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COMPUTERISED MUSCLE MODELLING

Study programme
Computer Science and Engineering

Self-report on the dissertation to achieve the academic title
”Ph.D.”

In Pilsen, 30th of August, 2024



The dissertation was created during the full-time doctoral study at the De-
partment of Computer Science and Engineering Faculty of Applied Sciences
University of West Bohemia.

Doctoral candidate: Ing. Martin Červenka
Faculty of Applied Sciences
Department of Computer Science

and Engineering
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Abstract

Musculoskeletal modelling has emerged as a powerful tool for simulating com-
plex human movements. The dissertation focuses on using the Radial Ba-
sis Function (RBF) approximation technique to enhance the precision of such
models. The aim is to demonstrate the efficacy of RBF in capturing the shape
and motion of a muscle model by considering a broader spectrum of features
in the input function. RBF can also be used to reconstruct surfaces from sets
of attachment points in the context of muscle attachment estimation.

The doctoral dissertation aims to describe the current state-of-the-art mus-
cle modelling field, describing all of the currently known approaches. The
dissertation then transitions to propose a novel RBF mathematical model to
describe a muscle using a set of RBF, which introduces a technique of find-
ing an optimal centre point using multiple groups, such as vertices at borders,
local extrema, points of inflexion, strategic pseudorandom positions, greedy
MSE placement, and more, finding suitable shape parameters, and, ultimately,
describing the mathematical model for the movement of the geometry. There-
fore, the outcome of the dissertation is a mathematical model for the dynamic
muscle model

Keywords

Muscle modelling, approximation, Radial Basis Functions, RBF, centre place-
ment, curvature, Position-Based Dynamics, PBD, As-rigid-as-possible, ARAP,
interpolation, Via-points, Mass-spring systems, Finite Element Method
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Chapter 1

Introduction

The dissertation explores a new muscle representation using Radial Basis Func-
tion (RBF) approximation for more precise biomechanics modelling, crossing
computer science, mathematics, and biomechanics. It addresses the challenge
of accurately simulating muscle movements and shapes, a gap in current meth-
ods due to human anatomy’s complexity and dynamics. RBF is proposed for
its flexibility in modelling complex shapes, aiming to enhance musculoskele-
tal models used in medical diagnostics, prosthetics design, sports science, and
animation.

The research critiques existing models, introduces RBF-based muscle mod-
elling with theoretical and practical insights, and discusses its implications
through computational simulations. It combines empirical visualisation of mus-
cle movement, generalisation of muscle structures into models, and analytical
approaches to develop a novel muscle model using RBF. This work aims to ad-
vance musculoskeletal modelling, improving applications in medical research,
ergonomic design, and interdisciplinary fields by merging biomechanics with
computational techniques.
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Chapter 2

Acquiring data

This section outlines data acquisition for computer muscle modelling, distin-
guishing between personalised data for specific individual applications and gen-
eral data, which lacks customisation due to variability in muscle attachments
([60], [39], [61]). It stresses the need for simplifications in musculoskeletal mod-
elling due to its complexity, focusing on muscle-tendon units (MTUs) approxi-
mated by triangular meshes and the importance of bone attachment knowledge.
Challenges in model resolution and acquisition are also discussed.

Figure 2.1: CT and MRI result. CT data [54] on the left, MRI data on the
right.

Identifying muscle-bone attachments involves defining attachment areas,
possibly through automatic/manual methods or additional data. Two strate-
gies exist: 1) choosing muscle model points near or intersecting the bone pre-
movement, or 2) users defining the area with specific points. The first approach,
more straightforward, risks misalignment, especially near joints. The second,
more reliable, demands mapping the entire area from provided points. Our
study faced challenges in accurately reconstructing complex muscle attach-
ments, with the best curve reconstruction algorithm achieving only 78.74%
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accuracy [43]. We also explored surface reconstruction via Radial Basis Func-
tions (RBF), showing promise for intricate boundaries, see section 3.1.

Figure 2.2: The detailed cryosection image of the Visible Human Male [70].

Non-invasive methods like CT, MRI, and PET are essential for muscle mod-
elling, highlighting the benefits of 3D modelling and improved soft tissue visibil-
ity. Despite their advantages, these methods fail to identify muscle attachment
areas accurately, necessitating personalised models or probabilistic estimates
by experts [24]. In contrast, invasive techniques, such as dissection and ca-
daver studies, offer detailed anatomical insights crucial for muscle modelling,
including muscle-tendon elements and pennate angles, albeit limited ethically
to non-living subjects. These methods complement each other in developing
precise musculoskeletal models despite their inherent limitations [54, 8].
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Chapter 3

Estimation approaches

Estimation techniques, crucial for smooth muscle modelling even with sparse
data, focus on muscles, bones, and attachment areas, assuming known model
borders. Bézier curves, initially used by Delp et al. [18], faced challenges with
fibre intersections, leading to Kohout and Cholt’s [45] adoption of Catmull-Rom
splines for smoother, intersection-free modelling.

Figure 3.1: Constant (red), piecewise linear (green), Bézier (blue) and Catmull-
Rom (pink) interpolation of a set of points.

Radial basis function (RBF) estimation, highlighted for its smoothness po-
tential by Hardy [30] and applied in muscle modelling for attachment areas and
overall shape in our research [43], offers a superior alternative with Gaussian
RBFs enabling C∞ smoothness. In the dissertation, the chapter discusses the
applicability of these techniques across dimensions for muscle modelling, em-
phasising the transition from polynomial to RBF-based methods for enhanced
model fidelity; however, for the self-report, only RBF, which is the most rele-
vant technique, is further discussed.

3.1 Radial basis functions

The challenge of interpolating and approximating scattered data is prevalent
in various engineering and research domains. It is exemplified by the work of
Oliver et al. [59], who applied the kriging interpolation method to geographical
data. Similarly, Kaymaz [40] demonstrated the utility of this approach in ad-
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dressing structural reliability issues. The technique is also used in modelling,
as shown by Sakata et al. [63] in their work on wing structures and in the
creation of metamodels by Joseph et al. [38]. Furthermore, Radial Basis Func-
tion (RBF) methods are applicable in solving partial differential equations,
particularly in engineering-related problems.

The RBF methodology, initially introduced by Hardy [31] and later refined
[29], has seen continuous development and modification over time. Majdisova
et al. [51] have contributed by proposing various placement methods within this
framework. There has also been significant research into the behaviour of shape
parameters (described further in the text) in RBF methods. It includes efforts
by Wang et al. [76] to find optimal parameters, explorations by Afiatdoust
et al. [1] into this area, and the use of different local shape parameters as
investigated by Cohen et al. [17], Sarra et al. [64], and Skala et al. [69]. The
mathematical formulation of the RBF approach is presented as follows:

f (x) =

N∑
i=1

λiφ (||x−Pi||) (3.1)

The RBF approach is a linear combination of a set of RBFs denoted as φ,
with centres at points Pi. These RBFs are adjusted to interpolate the vertices
Pi using appropriate weights λi. This equation can be viewed as a linear
system equation Ax = b, where the matrix A is composed of values of the
RBF function, λi represents an unknown vector, and f (x) will be populated
with known values at each of the input points.

A reduced number of RBFs can be used to achieve an approximation, mak-
ing the problem overdetermined and less straightforward. It can then be solved,
for instance, using the ordinary least squares (OLS) approach while also con-
sidering some associated drawbacks, as mentioned in works such as Skala and
Kansa [68].

f (x) =

M∑
i=1

λiφ (||x− ξi||) (3.2)

3.1.1 Available functions

A radial basis function is defined by its dependency on the distance from a
central point. This function can be applied in spaces of any dimension, but it
is commonly expressed in terms of the distance (denoted as r) rather than as
a function of a spatial coordinate.
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A broad range of RBF functions are generally categorised into local and
global. Local RBFs have a characteristic feature where their value becomes
zero beyond a certain distance, effectively limiting their influence. In contrast,
global RBFs lack this restriction and maintain influence regardless of distance.
This discussion will initially focus more on the characteristics and applications
of local RBFs.

Local functions

The local RBF functions are limited by a sphere of influence, and beyond this
sphere, it evaluates to zero. Some RBFs with those properties are listed in
Table 3.1.

ID Function ID Function

1 (1− r)+ 2 (1− r)3+(3r + 1)
3 (1− r)5+(8r

2 + 5r + 1) 4 (1− r)2+
5 (1− r)4+(4r + 1) 6 (1− r)6+(35r

2 + 18r + 3)
7 (1− r)8+(32r

3 + 25r2 + 8r + 3) 8 (1− r)3+
9 (1− r)3+(5r + 1) 10 (1− r)7+(16r

2 + 7r + 1)

Table 3.1: Typical examples of local RBF functions - compactly-supported
RBF. The ”+” sign means that every nonpositive value is set to zero instead.
[67].

Their main advantage is computational. Due to their small influence, they
produce a better conditioned linear equation system (LES). Suppose the order
of vertices reflects the spatial position of the original vertices. In that case, the
LES becomes diagonally dominant, which is particularly useful for most solvers
(Gaussian elimination, Jacobi method, LU decomposition method and more)
to obtain more accurate results.

Global functions

The scope of the global RBFs is not limited, so their influence can be infinite.
It is particularly advantageous in situations where, for example, an RBF centre
point change should influence the whole space. Table 3.2 lists some of the most
notable ones.

The advantage of the global function over the local one is that the single
change of a single parameter (one centre point, for example) would influence the
whole space. The disadvantage of some is the presence of a shape parameter α.
The parameters define the variance (indirectly) of the function. The higher the
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Name Function

Gaussian RBF e−αr

Thin-plate spline r2 log r
An RBF proposed in [10] r2 (rα − 1)

Table 3.2: Some of the most notable global RBFs.

value, the higher the variance and the further the influence. However, there is
also an inverse proportion between the shape parameter and the computational
stability of the LES. To take it to the extreme, the tiny shape parameter would
lead to nonzero values only for a vertex with itself, producing a very much
solvable LES. On the other hand, a nearly infinite shape parameter would lead
to a situation where no matter how far apart two vertices would be, the value
would stay the same, leading to the limit to a singular and constant matrix.

3.1.2 Polynomial extension

Consider the scenario where we must approximate a nonzero constant function
using the RBF approach. Without a polynomial extension, accurately approx-
imating such a function would be challenging, as the centre points would need
to be distributed uniformly throughout the entire function domain. Therefore,
a polynomial extension is introduced to handle functions that exhibit constant-
and polynomial-like behaviour.

The extension involves incorporating a polynomial approximation into the
RBF equation, expanding the matrix by the same number of rows and columns
as the degree of the polynomial used. In the case of a function with a degree
of 2 1

2D, this is achieved as follows:

φ11 . . . φ1N 1 x1 y1
...

. . .
... 1

...
...

φN1 . . . φNN 1 xN yN
1 1 1 0 0 0
x1 . . . xN 0 0 0
y1 . . . yN 0 0 0





λ1

...
λN

a0
a1
a2


=



f1
...
fN
0
0
0


(3.3)

Here, φij represents the value of the Radial Basis Function (RBF) based on
the distance between the vertex i and the vertex j, while xi and yi denote the
coordinates of the centre points. The coefficients include a0 as the constant
coefficient and a1, a2 as the linear coefficients of the linear expression a0 +
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a1x+ a2y. Variables fi represent the function values of the given vertices, and
λi means the unknown weight of the RBF to be determined.

This matrix can be expressed more succinctly as follows:[
A P
PT 0

] [
λ
a

]
=

[
f
0

]
(3.4)

In this formulation, A represents an RBF submatrix, P stands for a poly-
nomial submatrix, a is a subvector containing polynomial coefficients and f is a
subvector containing the values of the interpolated or approximated function.

Usually, filling this equation yields satisfactory results. However, the un-
derlying theoretical issue arises from using different units within the matrix.
φij represents some form of distance that has passed through the RBF function
(with units somewhat unknown in the case of the Gaussian RBF, akin to ”ex-
ponential metres” (em) when all constants are excluded). On the other hand,
xi and yi are typically measured in units related to the function domain, com-
monly in metres (m). This amalgamation of distinct units raises theoretical
challenges rarely addressed in the literature [48].

3.1.3 Centre point distribution

The fundamental issue at hand revolves around determining the optimal place-
ment of the centre points ξi. There are several commonly employed options,
each with its own set of advantages and drawbacks.

Iterative greedy search

In many mathematical scenarios, iterative methods often compete with direct
methods. The search for centre points is no exception. The most straightfor-
ward iterative approach involves initially searching for a single centre point,
which reduces the discrepancy between the approximated function and the
approximated one. Subsequently, more centres are sought within the space
defined by the difference between these two functions to minimise this differ-
ence as much as possible. This iterative process continues until the overall
error reaches an acceptable level or the available number of centre points is
exhausted.

The primary advantage of this method is that the approximant preserves
the essential features of the original function. Furthermore, the shape param-
eter can be adjusted at each step of the greedy search to achieve a better fit.
However, the disadvantage lies in its computational complexity, as each ”guess”
entails solving a potentially significant linear equation and the summation of
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Radial Basis Functions (RBFs). Some RBFs can be computationally expensive
to evaluate.

Grid distribution

Grid centre point distribution entails arranging all centre points in a grid for-
mat, which can take various forms, such as regular, cartesian, rectilinear, or
curvilinear grids. Although the grid setup is straightforward, it presents sig-
nificant challenges. The most prominent challenge is the potential for poor
conditioning of the RBF matrix [11] if the shape parameter is not carefully
selected. Another drawback is that it does not capture the intrinsic features of
the interpolated or approximated function.

Halton distribution

The Halton distribution [28] represents a quasi-random point distribution. Its
original version is one-dimensional and operates within the interval (0, 1) (scal-
able by a constant). The sequence’s elements are defined as:

Haltonk (p) =

⌊logp k⌋∑
i=0

1

pi+1

(⌊
k

pi

⌋
mod p

)
(3.5)

Here, p is an arbitrary prime number, and k represents the index of the
sequence element. One can achieve this in the case of multidimensional se-
quences by selecting multiple prime numbers, resulting in a vector of Halton
sequences with different prime values for each dimension. For example, the Hal-
ton sequence [2, 3] begins with

[[
1
2 ,

1
3

]
,
[
1
4 ,

2
3

]
,
[
3
4 ,

1
9

]]
. Essentially, it partitions

the (0, 1) interval into p subintervals of equal size and outputs the boundary
points. Subsequently, each subspace is subdivided, yielding additional bound-
ary points. A breadth-first approach is employed for traversal, resulting in a
more evenly spread distribution than a depth-first (recursive) approach.

The same sequence can be generated by expressing k in base p, inverting
it, and placing it after the decimal point. For example, when p = 2:

0.12 =
1

2
, 0.012 =

1

4
, 0.112 =

3

4
, 0.0012 =

1

8
, 0.1012, 0.0112, 0.1112... (3.6)

The Halton sequence offers a significant advantage by exhibiting fewer regu-
larities, which helps avoid ill-conditioned matrices and ensures excellent interval
coverage. However, a notable drawback is that the endpoints (i.e., 0 and 1)
must be explicitly included in most cases, as they are not part of the sequence
by default.
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Distribution concerning the original function

An entirely justifiable approach is to select the centre points based on specific
features of the original function. The likely candidates are the minima and
maxima since RBFs often exhibit extrema at the centre points. Additionally,
inflexion points can be included to cover a broader range of features.

We have previously addressed this issue in a different context in [12], which
resulted in the ”sophisticated placement of radial basis functions significantly
improving the quality of the RBF approximation” [12]. The primary takeaway
from this research was to minimise the use of grid or equidistant centre point
distributions whenever possible.

3.1.4 RBFs for muscle modelling

Our in-depth studies of RBF [10, 12, 11, 66, 73, 67] have revealed its potential
for approximation purposes. To my knowledge, RBF approximation methods
have not been widely applied in muscle modelling. We have contributed to the
use of the RBF approach in muscle modelling in the article titled ”Nonplanar
Surface Shape Reconstruction from a Point Cloud in the Context of Muscle
Attachment Estimation” [43], where RBF is used to reconstruct surfaces from
sets of attachment points.
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Chapter 4

Related work

Human movement and muscle modelling methods vary, focusing here on one-
dimensional models and inverse kinematics, which requires knowing the desired
motion outcome. Dereshgi et al. [19] and Lee et al. [47] provide critical reviews,
though the dissertation delves into fewer methods and notes the overestimated
understanding of muscle properties. It introduces the Hill-type muscle model,
using lines or curves to mimic muscle fibres.

4.1 Hill-Type Model

Hill-type muscle models, conceptualised by Hill in 1938 through frog muscle
studies [34], represent muscles using a series-parallel arrangement of elements
to describe contraction dynamics. Over time, enhancements like the parallel
element [78] and viscous damping [37] have been integrated, evolving into the
modern Hill-type models. Despite its foundational role, the Hill-type model’s
simplifications limit its accuracy for internal muscle force calculations, par-
ticularly in complex, multidimensional muscle structures like the pelvic floor
[52]. Consequently, newer musculoskeletal modelling techniques have moved
beyond the pure Hill-type model, adopting its principles within more sophis-
ticated frameworks that either refine parameter estimation or simulate muscle
behaviour with reduced complexity [55], [72].

Figure 4.1: Hill-type model of a muscle fiber [3]. PEE = parallel element, SEE
= serial element, CE = contractile element, α - pennate angle.
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4.2 Via-points

A via-points approach works with a predefined set of points defining the muscle
fibre model. There are many options for defining these points. The most
common ones are points directly fixed to a bone, so whenever the bone moves,
the point moves accordingly. The second option is that the point is present only
if a condition is met (for example, if the joint flexion angle is more significant
than x), so the natural shape of the fibre model is partially restored. The
third option is a point that may move depending on some state (for example,
depending on some angle, typically between two bones), following a predefined
curve (see Fig. 4.2).

Figure 4.2: Via-points control curve inside a muscle[27]

There are, however, some catches. The first obvious one lies in the defini-
tion of via-points. There must be an approach to define these points because
user-defined points will be time-consuming, costly, and subjective for the physi-
cian. The second main problem is the intersections of muscle models with the
closest adjacent bone model when performing an inverse kinematic movement.
Similarly, self-intersections should be handled correctly.

Furthermore, the muscle fibre model will sometimes not be smooth. Mod-
enese stated that the ”straight line representation of the muscles surrounding
the hip joint was limiting the accuracy of hip contact force predictions” [55].
The better approach might not go through a set of points but ”wrap around”
a predefined set of geometric objects [25].

4.3 Wrapping Obstacles

The wrapping obstacles approach has been developed to address some problems
of the via-points approach.
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The improvement lies in the smoothness of the curve. Unlike the via-points
method, a curve that wraps around a sphere can be formed smoothly. Figure
4.3 illustrates wrapping around a cylinder.

Figure 4.3: Wrapping obstacles approach. A line of action is wrapped around
a single cylinder [44].

The main challenge is that infinitely many curves can wrap around a volu-
metric object. From these curves, one can select the shortest, the least average
curvature, the one with maximum curvature, and so on. Selection depends pri-
marily on the specific application, the required precision, the computing power,
and other factors. This issue becomes even more complex with extreme bone
arrangements.

The wrapping obstacles approach has been used in muscle modelling by re-
searchers such as Lloyd et al. [49] and Kohout et al. [44]. Lloyd et al. wrapped
around an arbitrary geometrical model, dividing the curve into segments with
knots connected by elastic forces to prevent them from penetrating obstacles.
The latter approach, which is significantly older, is limited to spheres, single
cylinders, and sphere-capped cylinders. The issue is that some of the previously
described problems persist:
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• The geometric objects must be specified in the same fashion as the via-
points.

• In the case of incorrect curve selections, the intersection problem remains.

4.4 Finite Element Method

The Finite Element Method (FEM) offers a means to achieve precise physical
modelling. It has proven effective in tackling various challenges, such as solving
problems related to heat transfer, fluid dynamics, and more. An example of its
application is seen in the work of George-Ghiocel et al., who used the stress-
and-strain approximation approach in Storz coupling within fire hose coupling.

It is essential to begin with the mathematical formulation to grasp the fun-
damentals, as these problems are often defined by partial differential equations
(PDEs).

The finite element method has also been applicable in muscle modelling.
This section provides an overview of the relevant approaches in chronological
order.

Although multiple FE methods have been published for soft tissue mod-
elling, one of the first papers on musculoskeletal modelling using the FE method
is likely from Martins et al. [53], published in 1998. They incorporated the
Hill-type model into their FE model, although a coauthor later demonstrated
that the Hill-type model may be insufficient in some cases [52]. Their model
divided the brachialis muscle into 4050 tetrahedra and assumed constant ma-
terial properties without considering muscle anisotropy. External forces were
applied to an arbitrary part of the muscle (”right end”).

Delp and Blemker [18], in 2005, employed a template that was projected
onto the target mesh. The projected template was deformed using the finite
element method. They used magnetic resonance imaging (MRI) resolution to
create the template. They identified the tendon region from MR images to de-
termine boundary conditions, although the complete process was not described
in detail.

Boubacker et al. [6] conducted significant work to publish a survey on this
topic, providing valuable insights into the problem. However, it should be noted
that the study was published in 2006, so some of the information therein may
be outdated.

Oberhofer et al. [58], in 2009, used cubic Hermite interpolation functions
in their FE approach to ensure C1 smoothness of the model. They also used
the via-point approach (see Section 4.2) for boundary conditions to prevent
muscles from penetrating the bones. These via-points were integrated into
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the FE method, and the objective function included a distance term between
landmarks and targets and a Sobolev smoothing constraint.

Kaze et al. [20], in 2017, utilised FE to partition the model using tetrahedra.
They derived boundary conditions from anatomical muscle attachment areas
and used a mass-spring-like system to simulate tendons (for further details, see
Section 4.5). Their primary focus was on estimating the maximal strain.

Wei et al. [77], in 2019, used FE to model a human hand, employing the
Nolan hyperelastic soft tissue model [57] to accurately represent human skin.
Their study mainly focused on analysing the pressure generated by different
hand grips.

Currently, several methods use the pure finite element method for various
applications. For example, Fougeron et al. [23] applied FE for the analysis
of the load of the upper knee socket. In contrast, using FE, Vila Pouca et al.
[74] studied muscle fatigue in the pelvic floor. Sun et al. [71] modelled spine
movement using FE.

Despite the capability of the described FE methods to produce high-quality
results, they present challenges in setup due to the numerous parameters re-
quired [62]. Additionally, FE methods are often computationally demanding.
For example, Fougeron et al. [23] reported that their approach ran for 40 min-
utes on a 2-CPU machine, far from real-time simulation. Consequently, this
work only briefly introduces FE methods, which deserve more comprehensive
coverage. The primary goal of this research is to explore a faster method,
ideally capable of real-time simulation, while maintaining comparable results.

Many other methods for muscle modelling, such as position-based dynamics
(PBD), mass-spring system (MSS), and as-rigid-as-possible (ARAP), are cur-
rently available and promising alternatives that require fewer computational
resources while delivering comparable outcomes.

4.5 Mass-Spring System (MSS)

The Mass-Spring System (MSS) functions as its name implies, simulating com-
plex motion by connecting masses (individual points of mass) with virtual
springs. Motion propagation occurs through force transfer across a network
of these springs. A relatively straightforward equation describes the spring’s
behaviour:

Fij = −kdij (4.1)

Here, Fij represents the force generated by the spring between the i-th
and j-th particles, where the variable k denotes the spring constant (the force
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required to restore the spring to its original shape per unit of spring extension).
The displacement of the spring is represented by the variable dij .

Although the fundamental concept is not overly complicated, various im-
plementations of this approach exist. A notable implementation comes from
Georgii and Westermann [26], who effectively applied this technique to GPU
hardware.

Another approach, as presented by Aubel and Thalmann [5], utilises a 1D
mass-spring system model for each muscle fibre independently, although with
some problems, particularly regarding gaps between muscles. They also intro-
duced angular springs to maintain the angle between the two spring segments.
A significant drawback of their work is their somewhat lenient approach to
collision detection: ”Attempting to handle all muscle-muscle and muscle-bone
collisions is unreasonable. In our framework, preventing muscle-bone collisions
is easy and fast using repulsive force fields” [5].

A noteworthy contribution in this field is Janak’s work [35], which combines
the mass-spring system with muscle modelling. Unlike Aubel and Thalmann,
Janak’s approach operates on muscle fibre models in continuous space. He
decomposes the triangular mesh muscle model into a muscle fibre model, uni-
formly sampling these fibres to obtain nodes (masses), which are then connected
by edges (springs). Janak’s results show some promise, but a notable challenge
lies in his collision detection approach, which approximates the surface mesh
with spheres, leading to an ”imprecise collision response and partial surface
intersection between objects” [35].

Uniform sampling and connection of mass points are depicted in Figure
4.4. It is worth mentioning that the author also considers randomisation and
its implications.

4.6 ARAP - As-Rigid-As-Possible Deformation

The acronym ARAP, which stands for As-Rigid-As-Possible, represents a tech-
nique for determining minimal non-rigid transformations within a surface mesh.
Its primary innovation lies in its ability to operate without requiring an inter-
nal structure, distinguishing it from methods like Kelnhofer & Kohout [41]
that incorporate volume constraints but require the definition of an internal
”skeleton.”

ARAP has found application in the medical field, as demonstrated by Fasser
et al. [22]. They used ARAP to morph a pelvic bone template into subject-
specific landmarks. However, their approach overlooks crucial bone properties,
such as volume preservation, which the original ARAP method does not inher-
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Figure 4.4: Mass-spring system simulating an unspecified human muscle in
close detail. An issue arises with the lower portion, which lacks proper approx-
imation. Image source: [36].

ently ensure.
Wang et al. [75] also explored ARAP but abandoned it due to its inabil-

ity to produce satisfactory results. They noted issues like non-smooth shapes
with spikes resulting from ARAP, among others. Furthermore, their proposed
approach did not address the volume preservation requirement.

The essence of As-Rigid-As-Possible deformation is to minimise the model
deformation as much as possible. Any non-rigid transformation is penalised
through a cost function. This problem is mathematically formulated as solving
a system of linear equations, where the matrix is a discrete Laplace operator of
the mesh (after applying boundary conditions, particularly fixed points), and
the right-side vector contains second differences of each vertex concerning its
local neighbourhood.

4.6.1 Laplace Operator

The Laplace operator, ∆, has already been discussed in the context of FE
methods (see Section 4.4), and its primary motivation behind using it in ARAP
is its ability to capture significant local shape changes. When applied to a
triangular mesh, the continuous space definition is adapted to discrete space,
typically called the Laplace-Beltrami operator.
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4.6.2 Volume Preservation

The original ARAP method, while fast and precise, does not inherently address
the preservation of the initial model’s volume. Volume preservation is crucial
in muscle modelling as muscles do not significantly change their volume while
contracting.

To achieve proper volume preservation, a straightforward approach is to
scale the entire model by a scalar value to restore the original volume. This
scaling factor can be calculated using Equation 4.2:

3

√
V0

V
(4.2)

Here, V0 represents the initial volume, and V represents the current volume.
The cube root is applied to account for the three-dimensional nature of the
scaling.

However, this method may not work when the muscle is attached to multiple
bones at specific fixed coordinates, as these points cannot be moved, leading
to volume discrepancies. Alternative methods have been explored, such as the
one proposed by Aubel and Thalman [4], which describes the scale factor as
the square root of muscle elongation. However, practical experiments have
shown that this approach may not yield accurate results in all cases, especially
compared to more straightforward methods such as Position Based Dynamics
(PBD) [9].

Seylan et al. [65] have employed ARAP for shape deformation with volume
preservation. They addressed volume preservation by adding more edges to the
mesh, improving the results. However, they acknowledge that some volume loss
still occurs. However, Dvorak et al. [21] demonstrated promising results with
ARAP and volume tracking for surfaces that vary over time, significantly ex-
ceeding previous experiments. While their approach is practical for noiseless
data and general meshes, it may require further adaptation for muscle mod-
elling, particularly in addressing specific challenges such as muscle anisotropy,
collision detection and response, and execution speed.

4.7 Position-Based Dynamics

Position-based dynamics, often abbreviated as PBD [56], is a fast and widely
used approach, primarily in the animation industry, for modelling elastic defor-
mations of objects, including cloth. It has also gained popularity in the realm
of physical simulations. The original PBD algorithm is designed for general ob-
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jects and does not inherently account for object anisotropy. It takes a manifold
surface mesh as input and produces its deformed variant.

An extended version of PBD, known as xPBD, incorporates the concept of
elastic potential energy and eliminates the need to specify the time step and
iteration count. For a more detailed understanding, the readers can refer to
Macklin et al. work [50].

Romeo et al. [62] made the initial significant contribution by applying
the PBD algorithm to muscle modelling problems. They recognised the limita-
tions of the traditional finite element method (FEM) and finite volume method
(FVM), which, although providing excellent results, lacked qualities such as
fast simulation convergence, ease of setup, intuitive controls, and artistic con-
trol [62]. Their fundamental idea involved creating an internal structure above
the surface mesh to account for muscle anisotropy, aligning with the general
direction of muscle fibres. Through an intelligent edge-creation process, they
could construct a volumetric model better suited for the PBD algorithm. It is
important to note that they used XPBD (eXtended PBD), which incorporates
the concept of elastic potential energy.

In 2019, Angles et al. [2] developed a PBD-based approach for muscle
modelling. Their method virtually decomposes the muscle into ”rods” that
approximate muscle fibres. These rods are allowed to change their diameter
to preserve volume. The essential contribution of their work was to achieve
real-time simulation, a capability that Romeo’s approach lacked due to its
substantial processing time of approximately 40 seconds per frame [2].

The journey of utilising PBD for muscle modelling continued with the au-
thor’s master’s thesis [15], which expanded the basic PBD approach to include
anisotropy considerations. This work coincided with Romeo’s article [62], pub-
lished in the same year. Following the thesis, the article ”Fast and Realistic
Approach to Virtual Muscle Deformation” [9] extensively tested and integrated
the approach into an existing framework. Subsequently, the article ”Muscle De-
formation using Position-Based Dynamics” [42] further assessed the approach
and compared its results with a current FEM approach. A notable advantage
of the proposed approach is that it does not require an interior representa-
tion, and anisotropy is computed exclusively on the mesh surface using muscle
fibres defined on the mesh surface, indicating the fibre direction. During the
author’s PhD studies, the implementation was integrated into OpenSim, a well-
established platform for modelling various physical phenomena. Additionally, a
publication [32] extended the work, improving collision detection and response
methods, based on the bachelor’s thesis of a colleague [33].

The output of the PBD algorithm is a deformed triangular mesh suitable
for visualisation. However, the malformed muscle must be transformed into
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a set of fibres to calculate properties like muscle force. This process is called
muscle decomposition, and detailed information can be found in Kohout and
Kukacka [46] or Kohout and Cholt [45] articles.

The pseudocode for the PBD algorithm is presented in Listing 1. In this
pseudocode, xi represents the position of each vertex, vi represents its velocity,
∆t denotes the discretisation step (smaller values lead to better accuracy), wi

is the inverse of the weight associated with each vertex, and pi is a ”working”
position for each vertex. The variable Ci represents a constraint; more details
will be provided in the following text.

Algorithm 1 PBD algorithm [15].

1: for all vertices i do
2: initialise xi = x0

i , vi = v0
i , wi =

1
mi

.
3: end for
4: loop
5: for all verticies i do
6: vi ← vi+ ∆twifext (xi)
7: end for
8: dampVelocities(v1, . . . ,vN )
9: for all verticies i do

10: pi ← xi+ ∆tvi

11: end for
12: for all verticies do
13: generateCollisionConstraints( xi → pi)
14: end for
15: loop solverIterations times
16: projectConstraints( C1, . . . , CM+Mcoll

,p1, . . . ,pN )
17: end loop
18: for all verticies i do
19: vi ← pi−xi

∆t
20: xi ← pi

21: end for
22: velocityUpdate(v1, . . . ,vN )
23: end loop
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Chapter 5

Overview of the contribution

5.1 A New Strategy for Scattered Data Ap-
proximation Using Radial Basis Functions
Respecting Points of Inflection

Figure 5.1: An example of 2 1
2D

function with the curves of inflec-
tion points. The red curve repre-
sents the location of inflexion points

In the first contribution [12], the au-
thor introduced using radial basis func-
tions (RBFs) for 2D function approxima-
tion, focusing on selecting optimal cen-
tres from four categories: border ver-
tices, local extrema, inflexion points,
and pseudo-randomly chosen positions
to minimise approximation errors. The
method struggled with sharp edges.
Later works adjusted RBF placement,
particularly for musculoskeletal data, by
prioritising high Mean Squared Error
(MSE) locations over inflexion points,
acknowledging the unique challenges of
higher-dimensional data and musculoskeletal shapes. This refinement was es-
sential for precise musculoskeletal model approximations, with boundary RBFs
remaining key to the technique’s success.

Publication [12]:

M. Cervenka, M. Smolik, and V. Skala. “A New Strategy for Scattered
Data Approximation Using Radial Basis Functions Representing Points of
Inflection”. In: Computational Science and Its Application, ICSSA 2019
proceedings, Part I, LNCS 11619 (2019). UT WoS: 000661318700024,
EID: 2-s2.0-85069157052, OBD: 43926678, pp. 322–226. issn: 0302-9743.
doi: https://doi.org/10.1007/978-3-030-24289-3_24
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5.2 Novel RBF Approximation Method Based
on Geometrical Properties for Signal Pro-
cessing with a New RBF Function: Exper-
imental Comparison
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Figure 5.2: Proposed RBF function
with various shape parameters.

The primary objective of the second
contribution, as described in [66], was
to investigate the behaviour of a cho-
sen subset of RBFs exhaustively. The
study involved testing the performance of
CSRBF, Gaussian RBF, and TPS RBF,
together with a newly proposed radial ba-
sis function. A set of signals designed to
expose potential weaknesses in each type
of RBF was used for the testing. The
method used in the previous article [12]
was a similar centre placement strategy.

The experiment results revealed that accurate approximations could be
achieved, with a mean square error consistently below 1% for all global RBFs.
In particular, the proposed RBF, denoted φ (r) = r2 (rα − 1), outperformed
all other RBFs in these cases. However, more extensive testing is required to
ensure its relevance to real-world data, especially when dealing with higher-
dimensional datasets. The Gaussian RBF showed suboptimal performance in
the testing scenarios, although it was stable in terms of the conditionality of
the equation system and increased predictability.

The exploration of individual RBFs in this study laid the foundation for
a more efficient selection of RBFs for muscle modelling. The novel and the
Gaussian RBFs were tested as potential candidates to approximate a muscle
model, emerging as the best options among those investigated in this study.

Publication [66]:

V. Skala and M. Cervenka. “Novel RBF Approximation Method Based
on Geometrical Properties for Signal Processing with a New RBF Func-
tion: Experimental Comparison”. In: Informatics 2019, IEEE pro-
ceedings (2019). UT WoS: 000610452900074, EID: 2-s2.0-85087090327,
OBD: 43929007, pp. 357–362. doi: https : / / doi . org / 10 . 1109 /

Informatics47936.2019.9119276
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5.3 Modified Radial Basis Functions Approxi-
mation Respecting Data Local Features

Figure 5.3: An RBF approximation
of 2 1

2D function

The subsequent paper [73] builds on the
foundations established in the initial pa-
per [12]. This specific contribution ex-
ploits diverse features of the input func-
tion as optimal locations for RBF cen-
tres. These features contain edges, sta-
tionary curvature points, pseudorandom
positions, and centres at the function’s
borders. Including the latter two is nec-
essary according to Section 5.1. The
centres situated at edges (identified, e.g.
through the Canny edge detector on the
height map image of the function) and
stationary curvature points yield an even more enhanced interpolation result
than inflexion points and local extrema.

The exploration of curvature concepts was further developed and ultimately
integrated into the most recent publication, as elucidated in Section 5.13.

Furthermore, the discussion in Section 5.1 emphasised the importance of
including pseudorandom positions and centres at the border. This deliberate
integration stems from the overarching belief that centres located at edges and
stationary curvature points possess the potential to enhance results beyond
what can be achieved with inflexion points and local extrema alone.

The research presented in [73] not only builds on the concepts introduced
in [12] but also advances the understanding of optimal RBF centre placement
by considering a broader spectrum of features in the input function. The
subsequent developments, as outlined in Section 5.13, underscore the curvature-
centric approach’s continued evolution and practical applicability, showing its
relevance in subsequent research.

Publication [73]:

J. Vasta, V. Skala, M. Smolik, and M. Cervenka. “Modified Radial Basis
Functions Approximation Respecting Data Local Features”. In: Infor-
matics 2019, IEEE proceedings (2019). UT WoS: 000610452900015, EID:
2-s2.0-8508762067, OBD: 43928987, pp. 445–449. doi: https://doi.org/

10.1109/Informatics47936.2019.9119330
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5.4 Fast and Realistic Appr. to Virtual Muscle
Deformation

Figure 5.4: The gluteus medius
muscle under the maximum femur
flexion.

The fourth article [9] provided an
overview of the contemporary landscape
at its creation. It delved into a muscle
modelling approach rooted in position-
based dynamics, serving as a fundamen-
tal algorithm. Although this approach
was operated directly on a triangular
mesh representing the muscle surface, it
is essential to note that it is still undergo-
ing development, as indicated in sections
5.8 and 5.10. However, the author has
since redirected their focus towards mus-
cle modelling methods using Radial Ba-
sis Function (RBF) approximation tech-
niques, as detailed throughout the text.

Within the paper, Section 6, titled
”Discussion,” not only expounded upon
the state-of-the-art but also scrutinised various challenges and impediments
associated with employing techniques such as Position-Based Dynamics, Finite
Element Method, Mass-spring systems, wrapping obstacles, and more.

The identified issues encompassed the lack of smoothness in the model,
the difficulties in collision detection and response (hip joint issue discussed in
the article, subsequently addressed in further research, as evidenced in Section
5.10), and the excessive amount of data utilised for the model compared to
its actual requirements. Faced with these challenges, the notion of adopting a
different geometrical description for a muscle emerged at the time of writing.
However, this concept has not yet been formally presented in the paper.

Publication [9]:

M. Cervenka and J. Kohout. “Fast and Realistic Approach to Virtual
Muscle Deformation”. In: in Proceedings of the 14th International Joint
Conference on Biomedical Engineering Systems and Technologies - Vol-
ume 5: HEALTHINF (2020). UT WoS: 000571479400020, EID: 2-s2.0-
85083710925, OBD: 43929104, pp. 217–227. doi: https://doi.org/10.

5220/0009129302170227
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5.5 Behavioral Study of Various Radial Basis
Functions for Approximation and Interpo-
lation Purposes

Figure 5.5: Mean square error of
the proposed RBF depending on
the shape parameter.

The study [10] further explores various
RBFs, where the placement of the cen-
tre was mainly adopted from the previ-
ous paper [66] described in Section 5.2.
The new RBF of that paper has also
been tested. These more in-depth tests
of the narrowed subset of RBFs showed
some weaknesses of the author’s RBF,
mainly that there is a pattern (whole-
numbered shape parameter), while the
RBF approximation is ill-conditioned.
The Gaussian RBF does not provide that
shortcoming in the case of 1D signals;
however, it also has its issues with shape
parameter selection considering conditionality (see Section 5.7).

Specifically, the results presented in the article show that selecting a whole
number as the shape parameter α for the proposed RBF can lead to peaks or
singularities in the mean square error and conditionality plots. These singular-
ities indicate instability or significant variations in the approximation error and
conditionality, which can affect the reliability and performance of the RBF ap-
proximation. Therefore, considering and potentially avoiding whole-numbered
shape parameters might be advisable in RBF approximation tasks to ensure
more stable and consistent results.

Publication [10]:

M. Cervenka and V. Skala. “Behavioral Study of Various Radial Basis
Functions for Approximation and Interpolation Purposes”. In: IEEE 18th
World Symposium on Applied Machine Intelligence and Informatics, SAMI
2020 (2020). UT WoS: 000589772600026, EID: 2-s2.0-85087093548, OBD:
43929006, pp. 135–140. doi: https://doi.org/10.1109/SAMI48414.2020.

9108712
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5.6 Finding Points of Importance for RBF Ap-
proximation of Large Scattered Data

Figure 5.6: A various techniques of
RBF centre placement.

This article [67] focuses mainly on de-
scribing the experimental results demon-
strating the previously proposed ap-
proaches’ effectiveness. The results
showed high approximation precision in
tests involving various functions, using
only a fraction of the available data
points. For instance, the proposed ap-
proximation method exhibits a compres-
sion ratio between 5% and 10%, main-
taining precision and a high compression
ratio. It shows that muscle modelling can
reach data reduction and simplification.

The study’s conclusion highlights the simplicity and efficiency of the RBF-
based approximation method, which achieves relatively low error rates and high
data compression. However, there are still many other function points of im-
portance, which may even enhance the approximation’s precision by including
them. However, evaluating neighbouring points is crucial for scattered data to
identify the points of importance accurately. The study highlights the poten-
tial for future research, mainly in analysing behaviour at interval borders in
3D, which is recognised as a critical aspect for further development. Studying
behaviour on borders in 3D is beneficial for muscle modelling.

The article also contributes to handling large and complex data sets. The
proposed method stands out for its ability to simplify the approximation pro-
cess while maintaining high accuracy and efficiency. It mainly benefits engi-
neering and scientific computations involving large scattered data sets.

Publication [67]:

V. Skala, S. Karim, and M. Cervenka. “Finding Points of Importance
for Radial Basis Function Approximation of Large Scattered Data”. In:
Computational Science - ICCS 2020, Part VI, LNCS 12142 (2020). OBD:
43932925, UT WoS: 000841676000019, EID: 2-s2.0-85087274721, pp. 239–
250. doi: https://doi.org/10.1007/978-3-030-50433-5_19
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5.7 Conditionality Analysis of the Radial Basis
Function Matrix

Figure 5.7: Conditionality analysis
of Gaussian RBF depending on the
number of RBFs and shape param-
eter.

The conditionality analysis [11] paper is a
more in-depth study of a Gaussian RBF.
The goal was to take the knowledge from
the previous paper and take the approach
to the higher (2D) dimensions to ensure
there are no problems with the approach.
Also, the uniform centre point distribu-
tion was tested thoroughly.

The research aimed to figure out the
most suitable shape parameter, and the
testing scenario was simplified for that
purpose. The testing scenario involves
a ⟨0, 1⟩ × ⟨0, 1⟩ domain, where variable number of RBF centres N was put
uniformly with a variable (global) shape parameter β.

During the research, two significant outcomes emerged. The first outcome
is that if the uniform distribution is used, some shape parameters lead to an
ill-conditional linear equation system. We were also able to find those experi-
mentally and analytically. The second one is that the uniform distribution is
unsuitable for the RBF approximation because the resulting linear equation
system is ill-conditioned, in contrast to using some pseudorandom, e.g., Halton
distribution.

Also, previously less discussed TPS RBF was rigorously tested. In the case
of this RBF, a shape parameter also exists, which leads to ill-conditionality;
however, there is only one for each number of RBFs tested.

This research proved the facts from the previous ones, that the pseudoran-
dom distribution on points (where no other viable placement option exists) is
better than the uniform one, considering the conditionality of the RBF equa-
tion system to solve. Due to that fact, further research did not consider the
uniform distribution for placement at all.

Publication [11]:

M. Cervenka and V. Skala. “Conditionality Analysis of the Radial Basis
Function Matrix”. In: ICCSA 2020 proceedings, part II, LNCS (2020).
UT WoS: 000719685200003, EID: 2-s2.0-85093112881, OBD: 43932697,
pp. 30–43. doi: https://doi.org/10.1007/978-3-030-58802-1_3
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5.8 Muscle Deformation Using Position Based
Dynamics

Figure 5.8: The deformation and
decomposition of the iliacus muscle.

In this article [42], we build on our
earlier work [9] (Section 5.4) detailing
muscle deformation through a triangu-
lar mesh model of the musculoskeletal
system. Our method prioritises volume
preservation, achieving less than 1% error
in volume maintenance across all tests.
This focus greatly enhances the realism
and accuracy of muscle simulations. Ad-
ditionally, we explore the displacement
dynamics of the adductor brevis muscle
during hip flexion, examining the effects
of varying iterations of the PBD solver.
This analysis advances our understand-
ing of muscle deformation, providing an
evaluation of our previous method [9] and describing several challenges:

1. The approach detects muscle points moving with bones, relying on man-
ual expert input for muscle attachment areas, which is time-consuming.

2. The collision handling method may cause surface spikes, especially with
coarse voxel bone representations, and refined representations are imprac-
tical due to cubic memory growth.

3. Simulation outcomes depend heavily on parameters; while it runs in real-
time, even unoptimised, accurate results require parameter calibration.

The challenges in simulating muscle deformation, including efficient collision
handling and accurate muscle attachment setup, are significant. We addressed
attachment point accuracy in Section 5.11 and improved collision handling in
Section 5.10. The resolution of the third issue is still underway.

Publication [42]:

J. Kohout and M. Cervenka. “Muscle Deformation Using Position Based
Dynamics”. In: Ye X. et al. (eds) Biomedical Engineering Systems and
Technologies. BIOSTEC 2020. Communications in Computer and Infor-
mation Science 1400 (2021). EID: 2-s2.0-85107281398, OBD: 43932927.
doi: https://doi.org/10.1007/978-3-030-72379-8_24

29



5.9 Geometry Algebra and Gauss Elimination
method for solving a linear system of equa-
tions without division

Figure 5.9: The complexity of the
provided GE approach.

The results of this paper [14] can be ap-
plied to the RBF equation system solv-
ing if Gaussian elimination (GE) is used.
The research introduces an innovative ap-
proach to GE that eliminates the need
for division. This method is significant in
contexts where division is expensive, not
optimised, or inconvenient. The GE pro-
cess includes division operations, gener-
ating computational expense and numer-
ical instabilities. The division avoidance
approach reduces the computational costs and maintains numerical stability.

The proposed method involves additional multiplication and addition steps
to substitute for division operations. By avoiding division, the process reduces
computational expense, with only a slight increase in execution time compared
to the standard approach on modern computers. Experiments were conducted
using the Hilbert matrix, which is known for its numerical instability during
inversion. The paper compares the proposed method with the traditional GE
and another approach for reducing division operations. The results demon-
strate that the new method maintains numerical stability.

The proposed method maintains accuracy and stability while being slightly
slower than the GE method on a traditional PC because the division on this
hardware is already optimised. The performance of the approach was evaluated
using the normalised Frobenius norm and conditionality of the inverses.

The paper contributes to computational mathematics by offering an ap-
proach to a fundamental process impacting areas where division is not feasible.

Publication [14]:

M.: Cervenka. “Geometry Algebra and Gauss Elimination method for
solving a linear system of equations without division”. In: Informatics
2022, IEEE proceedings (2022). OBD: 43937872, EID: 2-s2.0-85153355665,
pp. 55–59. doi: https://doi.org/10.1109/Informatics57926.2022.

10083445
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5.10 Collision detection and resp. approaches
for computer muscle modelling

Figure 5.10: A proposed approach
when a collision between two ob-
jects occurs.

In our research, addressing collision de-
tection and response presented significant
challenges (refer to the second point in
Section 5.8 and also see Section 5.4), pri-
marily due to the lack of a practical so-
lution initially. The study highlighted in
this article [32] sought to improve colli-
sion handling by substituting the origi-
nal voxelisation method with a scalar dis-
tance field (SDF) approach.

Initially, we considered two alterna-
tives: the scalar distance field (SDF) and
the flexible collision library (FCL). Our
findings indicated that SDF was the su-
perior option, offering enhanced computational speed and reduced memory
usage without compromising quality.

The implementation of SDF in this study markedly enhanced our collision
handling technique. Its success is primarily attributed to its lower discretisation
resolution than voxelisation, with trilinear interpolation in each voxel providing
sufficient accuracy.

Furthermore, we successfully settled a persistent issue where muscles would
get stuck in joints due to the coarse surface of the voxel grid, hindering smooth
movement out of the joint. The new method also significantly reduces the
likelihood of muscles entering narrow spaces between bones.

Publication [32]:

O. Havlicek, M. Cervenka, and J. Kohout. “Collision detection and re-
sponse approaches for computer muscle modelling”. In: Informatics 2022,
IEEE proceedings (2022). EID: 2-s2.0-85153333554, OBD: 43937869,
pp. 120–125. doi: https://doi.org/10.1109/Informatics57926.

2022.10083500
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5.11 Nonplanar Surface Shape Reconstruction
from a Point Cloud in the Context of Mus-
cles Attachments Estimation

Figure 5.11: A curve reconstruction
from a projected nonplanar attach-
ment points.

The attachment estimation described in
the following paper [43] plays a crucial
role in muscle modelling. The article
mainly tackles the issue described in Sec-
tion 5.8, already described in that pa-
per. The option of automatically search-
ing for the attachment area according to
the information about the closeness of the
muscle to the bone proved insufficient be-
cause it often happens that the muscle is
adjacent to some bone but not attached
to it. Hence, additional data is required.
Those data already exist as vertices mea-
sured at the border of the attachment
area as a part of the TLEM 2.0 [8]. The main issue is finding all points inside
the attachment area, which would be fixed afterwards to the adjacent bone.

The article tested 15 different curve reconstruction algorithms to recon-
struct the whole attachment boundary on the bone, and the subsequent surface
bounded by it can be restored by the radial basis function (RBF) approach,
which has already been researched before. In this research, we also tested the
RBF approach for curve reconstruction, which worked to some extent but was
unstable in terms of the parameters selected, which must be chosen carefully
with the prior and deep knowledge of the RBF approximation technique.

The RBFs are useful for muscle modelling and muscle attachment area
approximation; however, parameter selection is crucial to success.

Publication [43]:

J. Kohout and M. Cervenka. “Nonplanar Surface Shape Reconstruction
from a Point Cloud in the Context of Muscles Attachments Estimation”.
In: Proceedings of the 17th International Joint Conference on Computer
Vision, Imaging and Computer Graphics Theory and Applications (2022).
UT WoS: 000774795400024, OBD: 43936004, pp. 236–243. doi: https:

//doi.org/10.5220/0010869600003124
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5.12 Computerised muscle modelling and sim-
ulation for interactive applications

Figure 5.12: Virtual edges allow the
muscle to slide.

In this study [13], we evaluated our previ-
ously developed muscle modelling technique,
addressing a future challenge and introduc-
ing a method enabling muscles to ”slide”
over bones using virtual edges.

A problem identified during our tests oc-
curs when two bones move close to each
other with a muscle sandwiched in between,
akin to a muscle caught in shears. An-
other problem arises when bone movement
is so rapid between iterations that the mus-
cle might penetrate the bone, complicating
shape restoration. This issue, while appear-
ing unlikely, is common in long bones like
the femur, where a small angular change
can result in substantial displacement at the
bone’s opposite end. Finally, some further directions are outlined:

1. Expanding on the PBD concept to use, e.g. XPBD. This area is currently under
exploration, though it has become a smaller focus of my research.

2. Integrating another algorithm with PBD to refine outcomes. The ARAP al-
gorithm tested in this paper is a candidate for this integration. However, we
decided to diverge from this research path due to unresolved issues.

3. A different geometric model could mitigate certain problems, particularly sur-
face roughness. Each alternative geometry, however, presents its challenges.

This final examination of the triangular mesh model prompted me to shift my focus

to a different geometric approach (according to the third point), employing radial

basis functions rather than the triangular mesh.

Publication [13]:

M. Cervenka, O. Havlicek, J. Kohout, and L. Vasa. “Computer muscle
modelling”. In: Computerised muscle modelling and simulation for inter-
active applications, Proceedings of the 18th International Joint Confer-
ence on Computer Vision, Imaging and Computer Graphics Theory and
Applications, VISIGRAPP 2023, Volume 1: GRAPP (2023). UT WoS:
001066254400019, OBD: 43940148, pp. 214–221. doi: https://doi.org/

10.5220/0011688000003417
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5.13 A mathematical model for smooth Radial
Basis Function implicit surface model for
muscle modelling

Figure 5.13: A curvature field
around the gluteus maximus.

This research paper [16] presents an in-
novative method for modelling muscle ge-
ometry. This approach is heavily theo-
retical and builds upon insights gleaned
from our prior research. This theoreti-
cal model, but generalised, is described
in Chapter 6.

The journal paper further develops
knowledge acquired from earlier studies.
Here’s a summary of each publication
and its crucial contribution to this paper:

A New Strategy for Scattered Data
Approximation Using Radial Basis
Functions Respecting Points of In-
flection [12] highlights the utilisation
of Halton point distribution and the in-
corporation of central points at domain boundaries.

Novel RBF Approximation Method Based on Geometrical Proper-
ties for Signal Processing with a New RBF Function: Experimental
Comparison [66] reveals limitations of local RBFs, suggesting three global
RBF alternatives: Gaussian, TPS, and a newly developed one.

Modified Radial Basis Functions Approximation Respecting Data
Local Features [73] reveals how edge detection and curvature can enhance
approximation using a curvature preservation approach.

Fast and Realistic Approach to Virtual Muscle Deformation [9] is a
foundational paper on muscle modelling principles that greatly influenced the
journal article by outlining the requirements of the muscle model.

Behavioural Study of Various Radial Basis Functions for Approxima-
tion and Interpolation Purposes [10] concludes that while a novel RBF
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might be preferable for approximation, caution is needed in shape parameter
selection due to potential instabilities in RBF matrix conditionality. The paper
suggests Gaussian RBF is a potentially better choice.

Finding Points of Importance for Radial Basis Function Approxi-
mation of Large Scattered Data [67] recaps and tests previous research
[12, 66, 73], contributing the insight that high compression ratios can maintain
accuracy.

Conditionality Analysis of the Radial Basis Function Matrix [11]
provides valuable insights into shape parameter selection for Gaussian RBF
through analytical study.

Muscle Deformation Using Position Based Dynamics [42] examines
PBD methods on a triangular mesh muscle model, highlighting the need to
address muscle tissue entering the joint.

Geometry Algebra and Gauss Elimination method for solving a linear
system of equations without division [14] delves into solving the RBF
equation system, focusing on the methodological intricacies.

Collision detection and response approaches for computer muscle
modelling [32] enhance understanding of collision handling approaches, rel-
evant for future work with RBF geometric models.

Nonplanar Surface Shape Reconstruction from a Point Cloud in the
Context of Muscles Attachments Estimation [43] discusses applying
RBF to real musculoskeletal data and its unique challenges.

Computerised muscle modelling and simulation for interactive appli-
cations [13] summarises, tests, and expands the existing approach, mainly
focusing on future research opportunities, which the journal paper explores.
The paper is at the time of writing in the stage of submission.

Publication [16]:

Martin Cervenka, Josef Kohout, and Bogdan Lipus. “A mathematical
model for smooth Radial Basis Function implicit surface model for the
purpose of muscle modelling”. In: INFORMATICA (2024, submitted)
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Chapter 6

Inovative mathematical model

The derivation of the mathematical model is straightforward. It involves de-
scribing the surface as a sum of RBF implicit functions and the curvature
preservation condition. At first, the innovative mathematical model starts by
declaring the general notation of the RBF approximation:

f (x) =

N∑
i=1

λiφ (||x− ξi||) =
N∑
i=1

λiφ (ri) (6.1)

Because the curvature calculation involves estimating the Hessian matrix, the
first step is to find the gradient of the RBF approximation, which will be needed
afterwards. It can be described as follows:

∇f (x) =

N∑
i=1

λi∇φ (ri) =

N∑
i=1

λi
∂φ

∂ri

∂ri
∂xj

=

N∑
i=1

λi
rij
ri

∂φ

∂ri
, rij = xj − ξij(6.2)

The gradient evaluation was the first step in estimating the Hessian matrix of
the approximator. Second partial derivatives declare the Hessian of a function,
generally as:

H (f (x)) =


∂2f
∂x2

1

∂2f
∂x1∂x2

∂2f
∂x1∂x3

. . .
∂2f

∂x2∂x1

∂2f
∂x2

2

∂2f
∂x2∂x3

. . .
∂2f

∂x3∂x1

∂2f
∂x3∂x2

∂2f
∂x2

3
. . .

...
...

...
. . .

 (6.3)

In our case of RBF approximation, where each second partial derivative can be
evaluated from the first ones in (6.2), a single Hessian matrix element can be
declared as:

∂2f

∂xj∂xk
=

N∑
i=1

λi

(
∂2φ

∂r2i

r2ij
r2i

+
∂φ

∂ri

(
δij
ri
−

r2ij
r3i

))
(6.4)

The Kronecker delta function δij indicates that it behaves differently on and
off the diagonal. Luckily, for further evaluation, the derivation depends solely
on the elements on the main diagonal.
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6.0.1 Mean curvature

The mean curvature of a model describes the shape of the model, so it should
be beneficial to preserve it. The mean curvature is defined as a mean eigenvalue
of the Hessian or as the mean of the trace of the Hessian:

κµ (H (f (x))) = κµf = λH =
Tr (H)

D
=

1

D

N∑
i=1

λi

(
∂2φ

∂r2i
+

∂φ

∂ri

D − 1

ri

)
(6.5)

The subsequent step involves determining the cost function, which is essentially
the squared L2 norm between the new and original curvatures across the entire
space:

Cf =

∫
. . .

∫
||κµf − κµfi ||

2
2 dx1 . . . dxd =

∫
Rd

||κµf − κµfi ||
2
2 dx (6.6)

One may employ the gradient descent method to discover the optimal values
of ξi. Initially, we must compute the gradient of the curvature w.r.t. ξi:

∇κµf =
[
∂κµf

∂ξi1

∂κµf

∂ξi2

∂κµf

∂ξi3
. . .
]

(6.7)

After the detailed following derivation, the gradient ultimately used for the
gradient descent method to evaluate the new shape would take the form:

∂κµf

∂ξkj
=

∂

∂ξkj

1

D

N∑
i=1

λi

(
∂2φ

∂r2i
+

∂φ

∂ri

D − 1

ri

)
=

1

D

N∑
i=1

λi

(
∂g (ξi)

∂ξkj

)
=(6.8)

=
λk

D

∂g (ξk)

∂ξkj
=

λk

D

∂

∂ξkj

(
∂2φ

∂r2k
+

∂φ

∂rk

D − 1

rk

)
=

= −λkrkj
Dr3k

(
r2k

∂3φ

∂r3k
+ rk (D − 1)

∂2φ

∂r2k
− (D − 1)

∂φ

∂rk

)
Now, we need to compute the gradient of the cost function C, which is expressed
as follows:

∇Cf = ∇ξ

(∫
Rd

||κµf − κµfi ||22dx
)

= 2

∫
Rd

(κµf − κµfi)∇ξκµfdx (6.9)

Given the definition of the partial derivatives of κ, the complete cost function
gradient can be expressed as:

2

∫
Rd

(κµf − κµfi)

(
−λkrkj

Dr3k

(
r2k

∂3φ

∂r3k
+ rk (D − 1)

∂2φ

∂r2k
− (D − 1)

∂φ

∂rk

))
dx (6.10)
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If we, for example, consider gaussian RBF φ (r) = e−αr2 in threedimensional
space D = 3, then the resulting gradient would take the form:

∂φ
∂r = −2αrφ (r) , ∂2φ

∂r2 =
(
4α2r2 − 2α

)
φ (r) ,

∂3φ
∂r3 =

(
12α2r − 8α3r3

)
φ (r) , E = D − 1

∇Cfkj
= 2

∫
Rd(κµf − κµfi) (6.11)(

−λkrkj

Dr3k

(
r2k

∂3φ
∂r3k

+ rkE
∂2φ
∂r2k
− E ∂φ

∂rk

))
dx =

= − 2
3

∫
R3(κµf − κµfi)e

−αr2 λkrkj

r3(
r2
(
12α2r − 8α3r3

)
+ 2r

(
4α2r2 − 2α

)
+ 4αr

)
=

= − 2
3

∫
R3(κµf − κµfi)e

−αr2λkrkj
(
12α2 − 8α3r2 + 2

(
4α2 − 2α

r2

)
+ 4α

r2

)
=

= − 2
3

∫
R3(κµf − κµfi)e

−αr2λkrkjα
2
(
20− 8αr2

)
=

= 8
3

∫
R3(κµf − κµfi)e

−αr2α2λkrkj
(
2αr2 − 5

)
The equation follows our latest paper [16]. The gradient from the paper was
described as follows:

8

d

∫
Rd

(κµf − κµfi)α
2
kgk (x) (xj − ξkj)

(
2αk||x− ξk||22 − 2− d

)
dx (6.12)
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Chapter 7

Conclusion & Future work

The dissertation provides a comprehensive overview of the evolution and cur-
rent methodologies in muscle modelling. It traces the journey from the earliest
Hill-type muscle models, which were rudimentary yet foundational, through
various stages of evolution, including simplistic straight-line approximations,
polyline constructs, and models incorporating lines wrapped around obsta-
cles or bones. This progression culminates in more sophisticated, higher-
dimensional frameworks such as mass-spring systems, position-based dynamics,
and finite element methods. A recurring theme in this evolution is the balance
between model accuracy and computational efficiency. A notable trend is ob-
served: models demand more parameters to be accurately determined and
configured as they become more complex.

A pivotal contribution of the dissertation is the detailed exploration of exist-
ing muscle modelling techniques and introducing a novel mathematical model
utilising radial basis function implicit surfaces. This innovative approach marks
a significant step forward, offering a memory-efficient model to generate in-
finitely smooth surface representations. Such a model can potentially revolu-
tionise the field of muscle modelling by providing a more refined and scalable
tool for simulating muscle morphology and dynamics.

However, the proposed model is not without limitations. It does not ad-
dress certain practical aspects crucial in real-world applications, such as colli-
sion handling and preserving volume in the modelled entities. These areas are
identified as avenues for future research and development. The insights and
methodologies presented in the dissertation lay a solid groundwork for tackling
these challenges. Building upon the foundation laid by this research, future
work is anticipated to advance the field further, enhancing the realism and
applicability of muscle models in various scientific and medical applications.

The dissertation, covering a broad range of topics in muscle modelling,
opens up several avenues for future research and development. One of the criti-
cal areas for expansion is the proposed Radial Basis Function (RBF) mathemat-
ical model. Currently, the model primarily focuses on maintaining the initial
shape of the muscle during deformation, akin to the Position-Based Dynamics
(PBD) approach. However, it does not yet incorporate other crucial aspects
of muscle behaviour. Notably, the interaction between muscles modelled with
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RBF and bones, especially regarding collision handling, remains unaddressed.
Drawing inspiration from existing literature, such as the work by Cani [7] on the
collision handling between two implicit surfaces, could be beneficial. Although
Cani’s method is based on implicit surfaces generated by skeletons rather than
RBF sets, the underlying principles could provide valuable insights for develop-
ing a similar mechanism for RBF muscles. Additionally, formulating a volume
constraint for the RBF model is another crucial aspect that requires attention,
ensuring that the muscle volume remains consistent during deformations.

The dissertation also delves into the complexities of the PBD approach.
Despite significant advancements, challenges like muscle penetration through
bones and muscle tissue getting forced into tight spaces persist. Addressing
these issues involves solving intricate problems like determining the side of the
bone where most muscle is located post-deformation and devising strategies
for muscle tissue to escape from increasingly tight spaces. These challenges
highlight the need for more sophisticated algorithms and problem-solving tech-
niques in muscle modelling.

Furthermore, integrating the As-Rigid-As-Possible (ARAP) approach with
the existing PBD framework has proven more challenging than initially an-
ticipated. The attempt to intertwine these two methodologies resulted in a
rough surface texture, as the algorithms worked at cross purposes, pushing
vertices in different directions. This outcome suggests that a more intricate
and harmonised cooperation between ARAP and PBD algorithms is essential
to achieve the desired smoothness and accuracy in muscle modelling.

In summary, while the dissertation lays a strong foundation in muscle mod-
elling, it also clearly outlines the need for further research in several key areas.
These include developing collision handling mechanisms for RBF muscles, vol-
ume preservation techniques, resolving issues related to muscle-bone interac-
tions in the PBD approach, and refining the integration of ARAP with PBD
for smoother and more accurate muscle deformations. These challenges present
exciting opportunities for future research, promising significant advancements
in muscle modelling
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