can be extended to a continuous function $\beta f : \beta\omega \to [0, 1]$.
Čech-Stone compactification of ω

Definition.
Čech-Stone compactification of ω is a compact topological space $\beta\omega$ such that:

- ω is a dense subspace of $\beta\omega$
- every (continuous) function $f : \omega \to [0, 1]$ can be extended to a continuous function $\beta f : \beta\omega \to [0, 1]$

$\omega^* = \beta\omega \setminus \omega$ is called remainder of $\beta\omega$
Ultrafilters on ω

Definition.
A family $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is called a filter on ω if:

- $\mathcal{F} \neq \emptyset$ and $\emptyset \notin \mathcal{F}$
- if $F_1, F_2 \in \mathcal{F}$ then $F_1 \cap F_2 \in \mathcal{F}$
- if $F \in \mathcal{F}$ and $F \subseteq G \subseteq X$ then $G \in \mathcal{F}$.
Ultrafilters on ω

Definition.
A family $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is called a filter on ω if:

- $\mathcal{F} \neq \emptyset$ and $\emptyset \notin \mathcal{F}$
- if $F_1, F_2 \in \mathcal{F}$ then $F_1 \cap F_2 \in \mathcal{F}$
- if $F \in \mathcal{F}$ and $F \subseteq G \subseteq X$ then $G \in \mathcal{F}$.

If moreover \mathcal{F} satisfies
- for every $M \subseteq \omega$ either $M \in \mathcal{F}$ or $\omega \setminus M \in \mathcal{F}$
then \mathcal{F} is called an ultrafilter.
Topology on ω^*

Points in $\beta\omega$ may be identified with ultrafilters on ω:
- points in $\omega \leftrightarrow$ fixed ultrafilters
- points in $\omega^* \leftrightarrow$ free ultrafilters
Topology on ω^*

Points in $\beta\omega$ may be identified with ultrafilters on ω:
- points in ω \leftrightarrow fixed ultrafilters
- points in ω^* \leftrightarrow free ultrafilters

Topology on ω^* is generated by clopen sets:
$$A^* = \{U : A \in U\}, \quad A \in [\omega]^\omega$$
Topology on ω^*

Points in $\beta\omega$ may be identified with ultrafilters on ω:
- points in ω ↔ fixed ultrafilters
- points in ω^* ↔ free ultrafilters

Topology on ω^* is generated by clopen sets:

$$A^* = \{U : A \in U\}, \quad A \in [\omega]^{\omega}$$

Some more facts about ω^*:
- zero-dimensional
- cardinality 2^c
- dense-in-itself
Ideals on ω

Definition.
An ideal on ω is a family $\mathcal{I} \subseteq \mathcal{P}(\omega)$ such that:

- $\mathcal{I} \neq \mathcal{P}(\omega)$ and $\emptyset \in \mathcal{I}$
- if $A_1, A_2 \in \mathcal{I}$ then $A_1 \cup A_2 \in \mathcal{I}$
- if $A \in \mathcal{I}$ and $B \subseteq A \subseteq \omega$ then $B \in \mathcal{I}$.
Ideals on \(\omega \)

Definition.
An ideal on \(\omega \) is a family \(\mathcal{I} \subseteq \mathcal{P}(\omega) \) such that:

- \(\mathcal{I} \neq \mathcal{P}(\omega) \) and \(\emptyset \in \mathcal{I} \)
- if \(A_1, A_2 \in \mathcal{I} \) then \(A_1 \cup A_2 \in \mathcal{I} \)
- if \(A \in \mathcal{I} \) and \(B \subseteq A \subseteq \omega \) then \(B \in \mathcal{I} \).

Examples:

- \(\text{Fin} = \) finite subsets of \(\omega \)
- \(\mathcal{I}_{1/n} = \{ A \subseteq \mathbb{N} : \sum_{a \in A} \frac{1}{a} < \infty \} \)
- \(\mathcal{Z}_0 = \{ A \subseteq \mathbb{N} : \limsup_{n \to \infty} \frac{|A \cap n|}{n} = 0 \} \)
Summable ideals

Definition.

Given a function \(g : \omega \to [0, \infty) \) such that
\[
\sum_{n \in \omega} g(n) = \infty
\]
then the family
\[
\mathcal{I}_g = \{ A \subseteq \omega : \sum_{a \in A} g(a) < +\infty \}
\]
is a proper ideal which we call summable ideal
determined by function \(g \).
Summable ideals

Definition.

Given a function $g : \omega \to [0, \infty)$ such that
\[\sum_{n \in \omega} g(n) = \infty \]
then the family
\[\mathcal{I}_g = \{ A \subseteq \omega : \sum_{a \in A} g(a) < +\infty \} \]
is a proper ideal which we call summable ideal determined by function g.

We will consider only tall summable ideals.
Ideals and open sets

Definition.
An ideal \mathcal{I} on ω is tall (dense) if for every infinite set $A \subseteq \omega$ there exists $B \in [A]^\omega$ such that $B \in \mathcal{I}$.
Ideals and open sets

Definition.
An ideal \mathcal{I} on ω is tall (dense) if for every infinite set $A \subseteq \omega$ there exists $B \in [A]^{\omega}$ such that $B \in \mathcal{I}$.

A summable ideal is tall if and only if $\lim_{n \to \infty} g(n) = 0$.
Ideals and open sets

Definition.
An ideal \mathcal{I} on ω is tall (dense) if for every infinite set $A \subseteq \omega$ there exists $B \in [A]^\omega$ such that $B \in \mathcal{I}$.

A summable ideal is tall if and only if $\lim_{n \to \infty} g(n) = 0$.

To every ideal \mathcal{I} on ω assign an open set

$$\sigma(\mathcal{I}) = \bigcup \{ A^* : A \in \mathcal{I} \}$$

and a closed set

$$\delta(\mathcal{I}) = \omega^* \setminus \sigma(\mathcal{I})$$
Ideals and (nowhere) dense sets

\[\sigma(I) = \{ U \in \omega^* : U \cap I \neq \emptyset \} \]
\[\delta(I) = \{ U \in \omega^* : U \cap I = \emptyset \} = \{ U \in \omega^* : I^* \subseteq U \} \]
Ideals and (nowhere) dense sets

\[
\sigma(I) = \{ U \in \omega^* : U \cap I \neq \emptyset \}
\]
\[
\delta(I) = \{ U \in \omega^* : U \cap I = \emptyset \} = \{ U \in \omega^* : I^* \subseteq U \}
\]

Lemma.

For an ideal \(I \) on \(\omega \) the following are equivalent:

- \(I \) is tall
- \(\sigma(I) \) is dense in \(\omega^* \)
- \(\delta(I) \) is nowhere dense in \(\omega^* \)
Ideals and (nowhere) dense sets

$$\sigma(I) = \{U \in \omega^* : U \cap I \neq \emptyset\}$$
$$\delta(I) = \{U \in \omega^* : U \cap I = \emptyset\} = \{U \in \omega^* : I^* \subseteq U\}$$

Lemma.

For an ideal I on ω the following are equivalent:

- I is tall
- $\sigma(I)$ is dense in ω^*
- $\delta(I)$ is nowhere dense in ω^*

If $I \subseteq J$ then $\sigma(I) \subseteq \sigma(J)$ and $\delta(I) \supseteq \delta(J)$.
The problem

Problem S.4. (van Douwen [1978])
Is it true in ZFC that $\bigcup_{\pi \in S_\omega} \beta_\pi[A] \neq \omega^*$ whenever $A \subseteq \omega^*$ is nowhere dense? What if $A = \delta(\mathcal{Z}_0)$ or $A = \delta(\mathcal{I}_{1/n})$?
The problem

Problem S.4. (van Douwen [1978])
Is it true in ZFC that $\bigcup_{\pi \in S_\omega} \beta\pi[A] \neq \omega^*$ whenever $A \subseteq \omega^*$ is nowhere dense? What if $A = \delta(Z_0)$ or $A = \delta(I_{1/n})$?

Problem 235. (Hart, van Mill [1990])
For what nowhere dense sets $A \subseteq \omega^*$ do we have $\bigcup_{\pi \in S_\omega} \beta\pi[A] \neq \omega^*$?
The problem

Problem S.4. (van Douwen [1978])
Is it true in ZFC that $\bigcup_{\pi \in S_\omega} \beta_\pi [A] \neq \omega^*$ whenever $A \subseteq \omega^*$ is nowhere dense? What if $A = \delta(\mathcal{Z}_0)$ or $A = \delta(\mathcal{I}_{1/n})$?

Problem 235. (Hart, van Mill [1990])
For what nowhere dense sets $A \subseteq \omega^*$ do we have $\bigcup_{\pi \in S_\omega} \beta_\pi [A] \neq \omega^*$?

Theorem (Gryzlov)
For $A = \delta(\mathcal{Z}_0)$ we have $\bigcup_{\pi \in S_\omega} \beta_\pi [A] \neq \omega^*$.
Results

Theorem 1.
For $A = \delta(I_{1/n})$ we have $\bigcup_{\pi \in S_{\omega}} \beta\pi[A] \neq \omega^*$.
Results

Theorem 1.

For $A = \delta(I_{1/n})$ we have $\bigcup_{\pi \in S_\omega} \beta \pi[A] \neq \omega^*$.

If $U \in \omega^* \setminus \bigcup_{\pi \in S_\omega} \beta \pi[A]$ then for all $\pi \in S_\omega$ there exists set $U \in \mathcal{U}$ with $\pi[U] \in I_{1/n}$.
Results

Theorem 1.
For $A = \delta(I_{1/n})$ we have $\bigcup_{\pi \in S_\omega} \beta \pi [A] \neq \omega^*.$

If $U \in \omega^* \setminus \bigcup_{\pi \in S_\omega} \beta \pi [A]$ then for all $\pi \in S_\omega$ there exists set $U \in \mathcal{U}$ with $\pi[U] \in I_{1/n}.$

Definition A.
An ultrafilter \mathcal{U} on ω is called a summable ultrafilter if for every one-to-one function $f : \omega \to \mathbb{N}$ there exists $U \in \mathcal{U}$ such that $f[U] \in I_{1/n}.$
Results

Theorem 1.
For $A = \delta(\mathcal{I}_{1/n})$ we have $\bigcup_{\pi \in S_\omega} \beta\pi[A] \neq \omega^*$.

If $U \in \omega^* \setminus \bigcup_{\pi \in S_\omega} \beta\pi[A]$ then for all $\pi \in S_\omega$ there exists set $U \in \mathcal{U}$ with $\pi[U] \in \mathcal{I}_{1/n}$.

Definition A.
An ultrafilter \mathcal{U} on ω is called a **summable ultrafilter** if for every one-to-one function $f : \omega \to \mathbb{N}$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}_{1/n}$.

Theorem 1*.
Summable ultrafilters exist in ZFC.
Results

Definition B.
An ultrafilter \mathcal{U} on ω is called a g-summable ultrafilter if for every one-to-one function $f : \omega \to \mathbb{N}$ there exists $U \in \mathcal{U}$ such that $f[U] \in I_g$.
Results

Definition B.
An ultrafilter \mathcal{U} on ω is called a g-summable ultrafilter if for every one-to-one function $f : \omega \to \mathbb{N}$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}_g$.

Corollary 2.
If $g : \omega \to [0, \infty)$ satisfies $\frac{1}{n} \gg g(n)$ then g-summable ultrafilters exist in ZFC.
Results

Definition B.
An ultrafilter \mathcal{U} on ω is called a g-summable ultrafilter if for every one-to-one function $f : \omega \to \mathbb{N}$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{I}_g$.

Corollary 2.
If $g : \omega \to [0, \infty)$ satisfies $\frac{1}{n} \gg g(n)$ then g-summable ultrafilters exist in ZFC.

Theorem 3.
If $g(n) = \frac{\ln p \cdot n}{n}$, $p \in \omega$, then g-summable ultrafilters exist in ZFC (i.e. $\delta(\mathcal{I}_g)$ solves Problem 235).
Theorem 4.

\((\text{MA}_{\text{ctble}})\) If \(I_g\) is a summable ideal and \(A = \delta(I_g)\) then \(\bigcup_{\pi \in S_\omega} \beta\pi[A] \neq \omega^*\).
More results and questions

Theorem 4.

(\text{MA}_\text{ctble}) \text{ If } I_g \text{ is a summable ideal and } A = \delta(I_g) \text{ then } \bigcup_{\pi \in S_\omega} \beta\pi[A] \neq \omega^*.

Question.

Do g-summable ultrafilters exist in ZFC for every tall summable ideal I_g? What if $g(n) = \frac{1}{\sqrt{n}}$ or $\frac{1}{\ln n}$?
More results and questions

Theorem 4.

(MA_{ctble}) If I_g is a summable ideal and $A = \delta(I_g)$ then \(\bigcup_{\pi \in S_\omega} \beta_\pi[A] \neq \omega^* \).

Question.

Do g-summable ultrafilters exist in ZFC for every tall summable ideal I_g? What if $g(n) = \frac{1}{\sqrt{n}}$ or $\frac{1}{\ln n}$?

Question.

Is there a g-summable ultrafilter which is not an h-summable ultrafilter if I_g and I_h are two incomparable summable ultrafilters?
Construction

Theorem 1*.
Summable ultrafilters exist in ZFC.
Theorem 1*.
Summable ultrafilters exist in ZFC.

Definition.
A family $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is called

- a k-linked family if $F_1 \cap \ldots \cap F_k$ is infinite whenever $F_i \in \mathcal{F}$, $i \leq k$.

- a centered system if \mathcal{F} is k-linked for every k i.e., if any finite subfamily of \mathcal{F} has an infinite intersection.
Construction

We say that $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is a **summable family** if for every one-to-one function $f : \omega \to \mathbb{N}$ there is $A \in \mathcal{F}$ such that $f[A] \in \mathcal{I}_{1/n}$.
Construction

We say that $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is a **summable family** if for every one-to-one function $f : \omega \to \mathbb{N}$ there is $A \in \mathcal{F}$ such that $f[A] \in \mathcal{I}_{1/n}$.

Proposition 5.

For every $k \in \mathbb{N}$ there exists a summable k-linked family $\mathcal{F}_k \subseteq \mathcal{P}(\omega)$.
Construction

Lemma 6.
If $F_k \subseteq P(\omega)$ is a k-linked family then
$\mathcal{F} = \{ F \subseteq \omega : (\forall k)(\exists U^k \in F_k) U^k \subseteq^* F \}$
is a centered system.
Construction

Lemma 6.
If $\mathcal{F}_k \subseteq \mathcal{P}(\omega)$ is a k-linked family then
\[\mathcal{F} = \{ F \subseteq \omega : (\forall k)(\exists U^k \in \mathcal{F}_k) U^k \subseteq^* F \} \]
is a centered system.

If every \mathcal{F}_k is summable then \mathcal{F} is summable.
Construction

Lemma 6.
If $\mathcal{F}_k \subseteq \mathcal{P}(\omega)$ is a k-linked family then
\[\mathcal{F} = \{ F \subseteq \omega : (\forall k)(\exists U^k \in \mathcal{F}_k) U^k \subseteq^* F \} \]
is a centered system.

If every \mathcal{F}_k is summable then \mathcal{F} is summable.

More generally, if \mathcal{I} is a P-ideal and for every one-to-one function $f \in \omega \mathbb{N}$ and for every $k \in \mathbb{N}$ there exists $U^k \in \mathcal{F}_k$ such that $f[U^k] \in \mathcal{I}$ then there exists $U \in \mathcal{F}$ such that $f[U] \in \mathcal{I}$.
References

