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Abstrakt

Muskuloskeletální modelování se ukazuje jako silný nástroj pro simulaci komplex-

ních lidských pohybů. Tato disertace má za cíl použít aproximaci pomocí radiálních

bázových funkcí (RBF) k zlepšení přesností těchto modelů. Cílem je demonstrovat

vhodnost RBF k zachycení tvaru a pohybu modelu svalu s uvážením širšího spektra

vlastností vstupního svalu. RBF může být také použito pro rekonstrukci povrchu

svalových úponů z množiny bodů v kontextu odhadu tvaru svalového úponu na

kosti.

Disertace si klade za cíl popsat nejmodernější metody modelování svalů, pop-

sáním všech nyní známých a relevatních přístupů. Dále text přechází do návrhu RBF

matematického modelu k popisu tvaru svalu za použití množiny RBF, zahrunující

techniky hledání optimálních pozic středů dle několika vlastností, například kraje

svalu, lokální extrémy, body inflexe, strategicky zvolené pseudonáhodné pozice, tzv.

žravé umisťování RBF a dále hledání vhodných tvarových parametrů. Poslední částí

je popis matematického modelu pohybu geometrie svalu, což je hlavní část této

disertace.

Klíčová slova

Modelování svalů, aproximace, Radiální Bázové Funkce, RBF, umisťování středů,

křivost, Pozičně orientovaná dynamika, PBD, Technika co největší tuhosti, ARAP,

interpolace, přes body, Systém pružin a hmotných bodů, Metoda konečných prvků.



Abstract

Musculoskeletal modelling has emerged as a powerful tool for simulating complex

human movements. This doctoral dissertation focuses on using the Radial Basis

Function (RBF) approximation technique to enhance the precision of such models.

The aim is to demonstrate the efficacy of RBF in capturing the shape and motion of

a muscle model by considering a wider spectrum of features in the input function.

RBF can also be used to reconstruct surfaces from sets of attachment points in the

context of muscle attachment estimation.

The doctoral dissertation aims to describe the current state-of-the-art muscle

modelling field, describing all of the currently known approaches. The dissertation

then transitions to propose a novel RBF mathematical model to describe a muscle

using a set of RBF, which introduces a technique of finding an optimal centre point

using multiple groups, such as vertices at borders, local extrema, points of inflexion,

strategic pseudorandom positions, greedy MSE placement, and more, finding suit-

able shape parameters, and, ultimately, describing the mathematical model for the

movement of the geometry. Therefore, the outcome of the dissertation is a mathe-

matical model for the dynamical muscle model

Keywords

Muscle modelling • approximation • Radial Basis Functions • RBF • centre place-

ment • curvature • Position-Based Dynamics • PBD • As-rigid-as-possible • ARAP •

interpolation • Via-points •Mass-spring systems • Finite Element Method
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Preface

In biomechanics and musculoskeletal research, the search for accurate and efficient

modelling techniques has been a continuous journey driven by the desire to under-

stand the complexities of human and animal movement and function. This disser-

tation delves into musculoskeletal modelling, focusing specifically on using Radial

Basis Function (RBF) approximation techniques as a powerful tool for enhancing

the accuracy and smoothness of such models.

In this dissertation, I have adopted an integrative writing approach that seam-

lessly weaves existing research into the narrative of my argument. Rather than sep-

arating the literature review, analysis, and findings into distinct sections, I have

blended these elements throughout the text. This method allows for a more coher-

ent and fluid presentation of ideas, where the research directly informs and supports

the ongoing discussion. By doing so, I aim to maintain a strong connection between

the theoretical framework and the empirical evidence, ensuring that the reader can

easily follow the progression of my argument. Proper attribution is given through

meticulous citation, ensuring the sources are acknowledged while allowing my anal-

ysis and insights to remain at the forefront of the discussion.

It begins with a review of the existing literature, a survey of the landscape of

musculoskeletal modelling methodologies, and a light on the challenges researchers

face in this domain. The core idea of the study is then described. The dissertation

then transitions to a detailed exposition of the author’s work.

Much of this dissertation is dedicated to the description and insight into the

RBF approximation technique in musculoskeletal modelling. The study aims to

demonstrate RBF’s efficacy in capturing a muscle model’s shape and motion.

This dissertation contributes to the ongoing discourse in musculoskeletal mod-

elling. Using the power of RBF approximation, one can aspire to unlock new di-

mensions of understanding in human biomechanics, potentially paving the way for

innovative applications in fields ranging from rehabilitation engineering to sports

science.

Martin Červenka,
author
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Introduction 1
The complex quest for accurate and realistic modelling of human muscles remains a

cornerstone in biomechanics and musculoskeletal research. This doctoral disserta-

tion hypothesises that another representation of a muscle can be used, focusing on

integrating Radial Basis Function approximation techniques. The research stands at

the intersection of computer science, computational mathematics, and biomechan-

ics, aiming to describe some of the most challenging aspects of muscle modelling.

Musculoskeletal models are indispensable in various fields, from medical diag-

nostics to the design of advanced prosthetics, sports science, and the development

of human-like animations in computer graphics. However, the complexity of hu-

man anatomy, combined with the dynamic nature of muscle movement, presents

unique challenges. Existing general modelling techniques often fail to capture the

intricate details of muscle shapes and their movements, leading to a gap between

simulation and reality, since they represent a muscle by a set of lines, e.g. [1], ignore

intermuscular behaviour, e.g., [2].

The research delves into the intricacies of muscle modelling, scrutinizing the

limitations of current modelling methodologies. This work proposes a novel use

of RBF approximation, a mathematical technique known for its flexibility and pre-

cision in representing complex multidimensional shapes [3, 4]. The dissertation

introduces innovative ways to accurately represent muscle geometry and dynamics

by applying RBF to musculoskeletal modelling.

Furthermore, this work provides a comprehensive review of the existing litera-

ture in muscle modelling, establishing a solid foundation for the proposed method-

ologies. It not only debates the current state-of-the-art but also identifies potential

areas for improvement. The dissertation then transitions into a detailed exposition

of the proposed RBF-based models, their theoretical underpinnings, and practical

applications. It includes extensive computational simulations, offering insights into

their potential impact on various applications.

The following described work employs various scientific methodologies. It in-

corporates empirical techniques such as visualizing muscle movement and correlat-

ing it with ongoing results. Additionally, general methods like generalization and

7



1. Introduction

simplification convert real-world muscle structures into models. The analytical sci-

entific approach is a primary focus, particularly in the chapter on the novel muscle

model. Furthermore, the synthesis method is extensively applied, especially when

working with RBFs.

This dissertation is poised to contribute significantly to the musculoskeletal

modelling field. Addressing the critical need for more smooth and realistic muscle

models paves the way for advancements in medical research, ergonomic design,

sports science, and beyond. The dissertation pushes the boundaries of current mod-

elling techniques and opens new avenues for interdisciplinary research, blending

biomechanics with cutting-edge computational methods.

The content of this dissertation is described not only via the table of contents

but also using a radial plot in Fig. 1.1. The image describes better which parts of the

work are more significant than others; the less important parts are mentioned but

not described thoroughly due to their less importance to the overall work. Also, in

some chapters, more detailed radial plots are placed (see Fig. 3.1, 4.1, 6.1, 5.1, 8.1

and 9.1) to introduce the given chapter more rigorously.
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shows the depth of exploration. Created with the www.flourish.studio
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Problem
specification 2
Muscle modelling is pivotal in advancing our understanding of human physiology

and biomechanics. It bridges the gap between theoretical knowledge and practical

medical, sports science, and rehabilitation applications. It offers insights into how

muscles generate force, interact with skeletal structures, and how these processes

contribute to human movement and function. The importance of proper muscle

modelling cannot be overstated, as it underpins the development of personalized

medical treatments and the enhancement of athletic performance [5].

In the medical field, muscle models are crucial for simulating surgeries, pre-

dicting outcomes of rehabilitation protocols, and understanding musculoskeletal

disorders at a fundamental level [6]. Furthermore, in sports science, detailed muscle

modelling can aid in designing training regimes that optimize performance while

minimizing the risk of injury, offering athletes tailored strategies that consider their

unique physiological characteristics [7].

Accurately modelling the human musculoskeletal system presents significant

challenges due to its complexity. The human body consists of an intricate system of

bones and soft tissues (e.g., muscles and tendons), each contributing to our overall

movement and functionality. However, the practical application of such models

often requires a focused approach. For instance, when considering clinical decisions,

such as determining the necessary lengthening of a femur to correct a patient’s gait,

the model does not need to simulate every molecular interaction within the muscles

and bones. Instead, it is crucial to model the key parameters that directly influence

the outcome of interest, such as bone length adjustments and their impact on joint

alignment andmuscle function. This targeted approach allows for adequate decision

support in medical interventions without overcomplicating the model beyond what

is necessary. Defining specific parameters like muscle activation patterns and their

relationship to normal gait can provide practical tools for healthcare professionals

to optimize treatment strategies.

The development of novel approaches to muscle modelling, such as those pro-

posed in this dissertation, represents a significant step forward in our ability to

9



2. Problem specification

simulate and understand human movement.

Muscle modelling encompasses a broad spectrum of applications, each demand-

ing a precise specification of the challenges involved. Given the intricate nature

of the human body, a degree of simplification is essential to feasibly represent its

mechanics without compromising on accuracy beyond acceptable limits. This chap-

ter outlines the considerations in approaching muscle modelling, focusing on the

methodological decisions underpinning our research.

A pivotal aspect of this dissertation is the decision between employing direct or

inverse kinematics. Direct kinematics seeks to mirror the physiological processes,

from the excitation of muscle fascicles by electrical impulses to the resultant move-

ments and deformations of bones. In contrast, inverse kinematics works backwards

from observed movements to deduce muscle shapes and the forces they exert, cir-

cumventing the direct estimation of electrical signal excitations. This method is

particularly advantageous for applications in the medical field, where the primary

interest often lies in understanding the forces involved.

In our modelling efforts, bones are considered rigid structures to simplify the

complex interactions within the musculoskeletal system. Muscles and tendons are

modelled based on their real-world properties, with common simplifications to

facilitate specific applications. These include the assumption of constant muscle

volume and the consideration of muscle tissue’s internal structure and anisotropy,

which are pivotal depending on the application’s requirements.

Moreover, the issue of structural collisions within the musculoskeletal system

presents a significant challenge. Our approach has been to review and apply the

most effective techniques from extensive research.

For this dissertation, we have adopted specific simplifications to develop a novel

model:

1. Focus on inverse kinematics for modelling

2. Treat bones as entirely rigid entities

3. Assume no significant volume change in any structure (bone/muscle)

4. Maintain the initial muscle shape throughout the modelling process

These simplifications are vital to crafting a model that, despite its abstractions,

effectively meets the research or application goals. Below, we delve into additional

aspects that require clarification.

10



2.1. Shape of the muscle

2.1 Shape of the muscle
The preservation of muscle shape in models can vary significantly, depending on the

methodological approach. The commonly adoptedmodel employs a triangularmesh,

reducing energy through a balance of global and local terms, as suggested by Sorkine

et al. [8] and their followers. This method efficiently manages the transformations

and non-rigid deformations within the mesh.

This dissertation aims to refine existing models and introduce a novel approach

utilizing a continuous RBF implicit function distinct from the traditional triangular

mesh structure. To date, there has been no proposal for preserving the surface of

a muscle via a smooth and continuous 3D model. Therefore, this work proposes a

method that maintains the original spatial curvature of the model while penalizing

any deviations, detailed further in Section 7.4.

2.2 Volume change
The constant volume assumption is crucial in simplifying the mathematical repre-

sentation of muscle behaviour in muscle modelling. Despite this, muscle activity

can involve subtle volume changes, challenging this assumption. This dissertation

addresses the challenge of modelling volume changes without significantly compli-

cating the model.

2.3 Collisions
Addressing collisions within the musculoskeletal system is critical for realistic mod-

elling. This dissertation explores the integration of collision detection and response

mechanisms into our model, ensuring that interactions between muscles, tendons,

and bones are accurately represented. We evaluate various collision handling tech-

niques, ultimately incorporating a method that balances computational efficiency

with the need for accuracy. This approach allows us to simulate the complex inter-

play of musculoskeletal components in a dynamic environment, contributing to the

overall realism and utility of the model.

11





Acquiring data 3
The primary foundation for achieving quality computer muscle modelling success

is obtaining relevant data. This section explores methods and opportunities for data

acquisition.

Data can be categorised into two types: general and personalised data. Person-

alised data pertains to measurements taken from a specific subject. Those data are

rooted in measurements of a patient’s illness or when optimising an athlete’s perfor-

mance. On the contrary, general data is collected from other individuals and may

serve as a template butmay not be suitable for a particular patient due to the substan-

tial variability in muscle attachment sites between subjects. Further details on this

issue can be found in [9], [10], and [11]. Because the musculoskeletal system is too

complex to model, few words address some simplifications of the muscle-tendon

units.

ACQUIRING
DATA
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Figure 3.1: The graphical description of the topics on data acquisition discussed in

the dissertation (described by the depth of the discussion). Created with the www.

flourish.studio
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3. Acquiring data

Together with the rest of the text, this section covers the central data acquisition

topics. The depth of coverage is visualised in Fig. 3.1. The main focus is on data

acquisition for inverse kinematic approaches. However, the acquisition techniques

required for direct kinematics are also mentioned briefly.

3.1 Muscle-tendon units
The human body is intricate, and creating a completely accuratemodel is impractical.

Therefore, state-of-the-art musculoskeletal models need to simplify the problem,

omitting various phenomena due to the complexity of the human body. The muscu-

loskeletal models described in this text consist mainly of bones and muscles. Some

methods also require models of the attachment areas or information about the di-

rection of muscle fibres. All models described in the following text are geometrically

represented. It is important to note that throughout this text, muscle models implic-

itly approximate muscle-tendon units (MTUs), which comprise muscles, tendons,

cartilages, aponeurosis, fats, blood vessels, etc. Muscle (MTU) and bone models are

often approximated using triangular meshes. The challenge in model acquisition is

related to the resolution of acquisition methods, as is discussed further. However,

to work with a muscle model, knowing to which bone it is attached is crucial.

3.2 Muscle attachments
Determining which part of a muscle connects to a specific area of a bone requires

defining a muscle attachment area. This attachment area can be determined auto-

matically or manually, sometimes requiring additional data. When such data are not

available in advance, two options are considered:

1. Fix the set of points of the muscle model that are "close enough" to the bone

surface or intersect with the bone before movement.

2. Obtain a dedicated set of points that define the attachment area (e.g., boundary

points [12], scattered points over the area [13], or points from a boundary

curve) from a user.

In the first case, implementation is relatively straightforward. However, there

is a risk of incorrectly fixing some muscle parts, mainly when a muscle part is ad-

jacent (but not attached) to a joint, which can lead to further complications, such

as forcing the muscle part into the joint. The second approach is more robust but

necessitates obtaining the entire area from the provided boundary points. This is-

sue was addressed in our article [13], which is effective for simple cases but may

encounter challenges with the shapes of the curved and complex muscle attached
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area, especially those with multiple bends. In the study, we experimented with 15

different algorithms for curve reconstruction, but even the best algorithm achieved

a maximum accuracy of 78.74%, which may be insufficient for specific applications.

Furthermore, in the paper, we explored surface plate reconstruction from the set

of points using Radial Basis Functions (RBF), as described in more detail in Chapter

6, achieving acceptable results even for more intricate boundaries.

3.3 Non-Invasive techniques
Non-invasive data acquisition methods allow the extraction of personalised data,

which is crucial for muscle modelling. Commonly used non-invasive methods in-

clude CT, MRI, and PET-based approaches.

CT, a well-established method invented by A. M. Cormack in the early 1970s,

involves the creation of 3D models from a combination of X-ray images using the

Radon transformation. CT is adept at distinguishing between bones and soft tissues

due to substantial differences in Hounsfield units (HU). Although bones typically

have HU values in the range of 200-600, soft tissues exhibit more minor HU values,

falling within the 40-100 HU range. Figure 3.2 shows an example of CT scan results.

Figure 3.2: CT result. Original data [14] on the left, same data adjusted using the

linear transfer function on the right. On the original data, there is hardly something

visible (even worse if you read a physical, printed version. On the electronic version,

there are at least some features visible). The issue is that the human perception of

luminosity is not linear.

Magnetic resonance imaging (MRI), introduced in the early 1980s, relies on

measuring the spin echo after applying a strong magnetic pulse. MRI offers several

advantages, including the absence of ionising radiation and improved visibility of

the soft tissues. However, MRI is often criticised for its longer acquisition times,
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which can be inconvenient for physicians and patients. Figure 3.3 illustrates anMRI

result.

Figure 3.3: MRI result. Original data [14] on the left, the same data adjusted using

the linear transfer function on the right. Same phenomena as in Fig. 3.2 occurs here.

A more recent innovation in noninvasive imaging is diffusion-weighted imag-

ing (DWI), introduced in the late 1980s. DWI leverages tissue water diffusion rates

for imaging. Diffusion-tensor imaging (DTI), a variation of DWI, employs tensor

mathematics to define diffusion. DTI has been used to determine the pennate angle

of various human muscles, a critical parameter in musculoskeletal modelling that

affects the magnitude of force [15]. However, none of these non-invasive methods

can accurately determine muscle attachment areas, as these areas are often invisible

or poorly visible on imaging. An alternative approach involves creating personalised

bone andmuscle models and estimating attachment areas by experts or probabilistic

models [16]. In the case of a general model, invasive methods provide more detailed

information.

3.4 Invasive techniques
Invasive methods, such as dissection and other surgical procedures, cannot be ap-

plied directly to living patients for ethical reasons. Therefore, cadaver experiments

are essential to acquire more detailed and accurate data for muscle modelling. These

experiments enable the collection of precise measurements and the acquisition of

musculoskeletal features that are difficult to discern using non-invasive methods,

including muscle tendon separation and attachment areas.

Figure 3.4 provides an example of data obtained through invasive methods,

specifically cryosection images of the Visible Human Male, part of the Visible Hu-

man Project [14]. In this project, male and female subjects were frozen and cut to
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create detailed MRI and CT images. These images serve as invaluable resources for

musculoskeletal research. Although the process may seem inhuman and unethical,

preserving such data requires a long and complex process of giving authorisation.

Figure 3.4: The detailed cryosection image of the Visible Human Male [17].

Another invasive approach is described by Fukuda et al. [16], where the hip

region was dissected to isolate individual muscles, and the attachment areas were

tracked using an optical tracker. A probabilistic model was developed based on data

from eight cadaver specimens, although some outliers required manual removal.

Carbone et al. [18] conducted a cadaver study to produce the TLEM2.0 - Twente

Lower ExtremityModel. This model included 166muscle-tendon elements for each

leg and was generated by cadaver dissection.

Invasive techniques are also used to measure anatomic fibres and tendons, as

these finer details of muscle structure are challenging to capture with non-invasive

methods. Lee et al. [15] used cadaveric data to estimate the pennate angle of the

muscles, addressing the limitations of non-invasive techniques.

3.5 Physiological signals
Another crucial data source is physiological signals, with electromyography (EMG)

as a prominent example. EMG is a diagnostic procedure to measure motor neurone

activation signals that controlmusclemovement. This information is valuable in cre-

ating accurate muscle movement models. However, the complexity and variability

of muscles between individuals make direct personalised modelling through inva-

sive EMG procedures less preferable. Instead, non-invasive EMGmeasurements are
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commonly used on the skin surface, using sensors placed on the skin, typically with

adhesive patches or elastic bands. Although surface EMG measurements are less

invasive, they may be less precise due to their inability to access the muscle directly.

Because the scope of this dissertation is already broad enough, I recommend that

the dear reader find more details about the topic in, e.g., Kalc et al. [19] if interested.

In addition to EMG,movement data is also valuable formusclemodelling. These

data are obtained by placing location sensors on the patient and recording their

movements during walking, running, or jumping. These movement data can be

used for direct kinematics approaches rather than inverse kinematics, which is the

primary focus of this dissertation.

The diversity of these data sources may pose challenges, as they may not be

perfectly aligned or correspond to each other. Data registration becomes necessary

to map data acquired from different modalities or under varying conditions. There

are two main classes of data registration: rigid and non-rigid registration. Rigid

registration preserves the shape and scale of the transformed object, while non-

rigid registration does not. The registration of musculoskeletal models is generally

non-rigid (due to the subject displacement between measurements) and has been

explored with promising results by Zhao et al. [20]. However, non-rigid registra-

tion may introduce self-intersections in the resulting data, showing an attempt to

register the 3D muscle surface and surface muscle fibres measured with different

modalities using the elastic registration algorithm of Li et al. [21]. The described is-

sue is a complex problem, and while it is briefly introduced here, it deserves further

exploration in a separate article or study.

This work focuses primarily on deformation techniques, so a deeper dive into

data registration is beyond its scope. For more information on data registration, see

references such as [22] and Chapter 4 of the same book.
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Estimation
approaches 4
Estimation techniques, including both approximation and interpolation

1
play an

essential role in creating a smooth model. Even with limited data, these techniques

must effectively approximate various model components, such as muscles, bones,

muscle fibres, attachment areas, etc. Let us also operate under the assumption that

accurate and well-defined knowledge of the model’s borders eliminates the need

for extrapolation. The estimation techniques used in this chapter are also described

graphically in Fig. 4.1.

ESTIMATION
TECHNIQUES

Linear

Curves

Linear

approximation

Bezier curves

Catmull-romcurves

Fouriertransform

Constant

Piecewise linear

Mathematical description

Centipetal Catmull-rom

Parameterised Catmull-rom

Mathematical description

Figure 4.1: The graphical description of the content of this chapter and the depth

of description on each topic. Created with the www.flourish.studio

1
Throughout the text, the term "estimation" will be used interchangeably to refer to both ap-

proximation and interpolation for simplicity.
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4. Estimation approaches

An approach to muscle modelling is using Bézier curves, as initially explored

by Delp et al. [23] and later by Kohout and Kukacka [24]. However, it has been

observed [25] that themuscle fibresmodelled can intersect when using Bézier curves.

To solve this problem, Kohout and Cholt [25], who introduced the Catmull-Rom

spline approximation formuscle fibremodelling to achieve the smoothness of Bézier

curves without self-intersections, have proposed Catmull-Rom splines. Although

this approach appears successful, estimation using higher smoothness curves could

yield better results.

Another significant approach uses the radial basis function (RBF) estimation.

RBFs have been designed to address challenges in scattered data estimation and find

applications in various fields, including image reconstruction [26], neural networks

[27], and surface reconstruction [28], among others. Hardy initially proposed this

approach [29], its key advantage being the potential to achieve infinite smoothness

(𝐶∞) when Gaussian RBFs are used as basis functions, contrasting with Bézier or

Catmull-Rom, which use polynomial basis functions. RBFs have already been used

for muscle modelling, particularly in our research, to estimate muscle attachment

areas in [13] and finally to represent the whole muscle shape, as described in this

dissertation.

This chapter provides a detailed exploration of these estimation techniques suit-

able for muscle modelling problems. Each method mentioned will be discussed

within a specific dimension (ideal for the best possible explanation). However, it is

essential to note that extending these ideas to higher or lower dimensions is gener-

ally feasible.

4.1 Constant and piecewise linear
estimation

The simplest estimation method is constant estimation, where we assign the value

of the nearest independent variable to the unknown independent value. Piecewise

linear estimation in one dimension considers the closest values and calculates in-

termediate values along the straight line connecting these two points. Figure 4.2

illustrates constant (red) and piecewise linear (green) estimations.

However, these estimations have a significant drawback; they are at most 𝐶0

smooth (linear estimation) and can even be discontinuous (constant estimation).

Because of that, these estimations do not accurately represent the behaviour of mus-

cles, which are continuous, smooth structures. Such a model would not accurately

simulate actual muscles and would not be visually appealing to users.

Higher-dimensional polynomials can be employed to address the issue of low

smoothness. An option for using a higher-dimensional polynomial for the approxi-

mation is a set of Bézier curves.
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4.2. Bézier curves

Figure 4.2: Constant (red), piecewise linear (green), Bézier (blue) and Catmull-Rom

(pink) interpolation of a set of points.

4.2 Bézier curves
ABézier curve is defined by two boundary points and a set of control points. A Bézier

curve with no control points degenerates into a linear curve, whereas a curve with

one control point is termed a quadratic Bézier curve. The cubic Bézier curve has

two control points. The first boundary point and the first control point determine

the derivative of the curve’s start, whereas the last control point and the second

boundary point determine the derivative of the curve’s end.

The more general recursive definition states that a Bézier curve of degree 𝑛

is a linear combination of Bézier curves of degree 𝑛 − 1, where each curve omits
one of the boundary vertices, and the control points are adjusted accordingly. This

recursion ends with Bézier curves of degree 1, which are single points.

The definition can also be expressed as a binomial distribution of all Bézier

vertices (boundary and control points), with the probability of success determining

the shape of the Bézier curve.

𝑃 (𝑡) =
[
1 𝑡 𝑡2 𝑡3

] 
1 0 0 0

3 −3 0 0

3 −6 3 0

−1 3 −3 1



P0
P1
P2
P3


(4.1)

The cubic Bézier curve in blue is shown in Figure 4.2. It is important to note

that this curve does not pass through the control point, but these control points

describe the direction instead.

4.3 Catmull-Rom spline
A Catmull-Rom spline [30][31] is a cubic that interpolates all four given points. It

calculates the tangent for each internal vertex based on the previous and next control

vertices. However, the tangent for the boundary vertices is not as clearly defined,
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but the vertex itself can serve as a substitute. The centripetal variant is expressed in

matrix form as follows:

𝑃 (𝑡) = 1
2

[
1 𝑡 𝑡2 𝑡3

] 
0 2 0 0

−1 0 1 0

2 −5 4 −1
−1 3 −3 1



P0
P1
P2
P3


(4.2)

When 𝑡 is within the interval ⟨0, 1⟩, this formula produces the Catmull-Rom
spline between the two middle vertices, 𝑃1 and 𝑃2. However, the general Catmull-

Rom spline introduces a parameter 𝜏:

𝑃 (𝑡) =
[
1 𝑡 𝑡2 𝑡3

] 
0 1 0 0

−𝜏 0 𝜏 0

2𝜏 𝜏 − 3 3 − 2𝜏 −𝜏
−𝜏 2 − 𝜏 𝜏 − 2 𝜏



P0
P1
P2
P3


(4.3)

The Catmull-Rom spline offers advantages over cubic Bézier curves in three

main aspects: it passes through all control vertices, it does not require specify-

ing derivatives at any vertices, and the centripetal parameterisation (𝜏 = 0.5, be-

tween uniform 𝜏 = 0 and chordal 𝜏 = 1) avoids artefacts such as cusps and self-

intersections. The Catmull-Rom spline is in Figure 4.2, indicated in pink.

4.4 Discrete Fourier transform
The discrete Fourier transform (DFT) is beneficial when data are equidistantly sam-

pled. In such cases, the DFT decomposes the curve into the sum of individual sinu-

soidal functions, and if interpolation is needed, these functions are combined. One

significant advantage of this approach is that the extrapolation does not diverge, as

is common in polynomial estimation. However, a drawback is that the data must be

uniformly distant. The formula for DFT is derived from Euler’s formula:

𝐹𝑘 =

𝑁−1∑︁
𝑛=0

𝑃𝑛𝑒
−2𝜋𝑖𝑘 𝑛

𝑁 (4.4)

The inverse operation is similar but involves traversing the unit circle in reverse

and normalising the result by the number of functions:

𝑃𝑘 =
1

𝑁

𝑁−1∑︁
𝑛=0

𝐹𝑛𝑒
2𝜋 𝑖𝑘 𝑛

𝑁 (4.5)

This approach produces a 𝐶∞ smooth curve. It is beneficial for equidistantly

sampled data with periodic components, such as many medical signals such as EKG,
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4.4. Discrete Fourier transform

EEG, and EMG. Extending the DFT to higher dimensions is straightforward: treat

each vector component separately, calculate the DFT, and combine these compo-

nents. Alternative estimation methods should be considered for shapes (of the mus-

cles, bones, etc.) that do not follow equidistant distribution or periodicity, e.g. ra-

dial basis function approximation and interpolation (see Chapter 6) showing some

promises.

This chapter showed techniques for estimating some values according to oth-

ers. As stated in the following chapter, these techniques can be used for muscle

modelling.
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Related work 5
This dissertation describes the fundamental concepts of muscle modelling and some

of the most relevant methods. The primary distinction in muscle modelling lies be-

tween forward and inverse kinematics approaches. Forward kinematics simulates

the electrical excitation of muscle cells, cellular responses, fibre responses, and gen-

eral muscle responses. In contrast, inverse kinematics affects muscle motion in the

opposite direction, requiring knowledge of the desired outcome (e.g., bone motions)

to determine how the muscle must change to produce the motion. The ultimate

goal, which is not addressed here, involves determining the electrical excitation of

all muscle units and, thus, the internal muscle forces, allowing for a direct kinematic

simulation of the muscle. However, since this dissertation is already widely focused,

the description will stay only on inverse kinematics methods; therefore, further

details regarding direct kinematics are omitted. The overview of the topics is (as

before) shown in Fig. 5.1.
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Figure 5.1: The graphical description of the content of this chapter and the depth

of description on each topic. Created with the www.flourish.studio.
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5. Related work

An extensive review of state-of-the-art methods has recently been conducted by

Dereshgi et al. [32], with a previous review by Lee et al. [33]. Although they concisely

summarise many existing methods, this report delves deeper into fewer methods.

Furthermore, the assertion made by Dereshgi et al. that "Although mechanical prop-

erties of muscles such as force, power, and work are well known" [32] appears to

overestimate the current state of the field, given the extensive list of recently pub-

lished papers on the topic.

There are numerous methods available to model human movement and muscle

behaviour. These methods can be categorised based on the dimensionality of their

operation. Let us first focus on one-dimensional modelling, representing muscles as

lines, curves, or sets of lines/curves. The muscle model can be approximated using

a limited set of lines or curves that match the orientation of natural muscle fibres

due to the anisotropic nature of muscles. Let me start with the simplest and one of

the oldest muscle models – the Hill-type muscle model.

5.1 Hill-Type Model
The Hill-type models are based on approximating muscle fibres with a triplet of

parallel, serial, and contractile elements. This model represents one of the most

basic and possibly the oldest mathematical models of muscle, initially presented by

Hill in 1938 [34]. Hill conducted experiments on frog muscles and described muscle

contraction dynamics, supported by experiments, with the equation:

(𝐹 + 𝑎) 𝑣 = 𝑏 (𝐹0 − 𝐹) (5.1)

In this equation, 𝐹 represents the current muscle force, 𝐹0 is the maximum

muscle strength, 𝑎 (in force units) depends primarily on the maximum strength (and

hence indirectly on muscle size) and 𝑏 (in velocity units) is a constant (assuming

constant temperature). At first glance, the seemingly steady variable 𝑏 increases at

higher temperatures, allowing faster muscle contractions, and is also proportional

to muscle length 𝑙. The variable 𝑣 denotes the velocity of shortening. Equation (5.1)

can also be expressed as follows, implying an inverse relationship between load 𝐹

and velocity 𝑣; a higher load results in slower movement:

(𝐹 + 𝑎) (𝑣 + 𝑏) = const. (5.2)

One of the primary challenges with this model is obtaining accurate values for

the variables 𝑎 and 𝑏 for each muscle in the human body [34]. Additionally, mus-

cle shapes vary between individuals, and muscle cross-sectional areas and lengths

change during muscle activity, further affecting the values of 𝑎 and 𝑏.
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Hill originally proposed modelling muscle fibres with three elementary units:

energy, heat shortening, and external mechanical work, arranged in a series-parallel

configuration. The model is depicted in Figure 5.2. The Hill model has been im-

proved over time, with significant additions such as the parallel element [35] in

1989, leading to what are currently known as "Hill-type" models. Another addition

is the inclusion of a viscous damping element [36].

Figure 5.2: Hill-type model of a muscle fiber [37]. PEE = parallel element, SEE =

serial element, CE = contractile element, 𝛼 - pennate angle.

However, in some cases, the pure Hill-type model cannot calculate internal mus-

cle forces. AsModenese et al. pointed out, this model provides a valid representation

of a three-dimensional muscle only when the line segments pass through the cen-

troids of the force distribution within the muscle sections [38]. This condition does

not apply to many muscles. Furthermore, Martins et al. showed that medical appli-

cations involve muscle structures that cannot be reduced to one dimension, such

as the pelvic floor and diaphragm [39]. Valente et al. [40] also found that modelling

muscles using a single line segment could result in errors of up to 75% in estimating

muscle forces (e.g. when modelling the gluteus minimus muscle).

As a result, contemporary methods typically do not use Hill-type fibre models

to construct musculoskeletal models. Instead, they incorporate the principles of

Hill-type fibre behaviour into different approaches (e.g., position-based dynamics

and finite element methods), aiming to either determine variable values or mimic

Hill-type model behaviour using fewer parameters.

5.2 Via-points
A via-points approach works with a predefined set of points defining the muscle

fibre model. There are many options for defining these points. The most common

ones are points directly fixed to a bone, so whenever the bone moves, the point

moves accordingly. The second option is that the point is present only if a condition

is met (for example, if the joint flexion angle is more significant than 𝑥), so the

natural shape of the fibre model is partially restored. The third option is a point

that may move depending on some state (for example, depending on some angle,

typically between two bones), following a predefined curve (see Fig. 5.3).
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Figure 5.3: Via-points control curve inside a muscle[1]

There are, however, some catches. The first obvious one lies in the definition of

via-points. There must be an approach to define these points because user-defined

points will be time-consuming, costly, and subjective for the physician. The sec-

ond main problem is the intersections of muscle models with the closest adja-

cent bone model when performing an inverse kinematic movement. Similarly, self-

intersections should be handled correctly. Furthermore, the resulting muscle fibre

model will sometimes not be smooth. Modenese stated that the "straight line repre-

sentation of the muscles surrounding the hip joint was limiting the accuracy of hip

contact force predictions" [38]. The better approach might not go through a set of

points but "wrap around" a predefined set of geometric objects [41].

5.3 Wrapping Obstacles
The wrapping obstacles approach has been developed to address some problems of

the via-points approach.

The improvement lies in the smoothness of the curve. Unlike the via-points

method, a curve that wraps around a sphere can be formed smoothly. Figure 5.4

illustrates wrapping around a cylinder.

The main challenge is that infinitely many curves can wrap around a volumetric

object. From these curves, one can select the shortest, the least average curvature,

the one with maximum curvature, and so on. Selection depends primarily on the

specific application, the required precision, the computing power, and other factors.

This issue becomes even more complex with extreme bone arrangements.

The wrapping obstacles approach has been used in muscle modelling by re-

searchers such as Lloyd et al. [43] and Kohout et al. [42]. Lloyd et al. wrapped

around an arbitrary geometrical model, dividing the curve into segments with knots

connected by elastic forces to prevent them from penetrating obstacles. The latter

approach, which is significantly older, is limited to spheres, single cylinders, and

sphere-capped cylinders. The issue is that some of the previously described prob-

lems persist:
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Figure 5.4: Wrapping obstacles approach. A line of action is wrapped around a single

cylinder [42].

• The geometric objects must be specified in the same fashion as the via-points.

• In the case of incorrect curve selections, the intersection problem remains.

5.4 Finite Element Method
The Finite Element Method, abbreviated as FEM, offers a means to achieve precise
physical modelling. It has proven effective in tackling various challenges, such as

solving problems related to heat transfer, fluid dynamics, and more. An example of

its application is in the work of George-Ghiocel et al. [44], who used the stress-and-

strain approximation approach in Storz coupling within fire hose coupling.

In the case of 1D functions, a triangular basis function can be created, whose

weighted sum can form an approximative function using a polyline. Those basis

functions can be seen in Fig. 5.5.

If we consider 2D triangular bases, solving problems in any dimension requires

some form of tessellation of the input space. Although the most common approach

involves triangles through Delaunay triangulation, a general division into triangles

(or simplices in higher dimensions) is also possible.

The elements are more complex in two dimensions than in the one-dimensional

case. By induction, the one-dimensional approach will be extended using the same
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Figure 5.5: Triangular basis functions 𝑏1, . . . , 𝑏4 with values 𝑓 (𝑥1) and 𝑓 (𝑥6) are fixed
(by Dirichlet boundary conditions) at zero. Idea adapted from [45].

idea to two dimensions. Each basis function 𝑏𝑖 was piecewise linear, with a value of

1 at a specific point, between 0 and 1 (distributed linearly) if the vertex lies in the

neighbouring triangles and 𝑥𝑖 and zero elsewhere in each sample. See the disserta-

tion thesis [46] for more insight into math properties. The FEM also allows for the

use of shapes different from those of simplexes, often employing rectangles, cuboids,

and so on. These shapes require other elements (single functions).

5.4.1 FEM in muscle modelling
The finite elementmethod has also been applicable inmusclemodelling. This section

provides an overview of the relevant approaches in chronological order.

Although multiple FE methods have been published for soft tissue modelling,

one of the first papers on musculoskeletal modelling using the FE method is likely

from Martins et al. [47], published in 1998. They incorporated the Hill-type model

into their FEmodel, although a coauthor later demonstrated that theHill-typemodel

may be insufficient in some cases [39]. Their model divided the brachialis muscle

into 4050 tetrahedra and assumed constant material properties without considering

muscle anisotropy. External forces were applied to an arbitrary part of the muscle

("right end").

Delp and Blemker [23], in 2005, employed a template that was projected onto

the target mesh. The projected template was deformed using the finite element

method. They used magnetic resonance imaging (MRI) resolution to create the

template. They identified the tendon region fromMR images to determine boundary

conditions, although the complete process was not described in detail.

Boubacker et al. [48] conducted significant work to publish a survey on this topic,

providing valuable insights into the problem. However, it should be noted that the

study was published in 2006, so some of the information therein may be outdated.
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Oberhofer et al. [49], in 2009, used cubic Hermite interpolation functions in

their FE approach to ensure 𝐶1 smoothness of the model. They also used the via-

point approach (see Section 5.2) for boundary conditions to prevent muscles from

penetrating the bones. These via-points were integrated into the FE method, and

the objective function included a distance term between landmarks and targets and

a Sobolev smoothing constraint.

Kaze et al. [50], in 2017, utilised FE to partition the model using tetrahedra. They

derived boundary conditions from anatomical muscle attachment areas and used a

mass-spring-like system to simulate tendons (for further details, see Section 5.5.1).

Their primary focus was on estimating the maximal strain.

Wei et al. [51], in 2019, used FE to model a human hand, employing the Nolan

hyperelastic soft tissue model [52] to accurately represent human skin. Their study

mainly focused on analysing the pressure generated by different hand grips.

Currently, several methods use the pure finite element method for various ap-

plications. For example, Fougeron et al. [53] applied FE for the analysis of the load

of the upper knee socket. In contrast, using FE, Vila Pouca et al. [54] studied muscle

fatigue in the pelvic floor. Sun et al. [55] modelled spine movement using FE.

Despite the capability of the described FE methods to produce high-quality re-

sults, they present challenges in setup due to the numerous parameters required

[56]. Additionally, FE methods are often computationally demanding. For example,

Fougeron et al. [53] reported that their approach ran for 40 minutes on a 2-CPU

machine, far from real-time simulation. Consequently, this work only briefly intro-

duces FE methods, which deserve more comprehensive coverage. The primary goal

of this research is to explore a faster process, ideally capable of real-time simulation,

while maintaining comparable results.

Many other methods for muscle modelling, such as position-based dynamics

(PBD), mass-spring system (MSS), and as-rigid-as-possible (ARAP), are currently

available and promising alternatives that require fewer computational resources

while delivering comparable outcomes.

5.5 Other optimalization problems
The following methods work on the function minimisation principle. The optimi-

sation is performed to find a geometric model (of muscle, muscle fibre) respecting

some restrictions (e.g. volume preservation, shape preservation, fibre length, etc.)

Some of the solutions go against each other. For example, if a muscle is stretched,

the fibre length restriction wants to shorten the fibres, but volume preservation

wants to extend them to fill more space. Thus, these restrictions are often weighted

according to the modelling requirements. There are two common restrictions for

all of the techniques. The muscle is attached to a set of bones, so adjacent parts

31



5. Related work

must be fixed to the corresponding bone surface. In addition, it is not appropriate

for the muscle to penetrate the bone. A collision detection and response form has

to be implemented to avoid this issue. The following methods will describe what

is optimised and how, but these two restrictions may be omitted because they are

shared. Also, these restrictions are often threatened as strict (the second one may be

a bit relaxed), meaning no attachment displacement or collision should occur.

5.5.1 Mass-Spring System (MSS)
The Mass-Spring System (MSS) functions as its name implies, simulating complex

motion by connecting masses (individual points of mass) with virtual springs. Mo-

tion propagation occurs through force transfer across a network of these springs.

A relatively straightforward equation describes the spring’s behaviour:

F𝑖 𝑗 = −𝑘d𝑖 𝑗 (5.3)

Here, F𝑖 𝑗 represents the force generated by the spring between the 𝑖-th and 𝑗-th

particles, where the variable 𝑘 denotes the spring constant (the force required to re-

store the spring to its original shape per unit of spring extension). The displacement

of the spring is represented by the variable d𝑖 𝑗.

Although the fundamental concept is not overly complicated, various implemen-

tations of this approach exist. A notable implementation comes from Georgii and

Westermann [57], who effectively applied this technique to GPU hardware.

Another approach, as presented by Aubel and Thalmann [58], utilises a 1D mass-

spring systemmodel for each muscle fibre independently, although with some prob-

lems, particularly regarding gaps between muscles. They also introduced angular

springs to maintain the angle between the two spring segments. A significant draw-

back of their work is their somewhat lenient approach to collision detection: "At-

tempting to handle all muscle-muscle and muscle-bone collisions is unreasonable.

In our framework, preventingmuscle-bone collisions is easy and fast using repulsive

force fields" [58].

A noteworthy contribution in this field is Janak’s work [2], which combines the

mass-spring system with muscle modelling. Unlike Aubel and Thalmann, Janak’s

approach operates on muscle fibre models in continuous space. He decomposes the

triangular mesh muscle model into a muscle fibre model, uniformly sampling these

fibres to obtain nodes (masses), which are then connected by edges (springs). Janak’s

results show some promise, but a notable challenge lies in his collision detection ap-

proach, which approximates the surface mesh with spheres, leading to an "imprecise

collision response and partial surface intersection between objects" [2].

Uniform sampling and connection of mass points are depicted in Figure 5.6. It is

worthmentioning that the author also considers randomisation and its implications.
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Figure 5.6: Mass-spring system simulating an unspecified human muscle in close

detail. An issue arises with the lower portion, which lacks proper approximation.

Image source: [59].

5.5.2 Optimization
Whenusing themass-spring system (MSS), optimisation primarily focuses on achiev-

ing the desired muscle geometry while adhering to certain constraints, such as vol-

ume and shape preservation. However, some of these constraints may contradict

each other, requiring careful consideration and weighting based on modelling re-

quirements.

In all of these MSS techniques, two typical constraints are consistently applied.

First, since the muscle is attached to a set of bones, adjacent parts must be fixed to

their corresponding bone surfaces. Second, it is essential to prevent the muscle from

penetrating the bones. Collision detection and response mechanisms are typically

implemented to address this.

5.5.2.1 Optimization for spring length

In the context of MSS, optimisation typically involves finding the optimal spring

lengths while satisfying the constraints mentioned earlier. The equations governing

the motion of the MSS can be described as follows:

𝑚𝑖x′′𝑖 + 𝑐x′𝑖 +
∑︁
∀𝑗∈N𝑖

F𝑖 𝑗 = F𝑒
𝑖 (5.4)

Here, 𝑚𝑖 represents the mass of the 𝑖-th particle 𝑖 x𝑖 is its position, 𝑐 is a damp-

ing coefficient, N𝑖 denotes the neighbourhood of the 𝑖-th node, F𝑖 𝑗 represents the

spring force between nodes 𝑖 and 𝑗, and F𝑒
𝑖
is an external force vector. The damping

coefficient 𝑐 is determined based on the system’s properties using the formula [59]:
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𝑐 = 2

√︄
2𝑚

(
2 + 4

𝑘𝑎

)
(5.5)

Where 𝑘𝑎 is the average stiffness. The exact solution to these equations can be ob-

tained by time integration. However, for computational efficiency, an approximate

solution using finite differences and a short time step 𝑑𝑡 is often employed:

x𝑖 (𝑡 + 𝑑𝑡) =
F𝑇
𝑖
(𝑡)

𝑚𝑖

𝑑𝑡2 + 2x𝑖 (𝑡) − x𝑖 (𝑡 − 𝑑𝑡) (5.6)

F𝑇
𝑖 (𝑡) = F𝑒

𝑖 −
∑︁
∀𝑗 ∈ N𝑖F𝑖 𝑗 − 𝑐

x𝑖 (𝑡) − x𝑖 (𝑡 − 𝑑𝑡)
𝑑𝑡

(5.7)

Although this approach can effectively simulate complex motion, it has some

limitations. One major challenge is to set up the system due to variations in spring

constants 𝑘 between different springs. Furthermore, thismethod does not inherently

preserve the original volume of the model, which is often a desired outcome in

muscle modelling. Addressing this volume preservation issue could significantly

increase computational time, as demonstrated by Hong et al. [60].

Despite its potential to simulate complexmotion, theMass-Spring System (MSS)

approach requires careful setup. It may not inherently preserve volume, making it

a practical but challenging technique for muscle modelling.

5.5.3 ARAP - As-Rigid-As-Possible Deformation
The acronym ARAP, which stands for As-Rigid-As-Possible, represents a technique

for determining minimal non-rigid transformations within a surface mesh. Its pri-

mary innovation lies in its ability to operate without requiring an internal structure,

distinguishing it from methods like Kelnhofer & Kohout [61] that incorporate vol-

ume constraints but require the definition of an internal "skeleton."

ARAP has found application in the medical field, as demonstrated by Fasser

et al. [62]. They used ARAP to morph a pelvic bone template into subject-specific

landmarks. However, their approach overlooks crucial bone properties, such as

volume preservation, which the original ARAP method does not inherently ensure.

Wang et al. [63] also explored ARAP but abandoned it due to its inability to

produce satisfactory results. They noted issues like non-smooth shapes with spikes

resulting from ARAP, among others. Furthermore, their proposed approach did not

address the volume preservation requirement.

The essence of As-Rigid-As-Possible deformation is to minimise the model de-

formation as much as possible. Any non-rigid transformation is penalised through

a cost function. This problem is mathematically formulated as solving a system of
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linear equations, where the matrix is a discrete Laplace operator of the mesh (after

applying boundary conditions, particularly fixed points), and the right-side vector

contains second differences of each vertex concerning its local neighbourhood.

5.5.3.1 Laplace Operator

The primary motivation behind the Laplace operator, Δ in ARAP, is its ability to

capture significant local shape changes. When applied to a triangular mesh, the

continuous space definition is adapted to discrete space, typically called the Laplace-

Beltrami operator.

5.5.3.2 Volume Preservation

The original ARAP method, while fast and precise, does not inherently address the

preservation of the initial model’s volume. Volume preservation is crucial in muscle

modelling as muscles do not significantly change their volume while contracting.

To achieve proper volume preservation, scaling the entire model by a scalar

value to restore the original volume is straightforward. This scaling factor can be

calculated using Equation 5.8:

3

√︂
𝑉0

𝑉
(5.8)

Here,𝑉0 represents the initial volume, and𝑉 represents the current volume. The

cube root is applied to account for the three-dimensional nature of the scaling.

However, this method may not work when the muscle is attached to multiple

bones at specific fixed coordinates, as these points cannot be moved, leading to

volume discrepancies. Alternative methods have been explored, such as the one

proposed by Aubel and Thalman [64], which describes the scale factor as the square

root of muscle elongation. However, practical experiments have shown that this

approach may not yield accurate results in all cases, especially compared to more

straightforward methods such as Position Based Dynamics (PBD) [65].

Seylan et al. [66] have employed ARAP for shape deformation with volume

preservation. They addressed volume preservation by adding more edges to the

mesh, improving the results. However, they acknowledge that some volume loss still

occurs. However, Dvorak et al. [67] demonstrated promising results with ARAP and

volume tracking for surfaces that vary over time, significantly exceeding previous

experiments. While their approach is practical for noiseless data and general meshes,

it may require further adaptation for muscle modelling, particularly in addressing

specific challenges such as muscle anisotropy, collision detection and response, and

execution speed.
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5.5.3.3 Optimization

In the ARAP approach, optimisation involves finding the optimal translation and

rotation for a point within a given neighbourhood. The primary objective of ARAP

is to minimise the energy defined in Equation (5.9)[8]. Any variable marked with an

apostrophe (
′
) belongs to the deformed mesh, while variables without it belong to

the original mesh.

𝐸 (𝑆′) =
𝑛∑︁
𝑖=1

𝑤𝑖

∑︁
𝑗∈N(𝑖)

𝐸

������(p′𝑖 − p′ 𝑗
)
− R𝑖

(
p𝑖 − p𝑗

) ������ (5.9)

In this equation, 𝐸 represents the resulting energy, 𝑆 is the triangular mesh on

which the penalisation is calculated, and 𝑤𝑖 denotes the weight associated with the

connection between each pair of vertices. These weights can be calculated using

various methods, such as the cotangent formula (as described in Equation 5.12), the

Tutte formula, the Kirchhoff formula, or any other suitable method for the given

problem. The variable 𝑛 represents the total number of vertices in the mesh, and

N (𝑖) denotes the neighbourhood of vertex 𝑖 (comprising all vertices connected by
edges). The position of the 𝑖-th vertex is marked as p𝑖, and the variableR𝑖 represents

the rigid rotation in the 𝑖-th cell.

The optimal translation and rotation for each vertex in the surface mesh within

ARAP can be described as follows. Starting with the optimal translation:

• Calculate the centroid c̄ of the original vertices.

• Compute the centroid c̄′ of the transformed vertices.

• The optimal translation is given by c̄′ − c̄.

The centroid is determined as a weighted average coordinate of neighbouring

vertices (i.e., vertices connected by edges), with weights specified in Equation (5.12).

The optimal rotation can be calculated as follows:

• Change the origins to centroids: o′𝑖 = p′𝑖 − c̄′ and o𝑖 = p𝑖 − c̄.

• Arrange o𝑖 in matrix P (3 × 𝑁 ) and o′𝑖 into matrix P′ (3 × 𝑁 ).

• Compute the covariance matrix C = PP′𝑇 (3 × 3).

• Perform Singular Value Decomposition (SVD) on C: C = PP′T = UΣV.

• The optimal rotation is given by R𝑖 = (UV)𝑇 .

Sorkine et al. [8] show that alternating between these transformations is suffi-

cient until the error reaches a reasonably small value.
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5.5.3.4 Linear equation system

After determining the local translation vectors and rotation matrices, addressing

the interdependence of optimal local rotations and translations is essential. While

optimal local rotations are independent of each other (each cell’s rotation can be

calculated independently using the SVD method described above), the same cannot

be said for translations. When a vertex moves, it affects all adjacent cells. Sorkine[8]

proposed the use of the Laplace-Beltrami operator on the already deformed posi-

tions p (utilising local rotationR𝑖) to resolve this issue and minimise the energy (for

more details, refer to [8]). This system is denoted as Lp′ = p, and its components
are explained in more detail below.

An illustration of the construction of the linear equation system matrix L is
shown in Fig. 5.7. All edge weights are set to "1" for simplicity in this example. The

degree of the negative vertex is stored on the main diagonal (representing the sum

of all weights in general). For other cases, if an edge exists between the given pair of

vertices, the value is "1" (representing the edge weight in general). This definition en-

sures that the sum in each row and column remains zero. The nonzero elements be-

come more intricate when different weights are introduced (e.g., cotangent weights

as shown in Equation 5.12).

L =

©«
−2 1 1 0 0

1 −3 0 1 1

1 0 −1 0 0

0 1 0 −2 1

0 1 0 1 −2

ª®®®®®¬
Figure 5.7: An example of the ARAP linear equation system. The Laplace-Beltrami

operator L on the right is derived from the mesh connectivity on the left.

The right-hand side of the equation, denoted as b, is more complex to express
than the matrix L. Each element of the vector is calculated as follows:

b𝑖 =
∑︁

𝑗 ∈ N (𝑖)
𝑤𝑖 𝑗

2

(
R𝑖 + R𝑗

) (
p𝑖 − p𝑗

)
(5.10)

If certain vertices are fixed, the number of dependent variables is reduced, lead-

ing to a rectangular matrix. To solve the system in this scenario, ignoring or remov-

ing the rows corresponding to the fixed points is applicable, or the Ordinary Least

Squares approach can be applied to solve the rectangular matrix system as follows:
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Ax = b
A𝑇Ax = A𝑇b(

A𝑇A
)−1

A𝑇Ax =

(
A𝑇A

)−1
A𝑇b (5.11)

x =

(
A𝑇A

)−1
A𝑇b

5.5.3.5 Edge weights

Edge weights can vary depending on computational demands, accuracy require-

ments, or specific use cases. The simplest scenario is where 𝑤𝑖 𝑗 = 1 (referred to as

Kirchhoff), which means that all edges are treated equally. This approach is suitable

for equilateral polygons and has minimal computational requirements. However, it

can pose challenges when solving the resulting diagonally dominant matrix due to

numerical precision issues.

To address the issue, normalising each row can be done by dividing it by the value

on the diagonal. This normalisation step results in diagonal elements having a "-1."

This normalisation approach may be more suitable for specific numerical methods

and helps with compression (as the diagonal values no longer need storage). This

method is known as Tutte.

Kirchhoff and Tutte’s approaches belong to the combinatorial Laplacian cate-

gory, which solely considers mesh connectivity. Another approach, the cotangent

formula, considers the mesh’s geometry. Edge weights are calculated as the average

of the cotangents of the angles opposite the given edge, ensuring that longer edges

(with wider angles) receive lower weights than shorter ones. Mathematically, it is

expressed as follows:

𝑤𝑖 𝑗 =
1

2

(
cot 𝛼𝑖 𝑗 + cot 𝛽𝑖 𝑗

)
(5.12)

Variables 𝛼𝑖 𝑗 and 𝛽𝑖 𝑗 represent the angles opposite the edge between the vertices

𝑖 and 𝑗. The ARAP approach has some limitations for muscle modelling, mainly the

already discussed volume preservation, collision handling and more. Let us discuss

the following approach, called Position-Based Dynamics, which better suits the

purposes.

5.5.4 Position-Based Dynamics
Position-based dynamics, often abbreviated as PBD [68], is a fast and widely used

approach, primarily in the animation industry, for modelling elastic deformations

of objects, including cloth. It has also gained popularity in the realm of physical
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simulations. The original PBD algorithm is designed for general objects and does

not inherently account for object anisotropy. It takes a manifold surface mesh as

input and produces its deformed variant.

An extended version of PBD, known as xPBD, incorporates the concept of elastic

potential energy and eliminates the need to specify the time step and iteration count.

For a more detailed understanding, the readers can refer to Macklin et al. work [69].

Romeo et al. [56] made the initial significant contribution by applying the PBD

algorithm to muscle modelling problems. They recognised the limitations of the

traditional finite element method (FEM) and finite volume method (FVM), which,

although providing excellent results, lacked qualities such as fast simulation conver-

gence, ease of setup, intuitive controls, and artistic control [56]. Their fundamental

idea involved creating an internal structure above the surface mesh to account for

muscle anisotropy, aligning with the general direction of muscle fibres. Through an

intelligent edge-creation process, they could construct a volumetric model better

suited for the PBD algorithm. It is important to note that they used XPBD (eXtended

PBD), which incorporates the concept of elastic potential energy.

In 2019, Angles et al. [70] developed a PBD-based approach formusclemodelling.

Their method virtually decomposes the muscle into "rods" that approximate muscle

fibres. These rods are allowed to change their diameter to preserve volume. The

essential contribution of their workwas to achieve real-time simulation, a capability

that Romeo’s approach lacked due to its substantial processing time of approximately

40 seconds per frame [70].

The journey of utilising PBD for muscle modelling continued with the author’s

master’s thesis [12], which expanded the basic PBD approach to include anisotropy

considerations. This work coincided with Romeo’s article [56], published in the

same year. Following the thesis, the article "Fast and Realistic Approach to Virtual

Muscle Deformation" [65] extensively tested and integrated the approach into an

existing framework. Subsequently, the article "Muscle Deformation using Position-

Based Dynamics" [71] further assessed the approach and compared its results with a

current FEM approach. A notable advantage of the proposed approach is that it does

not require an interior representation, and anisotropy is computed exclusively on

themesh surface usingmuscle fibres defined on themesh surface, indicating the fibre

direction. During the author’s PhD studies, the implementation was integrated into

OpenSim, a well-established platform for modelling various physical phenomena.

Additionally, the publication [72] extended the previous work, improving collision

detection and response methods, based on the bachelor’s thesis of a colleague [73].

The output of the PBD algorithm is a deformed triangular mesh suitable for

visualisation. However, the malformed muscle must be transformed into a set of

fibres to calculate properties like muscle force. This process is called muscle decom-

position, and detailed information can be found in Kohout and Kukacka [24] or
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Kohout and Cholt [25] articles.

The pseudocode for the PBD algorithm is presented in Listing 1. In this pseu-

docode, 𝑥𝑖 represents the position of each vertex, 𝑣𝑖 represents its velocity, Δ𝑡 de-

notes the discretization step (smaller values lead to better accuracy), 𝑤𝑖 is the inverse

of the weight associated with each vertex, and 𝑝𝑖 is a "working" position for each

vertex. The variable 𝐶𝑖 represents a constraint; more details will be provided in the

following text.

Algorithm 1 PBD algorithm [12].
1: for all vertices i do
2: initialise x𝑖 = x0

𝑖
, v𝑖 = v0

𝑖
, 𝑤𝑖 =

1

𝑚𝑖
.

3: end for
4: loop
5: for all verticies 𝑖 do
6: v𝑖 ← v𝑖+ Δ𝑡𝑤𝑖f𝑒𝑥𝑡 (x𝑖)
7: end for
8: dampVelocities(v1, . . . , v𝑁 )

9: for all verticies 𝑖 do
10: p𝑖 ← x𝑖+ Δ𝑡v𝑖

11: end for
12: for all verticies do
13: generateCollisionConstraints( x𝑖 → p𝑖)

14: end for
15: loop solverIterations times
16: projectConstraints( 𝐶1, . . . , 𝐶𝑀+𝑀𝑐𝑜𝑙𝑙

, p1, . . . , p𝑁 )

17: end loop
18: for all verticies 𝑖 do
19: v𝑖 ← p𝑖−x𝑖

Δ𝑡
20: x𝑖 ← p𝑖

21: end for
22: velocityUpdate(v1, . . . , v𝑁 )

23: end loop

5.5.4.1 Mathematical background

The fundamental mathematical concept behind the PBD algorithm involves itera-

tively minimising a cost function denoted as 𝐶. The specific definitions for each 𝐶

will be elaborated on later in the text. The cost function is a scalar function with 𝑛

variables, and the objective is to minimise its value using gradient descent. To do

this, we need to calculate the gradient of𝐶. If we ignore the variable mass (a valid as-

sumption for homogeneousmuscles), the change in point positionΔp𝑖 is determined

by Equation (5.13).
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Δp𝑖 = − ∇p𝑖𝐶 (p1, . . . , p𝑛)∑
𝑗

��∇p𝑗𝐶 (p1, . . . , p𝑛)
��2 · 𝐶 (p1, . . . , p𝑛) (5.13)

In this equation, Δp𝑖 represents the movement of a point, which is the opposite

direction of the gradient (in the numerator) scaled by the magnitude of the cost

function value (in the denominator). The normalization by the sum of gradients

ensures that the movement direction falls within the range ⟨0; 1⟩, as the sum of
normalized vector magnitudes should equal one.

When considering point masses, the simple sum ofΔp𝑖 becomes a weighted sum,

with the weights being the inverses of the masses. The movement is in the opposite

direction of the gradient, consistent with the gradient descent approach.

Since multiple cost functions are involved, the problem transforms into a sys-

tem of nonlinear equations. This system is solved using the Gauss-Seidel method,

which treats each equation independently and propagates results between equations,

leading to significant speed improvements at the cost of some acceptable errors.

5.5.4.2 Point distance cost function

The primary goal is to preserve the initial distances between each pair of points in

the mesh.

This preservation is achieved similarly to a mass-spring system [59]. The cost

function is zero if the distance between a pair of points matches the initial distance

at the beginning of the simulation. If the distance becomes longer or shorter, the

cost increases.

Equation (5.14) defines the distance constraint [68]. The function 𝐶 is a scalar

cost function with two variables (points), and its value quantifies the deviation from

the initial distance. The vector variables p1 and p2 represent temporary point posi-
tions (as seen in Listings 1), and 𝑑 represents the original distance between the given

pair of points.

𝐶 (p1, p2) = |p1 − p2 |2 − 𝑑 (5.14)

To proceed with further calculations, determining the gradient of the cost func-

tion 𝐶 w.r.t. both p1 and p2 is necessary.
Gradient of the Norm of the Vector Difference First, let’s determine the gradient

of the 𝐿2 norm from Equation (5.14). The gradient for point p1 is calculated as
shown in Equation (5.15), and a similar derivation can be performed for p2.
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▽p1 |p1 − p2 |2 = ▽p1

√︃
(𝑝1𝑥 − 𝑝2𝑥)2 +

(
𝑝1𝑦 − 𝑝2𝑦

)
2 + (𝑝1𝑧 − 𝑝2𝑧)2

=
1

2 |p1 − p2 |2
▽p1

(
(𝑝1𝑥 − 𝑝2𝑥)2 +

(
𝑝1𝑦 − 𝑝2𝑦

)
2 + (𝑝1𝑧 − 𝑝2𝑧)2

)
=

[
𝜕(𝑝1𝑥−𝑝2𝑥)2

𝜕𝑝1𝑥

𝜕(𝑝1𝑦−𝑝2𝑦)2
𝜕𝑝1𝑦

𝜕(𝑝1𝑧−𝑝2𝑧)2
𝜕𝑝1𝑧

]
2 |p1 − p2 |2

=

2

[
𝜕(𝑝1𝑥−𝑝2𝑥)

𝜕𝑝1𝑥

𝜕(𝑝1𝑦−𝑝2𝑦)
𝜕𝑝1𝑦

𝜕(𝑝1𝑧−𝑝2𝑧)
𝜕𝑝1𝑧

]
2 |p1 − p2 |2

=
p1 − p2
|p1 − p2 |2

(5.15)

Resulting gradient of the cost function 𝐶 is (using previous derivation 5.15)

shown in 5.16.

▽p1𝐶 (p1, p2) = ▽p1
(
|p1 − p2 |2 − 𝑑

)
=

p1 − p2
|p1 − p2 |2

= u

▽p2𝐶 (p1, p2) = ▽p2
(
|p1 − p2 |2 − 𝑑

)
=

p2 − p1
|p1 − p2 |2

= −u
(5.16)

These cost function derivations represent the direction vectors of the edges

formed by the involved points. Intuitively, this is the correct way to adjust the dis-

tance between points, as moving along the directional vector is logical. The result

of this concept is further illustrated in Figure 5.8.

p1

p2
d

u

p1-p2

p1C

p2C

Figure 5.8: Visualization of the cost associated with distance change. The gradient

direction is highlighted in blue.

5.5.4.3 Volume preservation

Another essential feature of muscles is the preservation of their initial volume. In

the context of the musculoskeletal system, especially muscles, this requirement is

reasonable, as muscles typically do not change their volume due to a constant den-

sity.
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We must first establish a method to calculate the volume of a triangular, closed,

and manifold mesh. While the mesh may have various shapes, including more com-

plex ones for higher genera, solving this problem is elegant and straightforward.

Initially, we select an arbitrary point in space, often chosen as (0, 0, 0) for simplicity.
Alternatively, the centre of gravity may be selected for numerical stability. Then, for

each triangle in the mesh, we calculate the volume of the tetrahedron formed by

the triangle and the arbitrary point. The volume of the tetrahedron is one-sixth of

the parallelepiped volume formed by three vectors originating from the arbitrary

centre point and ending at each vertex of the triangle. This calculation is expressed

in Equation (5.17) with the arbitrary point at the origin of the coordinate system.

Sometimes, the volume may become negative, which is also a desired pheno-

menon because it allows for the subtraction of concave parts or parts that form a

higher genus in the mesh.

𝑉𝑡𝑒𝑡𝑟𝑎 =
1

6

������
𝑎𝑥 𝑏𝑥 𝑐𝑥

𝑎𝑦 𝑏𝑦 𝑐𝑦

𝑎𝑧 𝑏𝑧 𝑐𝑧

������ = a · (b × c) (5.17)

Vectors a, b, and c represent the edges of the tetrahedron, all sharing a common
vertex. In this context, the origin is used as the arbitrary point, simplifying the

calculation and allowing us to utilize the vertexes p of the triangular mesh instead.
An illustrative example is provided in Figure 5.9. By taking the cross product of

vectors a and b, we obtain vector d (depicted in pink), which has a length equivalent
to the area of the yellow region. Subsequently, by taking the dot product of this

vector with vector c, we can determine the volume of the entire parallelogram.
This procedure is also known as the "triple product." One-sixth of the resulting

parallelogram volume corresponds to the desired volume of the tetrahedron.

c

b

a

|d|=|b☓c|

d

Figure 5.9: Volume of the tetrahedra formed by vectors a, b and c.

We can now also determine the cost function of the volume change. The equation

is shown on 5.18.
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𝐶 (p1, . . . , p𝑛) =
𝑚∑︁
𝑖=1

(
p𝑡𝑖
1

·
(
p𝑡𝑖
2

× p𝑡𝑖
3

))
− 𝑘𝑉0 (5.18)

In the equation, the variable𝑚 represents the total triangle count, andp𝑡𝑖
1

denotes

the first vertex of the 𝑖-th triangle in the mesh. The variable 𝑉0 signifies the initial

volume of the mesh, which ensures that the cost function value will be zero if it

matches this initial volume. An optional parameter 𝑘 is included, allowing us to

modulate the volume over time, although it is currently set to 1.

The derivative of the cost function can be derived either from Equation (5.18)

or from the determinant sum in Equation (5.17). For simplicity, let’s select a mesh

vertex to calculate the derivative.Wewill focus on a single triangle for this derivation.

The total gradient is obtained by applying the sum rule of derivatives, as shown in

Equation (5.19).

▽p𝑖
𝐶 (p1, . . . , p𝑛) =

������
𝑝𝑖𝑥 𝑝𝑖 𝑦 𝑝𝑖𝑧

𝑝𝑗𝑥 𝑝𝑗 𝑦 𝑝𝑗𝑧

𝑝𝑘𝑥 𝑝𝑘𝑦 𝑝𝑘𝑧

������ + · · · = p𝑗 × p𝑘 + . . . (5.19)

The equation in (5.20) implies equality between the derivative in a vertex triangle

and the cross product of the other two points. If we put all triangles together, the

derivative of a vertex equals the cross product of each pair of vertices sharing the

triangle with the selected vertex. Mathematically speaking, as shown in (5.20).

▽p𝑖
𝐶 (p1, . . . , p𝑛) =

𝑡∑︁
ℎ=1

p𝑗 × p𝑘; 𝑖 ≠ 𝑗 ≠ 𝑘 (5.20)

Variable 𝑡 represents the number of triangles that share the vertex with index 𝑖.

Vertices with indices 𝑖, 𝑗, and 𝑘 are all part of the same triangle. The control variable

ℎ is not required for this specific case.

In his research, Janak [59] did not consider volume preservation, which could

potentially enhance his findings. However, the mathematics behind volume preser-

vation in the mass-spring system is exceedingly complex [60].

5.5.4.4 Shape preservation

The final constraint is to maintain the initial shape of the muscle. One approach is

to preserve the dihedral angle between each pair of adjacent triangles as much as

possible.

It is also essential to describe the calculation of the dihedral angle between two

adjacent triangles. Given vertices as p1, p2, p3, and p4, vertices with indices one
and two are shared, while index three belongs to the first triangle only. Additionally,
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index four belongs to the second triangle. Using the cross product, we obtain triangle

normals as shown in Equation 5.21.

u = (p2 − p1) × (p3 − p1)

n =
u
|u|

2

(5.21)

The vector u is introduced to simplify the subsequent derivation. This vector
shares the same direction as the normal but may not necessarily have a unit length.

Vertices p1, p2, and p3 belong to the first triangle, for which the normal is being
calculated. A similar calculation will be performed for the second triangle.

Consequently, the angle between two adjacent triangles can be determined. Ini-

tially, both normals (n1 and n2) are required. Subsequently, the angle between these
two normals is obtained using the definition of the dot product. Equation 5.22

presents the definition and derivation.

cos 𝜑 =
n1 · n2
|n1 |2 |n2 |2

= n1 · n2

𝜑 = arccos (n1 · n2)
(5.22)

The next step involves defining a cost function. The same methodology will be

applied to create volume and distance cost functions, where the initial angle values

are subtracted from the current ones. Equation 5.23 provides the formula for this

cost function.

𝐶 (p1, p2, p3, p4) = 𝜑 − 𝜑0

= arccos (n1 · n2) − 𝜑0

= arccos

(
(p2 − p1) × (p3 − p1)
| (p2 − p1) × (p3 − p1) |2

· (p2 − p1) × (p4 − p1)
| (p2 − p1) × (p4 − p1) |2

)
− 𝜑0

(5.23)

In the equation, 𝜑0 represents the initial angle, calculated according to Equation

5.22.

Deriving this equation is a bit more complex. Initially, we leverage the property

that the cost function value is translation-invariant, allowing us to move the pair of

triangles so that one of the vertices lies on the origin of the coordinate system.

The first vertex is positioned at the origin by translating each point using the

vector−p1, significantly simplifying the orthonormal vector calculation for both tri-
angles. When the entire system is translated, the dihedral angle remains unchanged.

This transformation is also represented in Equation 5.24, where vectors with

apostrophes are those translated by −p1.
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n1 =
(p2 − p1) × (p3 − p1)
| (p2 − p1) × (p3 − p1) |2

=
p′
2
× p′

3��p′
2
× p′

3

��
2

⇔ p′
1
= 0

n2 =
(p2 − p1) × (p4 − p1)
| (p2 − p1) × (p4 − p1) |2

=
p′
2
× p′

4��p′
2
× p′

4

��
2

⇔ p′
1
= 0

(5.24)

Finally, utilising the derivative of the function arccos (defined as
𝑑
𝑑𝑥
arccos 𝑥 =

− 1√
1−𝑥2

), we can compute the gradients for each of the cost functions using Equation

5.25. Since we have chosen p1 to be at the origin, it will be defined differently than
the second shared vertex, p2. However, p3 and p4 will exhibit similarities due to the
system’s symmetry. Notably, the gradient is independent of the absolute location of

the object, negating the need for any reverse translation.

𝑑 =n1 · n2

▽p′
4

𝐶 = − 1

√
1 − 𝑑2

(
▽p′

4

(n2) · n1
)

▽p′
3

𝐶 = − 1

√
1 − 𝑑2

(
▽p′

3

(n1) · n2
)

▽p′
2

𝐶 = − 1

√
1 − 𝑑2

(
▽p′

2

(n1) · n2 + ▽p′
2

(n2) · n1
)

▽p′
1

𝐶 = −
4∑︁
𝑖=2

▽p′ 𝑖𝐶

(5.25)

The fundamental concept behind calculating the gradients of the orthonormal

of the triangles involves breaking down the normals into cross-products, which can

also be expressed using matrix calculus. Each element of the matrix can then be

solved independently. This concept is elaborated on in the case of n2 orthonormal
at the vertex p′

4
.

The subsequent step is to determine the partial derivative of the normalised

cross-product.

Normalizedcross-product partial derivative. First, I will replace the cross product
with the vector r (as demonstrated in Equation 5.26) to simplify the subsequent
derivation process.

r = p′
2
× p′

4
(5.26)

The subsequent step involves calculating solely the partial derivative of the cross

product without normalisation, as illustrated in Equation 5.27. The result of this
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calculation is a matrix denoted as A. When multiplied by a vector, this matrix yields
the cross product of the given vector and the vertex p′

2
.

▽p4r =


𝜕𝑝′
2𝑦
𝑝′
4𝑧
−𝑝′

4𝑦
𝑝′
2𝑧

𝜕𝑝′
4𝑥

𝜕𝑝′
2𝑦
𝑝′
4𝑧
−𝑝′

4𝑦
𝑝′
2𝑧

𝜕𝑝′
4𝑦

𝜕𝑝′
2𝑦
𝑝′
4𝑧
−𝑝′

4𝑦
𝑝′
2𝑧

𝜕𝑝′
4𝑧

𝜕𝑝′
4𝑥
𝑝′
2𝑧
−𝑝′

2𝑥
𝑝′
4𝑧

𝜕𝑝′
4𝑥

𝜕𝑝′
4𝑥
𝑝′
2𝑧
−𝑝′

2𝑥
𝑝′
4𝑧

𝜕𝑝′
4𝑦

𝜕𝑝′
4𝑥
𝑝′
2𝑧
−𝑝′

2𝑥
𝑝′
4𝑧

𝜕𝑝′
4𝑧

𝜕𝑝′
2𝑥
𝑝′
4𝑦
−𝑝′

4𝑥
𝑝′
2𝑦

𝜕𝑝′
4𝑥

𝜕𝑝′
2𝑥
𝑝′
4𝑦
−𝑝′

4𝑥
𝑝′
2𝑦

𝜕𝑝′
4𝑦

𝜕𝑝′
2𝑥
𝑝′
4𝑦
−𝑝′

4𝑥
𝑝′
2𝑦

𝜕𝑝′
4𝑧


=


0 −𝑝′

2𝑧
𝑝′
2𝑦

𝑝′
2𝑧

0 −𝑝′
2𝑥

−𝑝′
2𝑦

𝑝′
2𝑥

0

 = A

(5.27)

We then consider the norm, as indicated in Equation 5.28. The outcome remains

the cross product, but now it is associated with the orthonormal vector n2.

▽p′
4

|r|
2
= ▽p′

4

√︃
𝑟2𝑥 + 𝑟2𝑦 + 𝑟2𝑧 =

1

2 |r|
2

▽p′
4

(
𝑟2𝑥 + 𝑟2𝑦 + 𝑟2𝑧

)
=

1

2 |r|
2

[
𝜕𝑟2𝑦+𝑟2𝑧
𝜕𝑝′
4𝑥

𝜕𝑟2𝑥+𝑟2𝑧
𝜕𝑝′
4𝑦

𝜕𝑟2𝑥+𝑟2𝑦
𝜕𝑝′
4𝑧

]
=
1

|r|
2

[
𝑟𝑦𝑝
′
2𝑧
− 𝑟𝑧𝑝′

2𝑦
−𝑟𝑥𝑝′

2𝑧
+ 𝑟𝑧𝑝′

2𝑥
𝑟𝑥𝑝
′
2𝑦
− 𝑟𝑦𝑝′

2𝑥

]
=

r × p′
2

|r|
2

=
|r|
2

n2 × p′
2

|r|
2

= n2 × p′
2
= b

(5.28)

Last but not least, combining both partial derivatives of Equation 5.27 and Equa-

tion 5.28 is essential. To achieve this, we employ the derivative quotient rule, which

results in the outcome presented in Equation 5.29.

▽p′
4

r
|r|
2

=
A |r|

2
− r · b
|r|2
2

=
1

|r|
2

(A − n2 · b)

=
1��p′

2
× p′

4

��
2

©«

0 −𝑝′

2𝑧
𝑝′
2𝑦

𝑝′
2𝑧

0 −𝑝′
2𝑥

−𝑝′
2𝑦

𝑝′
2𝑥

0

 − n2 ·
(
n2 × p′

2

)ª®®¬
(5.29)

Similarly, the other partial derivative in Equation 5.25 can be obtained, differing

only in indices and signs. The result of this partial derivative is then incorporated

into Equation 5.25, determining the final partial derivative of the cost function.

Following the same procedure as other constraints, the adjustments will follow

Equation 5.13, as all necessary information is already available.

Figure 5.10 also visually represents the entire concept. For simplicity, only two

triangles are depicted. The normal vectors of both triangles are indicated in green
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φ

p2

p1
p4

p3

n2

n1

Figure 5.10: Angle 𝜑 preservation between two triangles (dihedral angle).

(n1 and n2). The gradients at vertices p3 and p4 are shown for both vertices using
two blue vectors, forming a surface (in grey) where these vertices are allowed to

move. It is important to note that movement in other directions would not alter the

angle between the triangles. The gradients at the midpoint were not illustrated due

to the complexity of the p1 and p2 gradients.
In this chapter, we have described seven significant approaches to muscle mod-

elling: the Hill-type model, Via-points, Wrapping obstacles, Finite element method,

Mass-spring system, ARAP, and PBD. The following table 5.1 summarises these

methods, including a (partially subjective) comparison of speed and precision.

Algorithm Muscle model form Speed Precision Reference

Hill-type Single line + + + − − − [34][35][74]

Via-points Polyline ++ −− [1][41]

Wrap. Obst. Complex curve + − [42][43]

FEM Volumetric model − − − + + + [47][48][23]

MSS Volumetric model ++ − [57][58][2]

ARAP Surface model ++ ? [8][64][67]

PBD Surface model
1 ++ ? [68][56][71]

Table 5.1: Comparison of the muscle modelling approaches.

1
With the exception in the paper from Romeo et al. [56], where they introduced volumetric data

to improve their results.
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Radial basis
functions 6
This chapter mainly focuses on describing the radial basis functions in the muscle

modelling domain and, more generally. Themain outline of this chapter is visualised

in Fig. 6.1, so the main parts resemble an exploration of the existing RB functions,

centre point placement and shape parameter selection.
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Figure 6.1: The graphical description of the content of this chapter and the depth

of description on each topic. Created with the www.flourish.studio.
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6. Radial basis functions

The challenge of interpolating and approximating scattered data is prevalent in

various engineering and research domains. The challenge is exemplified by the work

of Oliver et al. [75], who applied the kriging interpolation method to geographical

data. Similarly, Kaymaz [76] demonstrated the utility of this approach in addressing

structural reliability issues. The technique is also used in modelling, as shown by

Sakata et al. [77] in their work on wing structures and in the creation of metamodels

by Joseph et al. [78]. Furthermore, Radial Basis Function (RBF) methods are appli-

cable in solving partial differential equations, particularly in engineering-related

problems.

The RBF methodology, introduced initially by Hardy [79] and later refined [80],

has seen continuous development and modification over time. Majdisova et al. [81]

have contributed by proposing various placement methods within this framework.

There has also been significant research into the behaviour of shape parameters (de-
scribed further in the text) in RBF methods, including efforts by Wang et al. [82] to

find optimal parameters, explorations by Afiatdoust et al. [83] into this area. The

use of different local shape parameters as investigated by Cohen et al. [84], Sarra et

al. [85], and Skala et al. [86]. The mathematical formulation of the RBF approach is

presented as follows:

𝑓 (x) =
𝑁∑︁
𝑖=1

𝜆𝑖𝜑 ( | |x − Pi | |) (6.1)

The RBF approach is a linear combination of a set of RBFs (Radial Basis Func-

tions) denoted as 𝜑, with centres at points Pi. These RBFs are adjusted to interpolate

the vertices Pi using appropriate weights 𝜆𝑖. This equation can be viewed as a linear

system equation Ax = b, where the matrix A is composed of values of the RBF
function, 𝜆𝑖 represents an unknown vector, and 𝑓 (x) will be populated with known
values at each of the input points.

A reduced number of RBFs can be used to achieve an approximation, making

the problem overdetermined and less straightforward. It can then be solved, for

instance, using the ordinary least squares (OLS) approach while also considering

some associated drawbacks, as mentioned in works such as Skala and Kansa [87].

𝑓 (x) =
𝑀∑︁
𝑖=1

𝜆𝑖𝜑 ( | |x − 𝜉i | |) (6.2)

6.1 Available functions
A radial basis function is defined by its dependency on the distance from a central

point. This function can be applied in spaces of any dimension, but it is commonly
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expressed in terms of the distance (denoted as 𝑟) rather than as a function of a spatial

coordinate.

A broad range of RBF functions are generally categorized into local and global.

Local RBFs have a characteristic feature where their value becomes zero beyond a

certain distance, effectively limiting their influence. In contrast, global RBFs lack

this restriction and maintain influence regardless of distance. This discussion will

initially focus more on the characteristics and applications of local RBFs.

6.1.1 Local functions
The local RBF functions are limited by a sphere of influence, and beyond this sphere,

it evaluates to zero. Some RBFs with those properties are listed in Table 6.1.

ID Function ID Function

1 (1 − 𝑟)+ 2 (1 − 𝑟)3+(3𝑟 + 1)
3 (1 − 𝑟)5+(8𝑟2 + 5𝑟 + 1) 4 (1 − 𝑟)2+
5 (1 − 𝑟)4+(4𝑟 + 1) 6 (1 − 𝑟)6+(35𝑟2 + 18𝑟 + 3)
7 (1 − 𝑟)8+(32𝑟3 + 25𝑟2 + 8𝑟 + 3) 8 (1 − 𝑟)3+
9 (1 − 𝑟)3+(5𝑟 + 1) 10 (1 − 𝑟)7+(16𝑟2 + 7𝑟 + 1)

Table 6.1: Typical examples of local RBF functions - compactly-supported RBF. The

"+" sign means that every nonpositive value is set to zero instead. [88].

Their main advantage is computational. Due to their small influence, they pro-

duce a better conditioned linear equation system (LES). Suppose the order of vertices

reflects the spatial position of the original vertices. In that case, the LES becomes

diagonally dominant, which is particularly useful formost solvers (Gaussian elimina-

tion, Jacobi method, LU decomposition method and more) to obtain more accurate

results.

6.1.2 Global functions
The scope of the global RBFs is not limited, so their influence can be infinite. The

infinitely broad scope is particularly advantageous in situations where, for example,

an RBF centre point change should influence the whole space. Table 6.2 lists some

of the most notable ones.

Name Function

Gaussian RBF 𝑒−𝛼𝑟

Thin-plate spline 𝑟2 log 𝑟

An RBF proposed in [89] 𝑟2 (𝑟𝛼 − 1)

Table 6.2: Some of the most notable global RBFs.
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The advantage of the global function over the local one is that the single change

of a single parameter (one centre point, for example) would influence the whole

space. The disadvantage of some is the presence of a shape parameter 𝛼. The pa-

rameters define the variance (indirectly) of the function. The higher the value, the

higher the variance and the further the influence. However, there is also an inverse

proportion between the shape parameter and the computational stability of the LES.

If we take it to the extreme, the tiny shape parameter will lead to nonzero values

only for a vertex with itself, producing a verymuch solvable LES. On the other hand,

a nearly infinite shape parameter would lead to a situation where no matter how far

apart two vertices would be, the value would stay the same, leading to the limit to a

singular and constant matrix.

6.2 Polynomial extension
Consider the scenario where we must approximate a nonzero constant function us-

ing the RBF approach. Without a polynomial extension, accurately approximating

such a function would be challenging, as the centre points would need to be dis-

tributed uniformly throughout the entire function domain. Therefore, a polynomial

extension is introduced to handle functions that exhibit constant- and polynomial-

like behaviour.

The extension involves incorporating a polynomial approximation into the RBF

equation, expanding the matrix by the same number of rows and columns as the

degree of the polynomial used. In the case of a function with a degree of 2
1

2
𝐷, this

is achieved as follows:

𝜑11 . . . 𝜑1𝑁 1 𝑥1 𝑦1
...

. . .
... 1

...
...

𝜑𝑁1 . . . 𝜑𝑁𝑁 1 𝑥𝑁 𝑦𝑁

1 1 1 0 0 0

𝑥1 . . . 𝑥𝑁 0 0 0

𝑦1 . . . 𝑦𝑁 0 0 0





𝜆1
...

𝜆𝑁

𝑎0

𝑎1

𝑎2


=



𝑓1
...

𝑓𝑁

0

0

0


(6.3)

Here, 𝜑𝑖 𝑗 represents the value of the Radial Basis Function (RBF) based on the

distance between the vertex 𝑖 and the vertex 𝑗, while 𝑥𝑖 and 𝑦𝑖 denote the coordinates

of the centre points. The coefficients include 𝑎0 as the constant coefficient and 𝑎1, 𝑎2

as the linear coefficients of the linear expression 𝑎0+𝑎1𝑥+𝑎2 𝑦. Variables 𝑓𝑖 represent
the function values of the given vertices, and 𝜆𝑖 means the unknown weight of the

RBF to be determined.
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This matrix can be expressed more succinctly as follows:[
A P
PT 0

] [
𝜆

a

]
=

[
f
0

]
(6.4)

In this formulation, A represents an RBF submatrix, P stands for a polynomial
submatrix, a is a subvector containing polynomial coefficients and f is a subvector
containing the values of the interpolated or approximated function.

Usually, in practice, filling this equation yields satisfactory results. However, the

underlying theoretical issue arises from using different units within the matrix. 𝜑𝑖 𝑗

represents some form of distance that has passed through the RBF function (with

units somewhat unknown in the case of the Gaussian RBF, akin to "exponential

metres" (𝑒𝑚) when all constants are excluded). On the other hand, 𝑥𝑖 and 𝑦𝑖 are

typically measured in units related to the function domain, commonly in metres (𝑚).

This amalgamation of distinct units raises theoretical challenges rarely addressed

in the literature [90].

6.3 Centre point distribution
The fundamental issue at hand revolves around determining the optimal placement

of the centre points 𝜉𝑖. There are several commonly employed options, each with

its own set of advantages and drawbacks.

6.3.1 Iterative greedy search

In many mathematical scenarios, iterative methods often compete with direct meth-

ods. The search for centre points is no exception. Themost straightforward iterative

approach involves initially searching for a single centre point, which reduces the

discrepancy between the approximated function and the approximated one. Subse-

quently, more centres are sought within the space defined by the difference between

these two functions to minimise this difference as much as possible. This iterative

process continues until the overall error reaches an acceptable level or the available

number of centre points is exhausted.

The primary advantage of this method is that the approximant preserves the

essential features of the original function. Furthermore, the shape parameter can

be adjusted at each step of the greedy search to achieve a better fit. However, the

disadvantage lies in its computational complexity, as each "guess" entails solving a

potentially significant linear equation and the summation of Radial Basis Functions

(RBFs). Some RBFs can be computationally expensive to evaluate.
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6. Radial basis functions

6.3.2 Grid distribution
Grid centre point distribution entails arranging all centre points in a grid format,

which can take various forms, such as regular, cartesian, rectilinear, or curvilinear

grids. Although the grid setup is straightforward, it presents significant challenges.

The most prominent challenge is the potential for poor conditioning of the RBF

matrix [91] if the shape parameter is not carefully selected. Another drawback is

that it does not capture the intrinsic features of the interpolated or approximated

function.

6.3.3 Halton distribution
The Halton distribution [92] represents a quasi-random point distribution. Its origi-

nal version is one-dimensional and operates within the interval (0, 1) (scalable by a
constant). The sequence’s elements are defined as:

Halton𝑘 (𝑝) =
⌊log𝑝 𝑘⌋∑︁
𝑖=0

1

𝑝𝑖+1

(⌊
𝑘

𝑝𝑖

⌋
mod 𝑝

)
(6.5)

Here, 𝑝 is an arbitrary prime number, and 𝑘 represents the index of the sequence

element. One can achieve this in the case ofmultidimensional sequences by selecting

multiple prime numbers, resulting in a vector of Halton sequences with different

prime values for each dimension. For example, the Halton sequence [2, 3] begins
with

[ [
1

2
, 1
3

]
,
[
1

4
, 2
3

]
,
[
3

4
, 1
9

] ]
. Essentially, it partitions the (0, 1) interval into 𝑝 subin-

tervals of equal size and outputs the boundary points. Subsequently, each subspace

is subdivided, yielding additional boundary points. A breadth-first approach is em-

ployed for traversal, resulting in amore evenly spread distribution than a depth-first

(recursive) approach.

The same sequence can be generated by expressing 𝑘 in base 𝑝, inverting it, and

placing it after the decimal point. For example, when 𝑝 = 2:

0.12 =
1

2

, 0.012 =
1

4

, 0.112 =
3

4

, 0.0012 =
1

8

, 0.1012, 0.0112, 0.1112... (6.6)

The Halton sequence offers a significant advantage by exhibiting fewer regu-

larities, which helps avoid ill-conditioned matrices and ensures excellent interval

coverage. However, a notable drawback is that the endpoints (i.e., 0 and 1) must be

explicitly included in most cases, as they are not part of the sequence by default.

6.3.4 Distribution concerning the original function
An entirely justifiable approach is to select the centre points based on specific fea-

tures of the original function. The likely candidates are the minima and maxima
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6.4. An approximation example

since RBFs often exhibit extrema at the centre points. Additionally, inflexion points

can be included to cover a broader range of features.

We have previously addressed this issue in a different context in [3], which re-

sulted in the "sophisticated placement of radial basis functions significantly improv-

ing the quality of the RBF approximation" [3]. The primary takeaway from this

research was to minimise the use of grid or equidistant centre point distributions

whenever possible.

6.4 An approximation example
The Radial Basis Function (RBF) concept can be effectively illustrated through a sim-

ple example. This example involves approximating four signal values using merely

two global RBFs, though this concept is capable of broader application. We’ll begin

by considering our dataset, which might comprise, for instance, five evenly spaced

values within the range from 0 to 1:

𝑥 0 0.25 0.5 0.75 1

𝑓 (𝑥) -1 -2 0 2 1

The initial step in this process is to select an appropriate Radial Basis Function

(RBF). The choice of RBF should ideally be based on the origin of the data. In this

case, for the sake of illustration, we will opt for the Gaussian RBF. Next, we need to

determine the positions for the two RBF centres, which can be done by identifying

local extrema, such as at 𝑥 = 0.25 and 𝑥 = 0.75, or by referring to locations men-

tioned earlier in the text. The final requirement for constructing the linear equation

system is to establish the shape parameters for each RBF. These parameters can be

experimentally determined; a single global parameter is often chosen. Fortunately,

we can use insights from the immediate vicinity of the centre point to make an ef-

fective approximation. Note that this approach initially disregards the influence of

a given RBF on vertices other than its immediate neighbours. At the same time, this

is a valuable starting point, and subsequent adjustments are necessary for improved

accuracy. Both functions should accommodate the values at the boundaries, influ-

enced by the values at the centre point. Therefore, we aim to find a shape parameter

that would cause the value of the Gaussian RBF to decrease by half when the domain

shifts by 0.25. This calculation is relatively straightforward.

𝜑 (𝑟) = 𝑒−𝛼𝑟
2

= 𝑑, 𝛼 = − log 𝑑
𝑟2

𝑟 = 0.25, 𝑑 = 0.5 𝛼 = −16 log 0.5 ≈ 11.09
(6.7)
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The three components, the choice of radial basis function, the determination of

RBF centres and the establishment of shape parameters, are essential to construct

the linear equation system:

A =



𝜑
(
| |0 − 0.25| |2

2

)
𝜑

(
| |0 − 0.75| |2

2

)
𝜑

(
| |0.25 − 0.25| |2

2

)
𝜑

(
| |0.25 − 0.75| |2

2

)
𝜑

(
| |0.5 − 0.25| |2

2

)
𝜑

(
| |0.5 − 0.75| |2

2

)
𝜑

(
| |0.75 − 0.25| |2

2

)
𝜑

(
| |0.75 − 0.75| |2

2

)
𝜑

(
| |1 − 0.25| |2

2

)
𝜑

(
| |1 − 0.75| |2

2

)

=



𝜑
(
0.252

)
𝜑

(
0.752

)
𝜑 (0) 𝜑

(
0.52

)
𝜑

(
0.252

)
𝜑

(
0.252

)
𝜑

(
0.52

)
𝜑 (0)

𝜑
(
0.752

)
𝜑

(
0.252

)

= (6.8)

=
1

512

[
256 512 256 32 1

1 23 256 512 256

]𝑇
When dealing with an overdetermined system of equations, as in the case of

approximating data points, Ordinary Least Squares (OLS) is a common method

used to find the best possible solution. Here’s how OLS is applied in this context:

Q = A𝑇A = 2−18

[
256 512 256 32 1

1 23 256 512 256

] 

256 1

512 32

256 256

32 512

1 256


= 2−18

[
394241 98816

98816 394241

]

(6.9)

c = A𝑇𝑏 =
1

512

[
256 512 256 32 1

1 23 256 512 256

] 

−1
−2
0

2

1


=

1

512

[
−1215
1215

]
(6.10)

The weights of both RBFs can be found as a solution of the matrix 𝑄 on the left

side and the vector 𝑐 on the right side. The resulting vector [𝜆1, 𝜆2] provides the
weights for each RBF, which, when applied, should best fit the data in a least-squares

sense:

2
−18

[
394241 98816

98816 394241

] [
𝜆1

𝜆2

]
=
1

512

[
−1215
1215

]
(6.11)[

394241 98816

98816 394241

] [
𝜆1

𝜆2

]
=

[
−622080
622080

]
(6.12)

When employing a linear equation system solver, such as the Gaussian Elim-

ination method, the solution obtained is [𝜆1, 𝜆2] = [−13824/6565, 13824/6565].
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The final step involves reconstructing the original function by integrating these

parameters.



𝜑
(
0.252

)
𝜑

(
0.752

)
𝜑 (0) 𝜑

(
0.52

)
𝜑

(
0.252

)
𝜑

(
0.252

)
𝜑

(
0.52

)
𝜑 (0)

𝜑
(
0.752

)
𝜑

(
0.252

)

[
𝜆1

𝜆2

]
=
1

512



256 1

512 32

256 256

32 512

1 256


13824

6565

[
−1
1

]
=
27

6565



−255
−480
0

480

255


=

(6.13)

=



−1377
1313

−2592
1313

0

1377

1313

2592

1313


≈



−1.04874
−1.97411

0

1.97411

1.04874


(6.14)
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Five point approximation

RBF approximation

Original vertices

First RBF

Second RBF

Figure 6.2: Illustration of an RBF approximation (depicted in blue) closely matching

five original data points, represented as red crosses. The image also displays individ-

ual RBFs, coloured in red and yellow, whose collective sum creates the blue curve.

The approximation closely mirrors the original data points [−1,−2, 0, 2, 1]. The
approximation result is visually represented in blue in Fig. 6.2. The approximation’s

mean square error is around 10
−3
, indicating a highly satisfactory level of accu-

racy. Further improvements in approximation could be achieved by adjusting the

shape parameter and allowing more flexibility in the placement of the centre points
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6. Radial basis functions

within the domain (in this case, the centres were positioned at 0.25 and 0.75 for

computational simplicity).

6.5 RBFs for muscle modelling
Our in-depth studies of RBF [89, 3, 91, 93, 94, 88] have revealed its potential for

approximation purposes. To my knowledge, RBF approximation methods have not

been widely applied in muscle modelling. We have contributed to the use of the RBF

approach in muscle modelling in the article titled "Non-planar Surface Shape Re-

construction from a Point Cloud in the Context of Muscle Attachment Estimation"

[13], where RBF is used to reconstruct surfaces from sets of attachment points.

This chapter has explored various approximation and interpolation methods

that may find applications in data preprocessing and as integral components of mus-

cle modelling techniques. The first method discussed is the finite element method

(FEM), which is used primarily to model various physical phenomena, including

muscle modelling. It should be noted that even the FEM relies on an underlying

approximation method to operate effectively.
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Novel approach 7
The research of existing methods described in chapter 5 shows some potential to

improve the existing processes. The study of RBF outlined in the previous chap-

ter also indicates its potential for muscle modelling. Therefore, the possibility of

using RBF in muscle modelling became increasingly apparent and led to multiple

publications from us, mainly the last paper described in chapter 9.13. This chapter

will extend and generalise the ideas from that paper so the technique can be used

elsewhere.

Figure 7.1: The pipeline of the proposed approach. The volumetric (1) [14] or already

triangulated (2) data are sampled (3) and then used for the creation of an implicit

RBF shape (4). On this shape, initial and dynamic volumetric curvature is estimated

(5) to produce a dynamic shape preserving its original curvature .

The creation of the static model, represented in steps 3 and 4 in Figure 7.1, is

elaborated upon in Algorithm 2. It’s important to emphasize that the pseudocode

provided is intended for a clearer understanding of the pipeline and not for direct

implementation. The metric in line 15 could include mean squared error, Jaccard
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index, or another relevant measure. A weighted mix of MSE and JI emerged as the

most influential metric throughout the research and testing phases, further detailed

in Section 9.13.

Algorithm 2 The pseudocode of the static RBF surface creation.
1: 𝑆 ← 𝑙𝑜𝑎𝑑𝑆𝑢𝑟𝑓 𝑎𝑐𝑒(𝑓 𝑖𝑙𝑒)
2:
®𝑏← 𝐴𝐴𝐵𝐵𝑏𝑜𝑥(𝑆) ⊲ Read bounding box of surface 𝑆

3: ®𝑥, ®𝑦, ®𝑧 ← ®𝑠𝑖 ∈ ®𝑆𝑣 ⊲ Set all vertices forming the surface 𝑆

4: append 𝐻𝑎𝑙𝑡𝑜𝑛(®𝑏, 2, 3, 5) to ®𝑥, ®𝑦, ®𝑧 ⊲ Add Halton points in bounding box ®𝑏
5: append 𝑆𝑓 + 𝑑 ®𝑛𝑓 to ®𝑥, ®𝑦, ®𝑧 ⊲ Add points 𝑑 away (out) from the 𝑆

6: append 𝑆𝑓 − 𝑑 ®𝑛𝑓 to ®𝑥, ®𝑦, ®𝑧 ⊲ Add points 𝑑 away (in) from the 𝑆

7: 𝑓 = 𝑑𝑖𝑠𝑐𝑟𝑒𝑔𝑟𝑖𝑑( ®𝑥, ®𝑦, ®𝑧) ⊲ Create SDF on top of the samples

8: for 𝑖 ∈ 1 . . . number of centres do ⊲ RBF centre selection

9: 𝐶 ← [] ⊲ Array of possible RBF evaluations inside ®𝑏
10: for 𝑗 ∈ 1 . . . number of samples do ⊲ Sample selection

11: for 𝛼 ∈ [0.001, 0.01, 1, 10, 100. . . .] do ⊲ Shape parameter selection

12: append 𝑅𝐵𝐹 ( ®𝑥 𝑗, ®𝑦𝑗, ®𝑧 𝑗, 𝛼) to 𝐶 ⊲ Evaluation of the RBF inside ®𝑏
13: end for
14: end for
15: 𝑓 ← 𝑚𝑖𝑛 ( |𝑓 − 𝐶𝑖 |) ⊲ Subtracting the best RBF from SDF

16: end for

7.1 Sample placement
Since many samples would lead to an extensive RBF equation system to solve, sam-

ples have to be chosen with patience. The method of sample placement to generate

a static RBF surface arises from extensive research on RBF behaviour, further elab-

orated in Chapter 9. The samples are strategically positioned at critical vertices,

including the surface itself and those adjacent to it, both internally and externally.

These points of importance have already been proposed by Carr et al. [4] and work

well for this scenario.

Additionally, the research identified the necessity to cover empty spaces partially,

leading to the adoption of the sparse Halton sequence for its superior performance

in space coverage compared to alternatives like random or equidistant methods. It

improves the RBF approximation because it allows, e.g. a wide RBF at the centre of

the shape or a wide RBF outside to cut out a big part of a space.

Figure 7.2 illustrates the placement of an RBF on the gluteus maximus, with

critical vertices highlighted in blue, red, and green and theHalton sequence in yellow.

These points are intersected by a plane to display both the vertices and the original

triangular mesh, ensuring comprehensive coverage of the entire shape.
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7.2. Centre placement and shape selection

Figure 7.2: The RBF centre placement possibilities. The yellow points are distributed

usingHalton (2,3,5) distribution, blue points are the vertices lying on the surface, and

the red and green vertices lie a fixed distance from the surface inwards/outwards.

7.2 Centre placement and shape selection
The centres are strategically positioned within a select group of samples; generally,

while they could be located anywhere, confining them to a specific subset accel-

erates the process considerably. The method employed for placing these centres

adopts a greedy strategy, which builds upon the approach suggested by Carr et al.

[4]. However, it has been enhanced to achieve substantially better results.

During each phase of the iterative process, a single Radial Basis Function (RBF)

is chosen to minimise the approximation error (as suggested by the metric out-
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lined in chapter 9.13). Minimising is accomplished by thoroughly evaluating every

conceivable location within the sample space and all the shape parameters from a

pre-established collection to ensure the most accurate error reduction.

7.3 Dynamics

After constructing a static RBF model, discussions about its dynamics are possible.

Specifically, in inverse kinematics muscle modelling, parts of the muscle attach to

adjacent bones, while the majority of the muscle, which is mobile, needs its position

estimated. As before, in the case of the static model creation, the dynamics are

described using pseudocode in 3.

Algorithm 3 The pseudocode of the dynamic RBF surface movement.
1: 𝑆 ← 𝑙𝑜𝑎𝑑𝑆𝑢𝑟𝑓 𝑎𝑐𝑒(𝑓 𝑖𝑙𝑒) ⊲ Load already created static surface

2: 𝑅init ← 𝑅𝐵𝐹𝑠𝑢𝑟𝑓 𝑎𝑐𝑒(𝑆) ⊲ Create static RBF surface

3:
®𝑏← 𝐴𝐴𝐵𝐵𝑏𝑜𝑥(𝑆) ⊲ Read bounding box of surface 𝑆

4: 𝑓init ← 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒(𝑅init, ®𝑏) ⊲ Estimate initial curvature of 𝑅init in the region

5: while 𝑆 deforms do
6: 𝑅← 𝑅𝐵𝐹𝑠𝑢𝑟𝑓 𝑎𝑐𝑒(𝑆) ⊲ Create deformed static RBF surface

7: repeat ⊲ Perform gradient descent

8: 𝑓 ← 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒(𝑅, ®𝑏) ⊲ Estimate current curvature in the region

9: 𝜖 = |𝑓 − 𝑓init | ⊲ Calculate current curvature error

10: 𝑅← 𝑚𝑎𝑡ℎ𝑀𝑜𝑑𝑒𝑙(𝑅, 𝑓init, 𝑓 ) ⊲ Fix the shape by the math model

11: until 𝜖 ≤ threshold

12: end while

Determining the appropriate criteria for these mobile parts is crucial to en-

sure they deform realistically. For triangular mesh models, most methods, such as

Position-Based Dynamics (PBD), Finite Element Method (FEM), and Mass-Spring

System (MSS), rely on mesh connectivity to maintain structural features like di-

hedral angles (in PBD) and edge lengths (in PBD, FEM, MSS). Real-world criteria

are also simulated by delving into detail, such as muscle volume preservation in

PBD, which leverages tessellation insights to manipulate mesh vertices. For the RBF

model, the primary aim is to maintain a smooth surface. Therefore, the optimal fea-

ture to preserve is the model’s initial curvature, which ensures that the free parts do

not excessively bend, wobble, or produce any other unwanted local artefacts. Also,

by preserving the curvature, the initial volume of the muscle should not change

much because the curvature field created at the start forces the shape to hold the

volume inside itself.
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7.4 Mathematical model
The derivation of the mathematical model is straightforward. It involves describing

the surface as a sum of RBF implicit functions and the curvature preservation con-

dition. At first, the innovative mathematical model starts by declaring the general

notation of the RBF approximation:

𝑓 (x) =
𝑁∑︁
𝑖=1

𝜆𝑖𝜑 ( | |x − 𝜉i | |) =
𝑁∑︁
𝑖=1

𝜆𝑖𝜑 (𝑟𝑖) (7.1)

Because the curvature calculation involves estimating the Hessian matrix, the first

step is to find the gradient of the RBF approximation, which will be needed after-

wards. It can be described as follows:

∇𝑓 (x) =

𝑁∑︁
𝑖=1

𝜆𝑖∇𝜑 (𝑟𝑖) =
𝑁∑︁
𝑖=1

𝜆𝑖
𝜕𝜑

𝜕𝑟𝑖

𝜕𝑟𝑖

𝜕𝑥 𝑗
=

𝑁∑︁
𝑖=1

𝜆𝑖
𝑟𝑖 𝑗

𝑟𝑖

𝜕𝜑

𝜕𝑟𝑖
, 𝑟𝑖 𝑗 = 𝑥 𝑗 − 𝜉𝑖 𝑗 (7.2)

The gradient evaluation was the first step in estimating the Hessian matrix of the

approximator. Second partial derivatives declare the Hessian of a function, generally

as:

H (𝑓 (x)) =



𝜕2𝑓

𝜕𝑥2
1

𝜕2𝑓

𝜕𝑥1𝜕𝑥2

𝜕2𝑓

𝜕𝑥1𝜕𝑥3
. . .

𝜕2𝑓

𝜕𝑥2𝜕𝑥1

𝜕2𝑓

𝜕𝑥2
2

𝜕2𝑓

𝜕𝑥2𝜕𝑥3
. . .

𝜕2𝑓

𝜕𝑥3𝜕𝑥1

𝜕2𝑓

𝜕𝑥3𝜕𝑥2

𝜕2𝑓

𝜕𝑥2
3

. . .

...
...

...
. . .


(7.3)

In our case of RBF approximation, where each second partial derivative can be

evaluated from the first ones in (7.2), a single Hessianmatrix element can be declared

as:

𝜕2𝑓

𝜕𝑥 𝑗𝜕𝑥𝑘
=

𝑁∑︁
𝑖=1

𝜆𝑖

(
𝜕2𝜑

𝜕𝑟2
𝑖

𝑟2
𝑖 𝑗

𝑟2
𝑖

+ 𝜕𝜑

𝜕𝑟𝑖

(
𝛿𝑖 𝑗

𝑟𝑖
−
𝑟2
𝑖 𝑗

𝑟3
𝑖

))
(7.4)

The Kronecker delta function 𝛿𝑖 𝑗 indicates that it behaves differently on and off

the diagonal. Luckily, for further evaluation, the derivation depends solely on the

elements on the main diagonal.

7.4.1 Mean curvature
The mean curvature of a model describes the shape of the model, so it should be

beneficial to preserve it. The mean curvature is defined as a mean eigenvalue of the

Hessian or as the mean of the trace of the Hessian:

𝜅𝜇 (H (𝑓 (x))) = 𝜅𝜇𝑓 = 𝜆H =
Tr (H)
𝐷

=
1

𝐷

𝑁∑︁
𝑖=1

𝜆𝑖

(
𝜕2𝜑

𝜕𝑟2
𝑖

+ 𝜕𝜑

𝜕𝑟𝑖

𝐷 − 1
𝑟𝑖

)
(7.5)
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The subsequent step involves determining the cost function, which is essentially the

squared L2 norm between the new and original curvatures across the entire space:

𝐶𝑓 =

∫
. . .

∫ ����𝜅𝜇𝑓 − 𝜅𝜇𝑓i

����2
2
𝑑𝑥1 . . . 𝑑𝑥𝑑 =

∫
R𝑑

����𝜅𝜇𝑓 − 𝜅𝜇𝑓i

����2
2
𝑑x (7.6)

One may employ the gradient descent method to discover the optimal values of

𝜉𝑖. Initially, we must compute the gradient of the curvature w.r.t. 𝜉𝑖:

∇𝜅𝜇𝑓 =

[
𝜕𝜅𝜇𝑓

𝜕𝜉𝑖1

𝜕𝜅𝜇𝑓

𝜕𝜉𝑖2

𝜕𝜅𝜇𝑓

𝜕𝜉𝑖3
. . .

]
(7.7)

After the detailed following derivation, the gradient ultimately used for the gradient

descent method to evaluate the new shape would take the form:

𝜕𝜅𝜇𝑓

𝜕𝜉𝑘𝑗
=

𝜕

𝜕𝜉𝑘𝑗

1

𝐷

𝑁∑︁
𝑖=1

𝜆𝑖

(
𝜕2𝜑

𝜕𝑟2
𝑖

+ 𝜕𝜑

𝜕𝑟𝑖

𝐷 − 1
𝑟𝑖

)
=
1

𝐷

𝑁∑︁
𝑖=1

𝜆𝑖

(
𝜕𝑔 (𝜉𝑖)
𝜕𝜉𝑘𝑗

)
= (7.8)

=
𝜆𝑘

𝐷

𝜕𝑔 (𝜉𝑘)
𝜕𝜉𝑘𝑗

=
𝜆𝑘

𝐷

𝜕

𝜕𝜉𝑘𝑗

(
𝜕2𝜑

𝜕𝑟2
𝑘

+ 𝜕𝜑

𝜕𝑟𝑘

𝐷 − 1
𝑟𝑘

)
=

= −
𝜆𝑘𝑟𝑘𝑗

𝐷𝑟3
𝑘

(
𝑟2𝑘
𝜕3𝜑

𝜕𝑟3
𝑘

+ 𝑟𝑘 (𝐷 − 1)
𝜕2𝜑

𝜕𝑟2
𝑘

− (𝐷 − 1) 𝜕𝜑
𝜕𝑟𝑘

)
Now, we need to compute the gradient of the cost function 𝐶, which is expressed

as follows:

∇𝐶𝑓 = ∇𝜉
(∫
R𝑑
| |𝜅𝜇𝑓 − 𝜅𝜇𝑓i | |22𝑑x

)
= 2

∫
R𝑑
(𝜅𝜇𝑓 − 𝜅𝜇𝑓i)∇𝜉𝜅𝜇𝑓 𝑑x (7.9)

Given the definition of the partial derivatives of 𝜅, the complete cost function gra-

dient can be expressed as:

∇𝐶𝑓𝑘𝑗 = 2

∫
R𝑑
(𝜅𝜇𝑓 − 𝜅𝜇𝑓i)

(
−
𝜆𝑘𝑟𝑘𝑗

𝐷𝑟3
𝑘

(
𝑟2𝑘
𝜕3𝜑

𝜕𝑟3
𝑘

+ 𝑟𝑘 (𝐷 − 1)
𝜕2𝜑

𝜕𝑟2
𝑘

− (𝐷 − 1) 𝜕𝜑
𝜕𝑟𝑘

))
𝑑x (7.10)

If we, for example, consider gaussian RBF 𝜑 (𝑟) = 𝑒−𝛼𝑟
2

in threedimensional

space 𝐷 = 3, then the resulting gradient would take the form:

𝜕𝜑

𝜕𝑟
= −2𝛼𝑟𝜑 (𝑟) , 𝜕2𝜑

𝜕𝑟2
=

(
4𝛼2𝑟2 − 2𝛼

)
𝜑 (𝑟) , 𝜕3𝜑

𝜕𝑟3
=

(
12𝛼2𝑟 − 8𝛼3𝑟3

)
𝜑 (𝑟)

∇𝐶𝑓𝑘𝑗 = 2
∫
R𝑑
(𝜅𝜇𝑓 − 𝜅𝜇𝑓i)
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− 𝜆𝑘𝑟𝑘𝑗

𝐷𝑟3
𝑘
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𝑟2
𝑘

𝜕3𝜑

𝜕𝑟3
𝑘

+ 𝑟𝑘 (𝐷 − 1) 𝜕
2𝜑

𝜕𝑟2
𝑘

− (𝐷 − 1) 𝜕𝜑

𝜕𝑟𝑘

))
𝑑x =

= −2
3

∫
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(𝜅𝜇𝑓 − 𝜅𝜇𝑓i)𝑒−𝛼𝑟
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𝑟3
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𝑟2

(
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)
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)
+ 4𝛼𝑟

)
=

= −2
3

∫
R3
(𝜅𝜇𝑓 − 𝜅𝜇𝑓i)𝑒−𝛼𝑟

2
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∫
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)
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7.5. Regularisation

The equation follows our latest paper, further described in Chapter 9.13. The gradi-

ent from the paper was described as follows:

∇𝐶𝑓 𝑘𝑗 =
8

𝑑

∫
R𝑑

(
𝜅𝜇𝑓 − 𝜅𝜇𝑓i

)
𝛼2𝑘𝑔𝑘 (x)

(
𝑥 𝑗 − 𝜉𝑘𝑗

) (
2𝛼𝑘 | |x − 𝜉k | |22 − 2 − 𝑑

)
𝑑x (7.11)

In this section and the paper, slightly different notations and substitutions were

made. However, both results correspond to each other. Both models were calculated

by hand and then checked by symbolic mathematics using Python’s SymPy library.

The source code is shown in Listings 7.1. Both generic and Gaussian RBF are shown,

uncommenting either row 14 or 15.

Source code 7.1: The SymPy code to verify the created mathematical model

1 from sympy impor t ∗
2 d = 3 # Number o f d imen s i on s
3 N = 10 # Number o f RBF c e n t r e s
4 # Ve r t i c e s where the f u n c t i o n would be e v a l u a t e d
5 x = Matr i x (d , 1 , lambda j , _: symbol s ( f ’x_{ j +1} ’ ) )
6 # RBF c en t r e p o s i t i o n s
7 x i = Matr i x (N, d , lambda i , j : symbo ls ( f ’ xi_{ i +1}_{ j +1} ’ ) )
8 i = Idx ( ’ i ’ , ( 1 , N) ) # Index f o r the number o f RBF c e n t r e s
9 j = Idx ( ’ j ’ , ( 1 , d ) ) # Index f o r the d imens ion number
10 lam = IndexedBase ( ’ lambda ’ , i ) # RBF we igh t s
11 a lpha = IndexedBase ( ’ a l pha ’ , i ) # Shape paramete r
12 # L2 norm o f a d i f f e r e n c e o f a p o s i t i o n "x" and a RBF c e n t r e
13 norm_x_xi = s q r t (Sum( ( x [ j −1 ,0] − x i [ i −1, j −1]) ∗∗2 , ( j , 1 , d ) ) )
14 ph i = Funct i on ( ’ ph i ’ ) ( norm_x_xi ) # Gene r i c f u n c t i o n
15 #ph i = exp(−a lpha [ i ] ∗ norm_x_xi ∗∗2) # Gauss i an f u n c t i o n
16 f = Sum( lam [ i ] ∗ phi , ( i , 1 , N) ) . d o i t ( ) # The RBF app rox imat i on
17 grad_f = Matr i x (d , 1 , lambda j , _: d i f f ( f , x [ j , 0 ] ) ) . d o i t ( )
18 # Hess i an mat r i x H
19 he s s i an_f = Matr i x (d , d , lambda i , j : d i f f ( grad_f [ i ] , x [ j , 0 ] ) ) .↘

d o i t ( )
20 # Mean cu r v a t u r e e s t ima t i o n
21 mean_curv = ( he s s i an_f . t r a c e ( ) /d ) . d o i t ( )
22 # Grad i en t o f the c u r v a t u r e
23 grad_curv = Matr i x (d , 1 , lambda i , _: d i f f (mean_curv , x i [ 0 , i ] ) ) .↘

d o i t ( )
24 p p r i n t ( l a t e x ( grad_curv ) ) # Pr i n t the r e s u l t

7.5 Regularisation
The RBF centre placement in the later stages creates numerous RBFs with very local

impact. This technique does not cause any problems with static surface creation.

However, it often creates a very cluttered and unstable curvature gradient field.

The issue was first found in the paper described in Chapter 9.13 and addressed by

forcing the shape parameters to be as large as possible. Also, the RBFs were forced

to be inside (with positive weight) rather than outside (with negative weights). The

penalisation would be in (7.12).
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7. Novel approach

𝐶𝑟 = 𝛾𝐶𝑚 + (1 − 𝛾)
𝑑v𝑖

𝑑max

𝛼𝑖

𝛼max
(7.12)

In the equation, 𝐶𝑟 is the cost function, 𝐶𝑚 is the original cost function, 𝛾 is

the regularisation factor (between 0 and 1), 𝑑v𝑖
denotes the distance to the surface,

which is normalised by the maximum possible value 𝑑max. Lastly, 𝛼𝑖 is the shape

parameter used, and it is also normalised by the maximum possible shape parameter

𝛼max. The complete in-depth description can be found in [95].

This chapter introduces an innovative approach to muscle modelling using Ra-

dial Basis Functions (RBF), building on the foundational studies and techniques

detailed in earlier text sections. It extends and generalizes previously discussed

methods for broader applicability in different modelling scenarios.

The integration of RBF in muscle modelling is explored with an emphasis on

transforming volumetric or triangulated data into a dynamic shape-preserving

model. This technique is crucial formaintaining the original curvature of themuscle,

which is essential for realistic animations and simulations. Creating such a model is

visualized through figures and pseudocode, outlining the steps in developing static

RBF surfaces. Strategically placing sample points using the Halton sequence is in-

cluded, as creating a Signed Distance Function (SDF) based on these samples and

carefully adjusting these elements to model muscle structure accurately.

Further discussion in the chapter focuses on the dynamics of the model, par-

ticularly on how changes in muscle attachment and position can be simulated real-

istically. The dynamics are elaborated by adjusting the RBF surface in response to

movement, ensuring that the muscle’s original curvature and volume are preserved.

These adjustments are vital for the model’s fidelity in practical applications.

In terms of mathematical modelling, the derivation of the mathematical model

is provided in extensive detail. The RBF function and its gradient are defined, fol-

lowed by the computation of the Hessian matrix to estimate curvature. This section

culminates in developing a cost function, which aids in minimizing the difference

between the new and original curvatures, an essential aspect of realistic modelling.

The chapter also delves into effective centre placement and sample strategy,

which are critical to minimizing computational load and improving model accuracy.

The refined method for selecting strategic sample locations and centre placements

enhances the overall efficiency and accuracy of the muscle modelling process.

The following chapter shows the potential of the proposed approach on a set of

artificial scenarios and muscles.
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Model verification 8
In the preceding chapter, we developed amathematicalmodel for static and dynamic

muscle representations. In this chapter, we will thoroughly test this model.

The testing scenarios are divided into two main categories: artificial data and

realistic data. Each category is further subdivided into specific tests. The detailed

structure of this chapter is illustrated in Fig. 8.1.
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Figure 8.1: The graphical description of the content of this chapter and the depth

of description on each topic. Created with the www.flourish.studio.

8.1 Datasets
The proposed approach will be tested on three muscles and three artificial datasets

in Table 8.1. The three real datasets consist of triangularmeshes of three hipmuscles:

gluteus maximus, medius, and iliacus.
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8. Model verification

Shape Vertices Volume [l] Surface area [dm
2
] S/V ratio

Gluteus maximus 9878 0.75 6.36 8.52

Gluteus medius 5313 0.27 3.36 12.41

Iliacus 6931 0.1 2.45 23.91

Nine spheres 2338 5.34 16.73 3.13

Tetrahedron 4 0.51 4.62 9

Sphere +∞ 4.19 12.57 3

Table 8.1: Numerical description of all datasets used in this section. The table is

separated horizontally into real and artificial datasets. The last row shows an ideal

example of a sphere for comparison.

Although the approach was tested on additional muscles, these three were se-

lected to represent the primary categories based on their surface-to-volume ratios:

high, medium, and low. These ratios are also detailed in Table 8.1.

The three artificial datasets also fall into three categories: one represents the

optimal scenario for RBF approximation (a sphere), the second is suboptimal (nine

spheres), and the third represents one of themost challenging shapes to approximate.

This chapter begins with generating static surfaces and then transitions into the

dynamic movements of these shapes.

8.2 Static surface generation

Before testing the dynamic model, the static surface generation needs to be verified.

The gluteus maximus will be the first muscle examined, with each aspect thoroughly

tested. The results will be presented in the following sections. The gluteus maximus

is the most optimal muscle for RBF approximation among the tested muscles, with

subsequent tests demonstrating less optimal cases.

8.2.1 Gluteus maximus

The first test will focus on the gluteus maximus muscle, whose shape is well-suited

for using the RBF implicit function to describe its form. The accuracy of static

surface generation primarily depends on the number of RBFs used for the approxi-

mation and the selection of shape parameters. We will first examine the impact of

the number of RBFs.
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8.2.1.1. Number of RBFs

8.2.1.1 Number of RBFs

The number of RBFs is directly correlated with the resulting approximation pre-

cision
1
. Generally, a higher number of RBFs leads to greater precision because it

allows for the coverage of more intricate shapes. In this experiment, we use the

gluteus maximus due to its favourable properties: it lacks sharp corners and has a

shape and surface/volume ratio that resembles a sphere.

The first experiment, using insufficient RBFs, is shown in Fig. 8.2. This figure

demonstrates that while the general outline of the muscle is approximated well, the

intricate parts of the muscle are not preserved. An insufficient number of RBFs is

particularly noticeable at both ends of the muscle, where it typically attaches to

adjacent bones.

Figure 8.2: The low number of 50 RBFs to approximate a gluteus maximus muscle.

Only rough shape is preserved, but there are no details.

In the second experiment, the number of RBFs is significantly increased (see

Fig. 8.3). The experiment results in more apparent muscle details; however, some

artefacts and outliers are still present, along with some inaccuracies, particularly in

the same areas. These inaccuracies occur because these parts are the sharpest on the

entire surface.

1
Excluding certain edge cases such as the approximation of a sphere, etc.
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8. Model verification

Figure 8.3: The 1,000 RBFs approximation of a gluteus maximus muscle. The details

are visible, but some artefacts are present.

In the third experiment, the number of RBFs is high enough to capture even the

fine details (as shown in Fig. 8.4), demonstrating the significance of the number of

RBFs and confirming that a higher number generally leads to a better approximation.

8.2.1.2 Global or local shape parameters

The selection of the shape parameter is another crucial aspect to verify. The pro-

posed method of choosing the best shape parameter from a predefined set will be

compared to using a single global shape parameter. While the single-parameter

approach offers less flexibility, it only requires storing a single value. To ensure a

fair comparison, increasing the number of RBFs is performed in the case of the

single global shape parameter so the amount of data stored remains the same. The

comparison will be made against the results shown in Fig. 8.4.

During testing, the best global parameter for the gluteus maximus muscle was

𝛼 = 0.35263[mm−2] , estimated using a simple binary search algorithm to five deci-
mal places. Despite using one-third more RBFs, the approximation is unsatisfactory,

as shown in Fig. 8.5. This parameter preserved only 78.6% of the volume, and adjust-

ing the parameter either way by more than 10
−5
further decreased this percentage.

The shape parameter significantly impacts the approximation for Gaussian RBFs

(𝑒−𝛼𝑟
2

). A higher shape parameter results in a narrower RBF, focusing more on local

details. Conversely, choosing a lower shape parameter would result in losing finer
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8.2.2. Gluteus medius

Figure 8.4: The 10,000RBFs approximation of a gluteusmaximusmuscle. The details

are visible, and only small imperfections are present.

details. If the global shape parameter is set too high, the surface would appear as a

collection of discrete spheres rather than a continuous surface.

8.2.2 Gluteus medius
In the case of gluteus medius, the 1000 RBF surface approximation would take the

form as in Fig. 8.6.

The surface-to-volume ratio is about 50% higher than in the gluteus maximus

case, meaning that this muscle is not as suitable for the approximation as the gluteus

maximus. However, the approximation is still satisfactory, including only minor

inaccuracies.

8.2.3 Iliacus
The following static RBF surface creation test focuses on the iliacus muscle. This

muscle is characterized by its narrow shape, resembling a thin rod rather than a

sphere. Approximating the shape using 6000 RBFs, the resulting surface is success-

fully generated by the approach, as shown in Fig. 8.7.

The thin surface of the iliacus muscle requires more RBFs with smaller radii,

which can result in a rougher surface. Although increasing the number of RBFs can

improve the approximation, doing so would be counterproductive as the number
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8. Model verification

Figure 8.5: The single global shape parameter of 𝛼 = 0.35263[𝑚𝑚−2]. Even though
the parameter was chosen carefully, the approximation is far from satisfactory.

of parameters would exceed those of the triangular mesh, negating the primary

advantage of using RBF approximation.

8.2.4 Optimal and sub-optimal shapes

As previouslymentioned, the RBF implicit function is well-suited for approximating

sphere-like shapes, which typically have a high internal volume-to-surface area ratio.

A sphere is so simple that a single RBF can be used for its approximation, so this result

will not be presented. Instead, we will present a more complex shape consisting of

a union of nine spheres, which remains highly suitable for the RBF approach. The

original shape is shown in red in Fig. 8.8, with the approximation in blue. As you

can see, the approximation is nearly perfect. However, the outer spheres are slightly

dislocated, as visible the best on the bottom left sphere.
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8.2.5. Limitations

Figure 8.6: The gluteus medius muscle. The original shape is red, and the RBF im-

plicit surface form is blue.

Figure 8.7: The iliacusmuscle. The original shape is red, and the RBF implicit surface

form is blue. The hole in the top part confirms that this is one of the problematic

muscles to approximate.

8.2.5 Limitations
A well-known issue with the RBF approximation is its unsuitability for approxi-

mating sharp edges. This limitation is less significant in muscle modelling, as most
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8. Model verification

Figure 8.8: A surface of a union of nine spheres, with a high volume-to-surface ratio.

The original shape is red, and the RBF implicit surface form is blue.

soft tissues do not have sharp edges and are relatively smooth, often resembling

spherical shapes. However, we can illustrate this issue with a simple 3D volumetric

shape like a tetrahedron. A tetrahedron has six sharp edges (with a sharp dihedral

angle of more than 70
◦
) and four corners, which pose significant challenges for RBF

approximation.

The root of the problem lies in RBFs, where a single RBF forms a sphere as an

isosurface at a given value. Creating a sharp corner is theoretically possible only

with infinite infinitesimal RBFs. An attempt at RBF static surface creation for a

tetrahedron can be seen in Fig. 8.9.

Figure 8.9: An attempt to create an RBF surface of a tetrahedron. RBF is not suitable

for approximating sharp edges, such as a tetrahedron.

8.3 Dynamics
The explored static surface creation and its positives and weak points allow for

dynamic model exploration. At first, random movements will be introduced, and
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8.3.1. Random surface movement

then, more realistic movements of the hip muscles will be discussed, producing a

femur bone movement.

8.3.1 Random surface movement
The first test is created to test the dynamic model’s ability to restore its shape in

the case of a random movement. At first, the static model is created by the surface

(e.g. gluteus maximus), after which all vertices are moved in random directions.

The movement magnitude in the test was set to 5% of the length of the shape AABB

diagonal (which is used for normalisation purposes). The test is discussed thoroughly

in the publication [95] introduced in Section 7.4. That is why the images presented

here will be smaller, and the details will be visible in that paper. The initial stage,

the stage during gradient descent and the final stage of the muscle are shown in

Fig. 8.10. In the paper [95], a regularisation schema was introduced to enhance the

results, so results with regularisation are presented in Fig. 8.11.

As shown from Fig. 8.10 and 8.11, the regularisation is crucial to obtain a sat-

isfactory deformation, where only minimal inaccuracies occur. During this test,

ten gradient descent deformation iterations were performed, after which the result

would not change only slightly; the average centre point movement is about 0.01%

of the AABB diagonal length, which is practically not visible.

(a) The initial step. (b) The middle step. (c) The final step.

Figure 8.10: The gluteus muscle shape restoration after a random vertex movement.

The blue is the original shape, and the green is the approaching one.

(a) The initial step. (b) The middle step. (c) The final step.

Figure 8.11: The gluteus muscle shape restoration after a random vertex movement

and incorporating the regularisation schema. The blue is the original shape, and the

green is the approaching one.
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8. Model verification

8.3.2 Femur movement
The testing on actual measured data was performed to make the test more accu-

rate and realistic. These include the tests on hip muscles, namely gluteus maximus,

medius and iliacus, to be consistent with the previous chapter about static surface

generation.

The actual movement of the femur bone is the flexion of the bone from the

zero-angle (in this position is the femur when the body is lying) to the eighty-degree

angle (representing sitting) [96]. The actual bones are not visualised for the test to

show the see muscle volume during the deformation. The first muscle to test is the

gluteus maximus.

8.3.2.1 Gluteus maximus muscle

The deformed gluteusmaximusmuscle is visualised in Fig. 8.12. Although themuscle

needs to stay as a topological sphere, its surface-to-volume ratio increases to 9.36

dm
−1
due to the bend. Luckily, this fact does not affect the result much; only the

downside is that the surface is rougher than before.

Figure 8.12: RBF reconstruction of the gluteusmaximusmuscle after the 80
◦
flexion.

8.3.2.2 Gluteus medius muscle

The deformation of the gluteus medius muscle is less apparent than the gluteus

maximusmuscle because its centre is close to the centre of rotation. After the flexion,

the surface-to-volume ratio increases slightly, from 12.41 to 12.90. The result can
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8.3.2.3. Iliacus muscle

be seen in Fig. 8.13. Because the deformation is less apparent, the deformation of

the red muscle was adjusted to be faster and less precise to produce some spikes at

the end (not to let the simulation have time to reconstruct fully, but only partially).

As we can see, the RBF can smooth those spikes well.

Figure 8.13: RBF reconstruction of the gluteus medius muscle after the 80
◦
flexion.

8.3.2.3 Iliacus muscle

The last muscle to test is the problematic iliacus due to its flat superior part. As

shown in Fig. 8.14, the deformed muscle is approximated well considering the cir-

cumstances, containing no holes and approximating the overall shape nicely. The

roughness of the flat part is apparent, but this is expected because the algorithm

is trying to "fill a narrow gap with spheres". The approximation seems even better

than in the resting pose, confirmed by a slightly reduced surface-to-volume ratio of

23.61 dm
−1
. The ratio increased because the inferior part contracted.
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8. Model verification

Figure 8.14: RBF reconstruction of the iliacus muscle after the 80
◦
flexion.

All of these experiments prove that there is a space for RBF to be used in muscle

modelling. There is plenty of space to improve in the future, mainly to reduce the

roughness of the surface and maintain the number of RBFs used, but the idea and

the math are correct, and the basic algorithm also works by the outputs provided.

The previous text summarises my research during the years of study; the next

chapter of this dissertation focuses on our research papers during that time, explain-

ing the evolution of the research.
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Author’s
contribution 9
The main overview of this chapter is shown in Fig. 9.1, which focuses mainly on

paper topic separation and also in Fig. 9.2, focusing on the timeline of the contribu-

tions.
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Figure 9.1: The graphical description of the content of this chapter and the depth

of description on each topic. Created with the www.flourish.studio.
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9. Author’s contribution

My contribution counts up to thirteen papers throughout my doctoral research,

culminating in a pivotal publication central to this dissertation. A detailed time-

line of this contribution is illustrated in Fig. 9.2, displayed on a dedicated page for

a full-detail view. The first page of each section provides a concise summary of

these papers. Additionally, a radar chart at the beginning of the document visually

represents my contribution to each paper in percentages.

Since I can’t entirely agree with using only a single percentage of work on a pub-

lication, a nuanced view of my involvement is provided, and the work is categorized

into five distinct areas:

• Experimenting - Conducting exhaustive experiments with the established

approach, choosing appropriate parameters, and generating results (images,

concrete values) for the papers.

• Novelty - Developing new ideas based on existing methods, requiring refine-

ment and precise articulation.

• Implementation - Writing the source code, which is then evaluated in the

experimenting phase.

• Review - Thoroughly revising the paper, ensuring clarity, filling informational

gaps, correcting spelling errors, and improving the English quality.

• State-of-the-art - Undertaking comprehensive literature reviews and inte-

grating these findings effectively into the papers.

An additional category, "overall", averages these five aspects to present an over-

all percentage of my contribution. These charts are my honest estimations of how

much I contributed in each category. Furthermore, each summary includes the com-

plete citation of the paper, allowing readers to access further details about the work

quickly. An understandable phenomenon is visible following all of the publications.

The later the publication was produced, the more work shifted from the imple-

mentation and experimenting section into the novelty, state-of-the-art and review

sections, which is reasonable due to the absorbance of new knowledge during the

study.
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Figure 9.2: Timeline of the author’s contribution. The author of the dissertation

has already presented the green-marked publications abroad; the others were either

presented by a colleague or online due to epidemiologic restrictions.
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9. Author’s contribution

9.1 A New Strategy for Scattered Data
Approximation Using Radial Basis
Functions Respecting Points of
Inflection

The author’s initial contribution, docu-

mented in [3], was undertaken during

their master’s studies, with subsequent

utilization of its results. The paper used

radial basis functions (RBFs) to approxi-

mate 2D functions, highlighting identify-

ing features in the original function.

The paper focused on finding an op-

timal centre point using four groups: ver-

tices at the borders, local extrema, points

of inflexion, and pseudo-random posi-

tions. Borders prevented extrapolation, and RBFs at the extrema and inflexion

points captured the function behaviour, minimising errors. The pseudo-random

placement, using the Halton distribution, filled potential gaps. Also, some challenges

were noted, especially with sharp edges, where the RBF technique was unsuitable.

The publication is a solid foundation for the RBF approximation of general func-

tions. However, there is a lack of discussion on simplifications specific to the nature

of the data. Subsequent papers by the authors modified the RBF placement a bit. It

also becomes clear that the musculoskeletal data differ from a general 2D function.

Due to this fact, inflexion points were replaced with locations exhibiting the highest

Mean Squared Error (MSE), driven mainly by higher data dimensionality and the

different nature of the musculoskeletal geometry. This adjustment was applied to

approximate musculoskeletal models. Maintaining RBFs at the function boundaries

proved crucial for a successful final approximation.

Publication [3]:

CERVENKA, M.; SMOLIK, M.; SKALA, V. A New Strategy for Scattered

Data Approximation Using Radial Basis Functions Representing Points of

Inflection. Computational Science and Its Application, ICSSA 2019 proceedings,
Part I, LNCS 11619. 2019, pp. 322–226. isbn 978-3-030-24288-6. issn 0302-
9743. Available from doi: https://doi.org/10.1007/978-3-030-24289-

3 24. UT WoS: 000661318700024, EID: 2-s2.0-85069157052, OBD: 43926678

82

https://doi.org/https://doi.org/10.1007/978-3-030-24289-3_24
https://doi.org/https://doi.org/10.1007/978-3-030-24289-3_24


A New Strategy for Scattered Data
Approximation Using Radial Basis

Functions Respecting Points of Inflection

Martin Cervenka, Michal Smolik(B), and Vaclav Skala

Faculty of Applied Sciences, University of West Bohemia, Plzen, Czech Republic
{cervemar,smolik,skala}@kiv.zcu.cz

Abstract. The approximation of scattered data is known technique
in computer science. We propose a new strategy for the placement of
radial basis functions respecting points of inflection. The placement of
radial basis functions has a great impact on the approximation quality.
Due to this fact we propose a new strategy for the placement of radial
basis functions with respect to the properties of approximated function,
including the extreme and the inflection points. Our experimental results
proved high quality of the proposed approach and high quality of the final
approximation.

Keywords: Radial basis functions · Approximation · Stationary points

1 Introduction

The Radial basis functions (RBF) are well known technique for scattered data
approximation in d-dimensional space in general. A significant advantage of the
RBF application is its computational complexity, which is nearly independent of
the problem dimensionality. The formulation is leading to a solution of a linear
system of equations Ax = b. There exists several modifications and specifica-
tions of the RBF use for approximation. The method of RBF was originally
introduced by Hardy in a highly influential paper in 1971 [8,9]. The paper [8]
presented an analytical method for representation of scattered data surfaces.
The method computes the sum of quadric surfaces. The paper also stated the
importance of the location of radial basis functions. This issue is solved by several
papers. Some solutions are proposed by the papers [3,15,16], which use the regu-
larization in the forward selection of radial basis function centers. The paper [31]
presents an improvement for the problem with the behavior of RBF interpolants
near boundaries. The paper [13] compares RBF approximations with different
radial basis functions and different placement of those radial basis functions.
However, all the radial basis functions are placed with some random or uniform
distribution. A bit more sophisticated placement is presented in [14].

The research was supported by projects Czech Science Foundation (GACR) No. 17-
05534S and partially by SGS 2019-016.

c© Springer Nature Switzerland AG 2019
S. Misra et al. (Eds.): ICCSA 2019, LNCS 11619, pp. 322–336, 2019.
https://doi.org/10.1007/978-3-030-24289-3_24
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A New Strategy for Scattered Data Approximation Using RBF 323

The selection of a shape parameter is another problem. Wrong selection of
this parameter can lead to an ill-conditioned problem or to an inaccurate approx-
imation. The selection of the best shape parameter is thus very important. Forn-
berg and Wright [5] presents an algorithm which avoids this difficulty, and which
allows numerically stable computations of Multi-Quadric RBF interpolants for
all shape parameter values. The paper [29] derives a range of suitable shape
parameters using the analysis of the condition number of the system matrix,
error of energy and irregularity of node distribution. A lot of approaches for
selection of a good value of the shape parameter use some kind of random gen-
erator. Examples of this approaches are [2,20]. The paper [1] proposes a genetic
algorithm to determine a good variable shape parameter, however the algorithm
is very slow.

2 Radial Basis Functions

The Radial basis function (RBF) is a technique for scattered data interpola-
tion [17] and approximation [4,27]. The RBF interpolation and approximation
is computationally more expensive compared to interpolation and approximation
methods that use an information about mesh connectivity, because input data
are not ordered and there is no known relation between them, i.e. tessellation is
not made. Although RBF has a higher computational cost, it can be used for
d-dimensional problem solution in many applications, e.g. solution of partial dif-
ferential equations [11,33], image reconstruction [28], neural networks [7,10,32],
vector fields [24,26], GIS systems [12,18], optics [19] etc. It should be noted that
it does not require any triangulation or tessellation mesh in general. There is
no need to know any connectivity of interpolation points, all points are tied up
only with distances of each other. Using all these distances we can form the
interpolation or approximation matrix, which will be shown later.

The RBF is a function whose value depends only on the distance from its
center point. Due to the use of distance functions, the RBFs can be easily imple-
mented to reconstruct the surface using scattered data in 2D, 3D or higher
dimensional spaces. It should be noted that the RBF interpolation and approx-
imation is not separable by dimension. For the readers reference a compressed
description of the RBF is given in the following paragraphs, for details consider
[25,26].

Radial function interpolants have a helpful property of being invariant under
all Euclidean transformations, i.e. translations, rotations and reflections. It does
not matter whether we first compute the RBF interpolation function and then
apply a Euclidean transformation, or if we first transform all the data and
then compute the radial function interpolants. This is a result of the fact
that Euclidean transformations are characterized by orthonormal transforma-
tion matrices and are therefore two-norm invariant. Radial basis functions can
be divided into two groups according to their influence. The first group are
“global” RBFs [21]. Application of global RBFs usually leads to ill-conditioned
system, especially in the case of large data sets with a large span [13,23]. An
example of “global” RBF is the Gauss radial basis function.

9. Author’s contribution
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ϕ(r) = e−εr2

, (1)

where r is the distance of two points and ε is a shape parameter.
The “local” RBFs were introduced in [30] as compactly supported RBF

(CSRBF) and satisfy the following condition:

ϕ(r) = (1 − r)q
+P (r)

=

{
(1 − r)qP (r) 0 ≤ r ≤ 1

0 r > 1

(2)

where P (r) is a polynomial function, r is the distance of two points and q is a
parameter.

2.1 Radial Basis Function Approximation

RBF interpolation was originally introduced by [8] and is based on computing
the distance of two points in any k-dimensional space. The interpolated value,
and approximated value as well, is determined as (see [22]):

h(x) =

M∑

j=1

λjϕ(‖x − ξj‖) (3)

where λj are weights of the RBFs, M is the number of the radial basis func-
tions, ϕ is the radial basis function and ξj are centers of radial basis functions.
For a given dataset of points with associated values, i.e. in the case of scalar
values {xi, hi}N

1 , where N � M , the following overdetermined linear system of
equations is obtained:

hi = h(xi) =

M∑

j=1

λjϕ(‖xi − ξj‖) (4)

for ∀i ∈ {1, . . . , N}

where λj are weights to be computed; see Fig. 1 for a visual interpretation of (3)
or (4) for a 21

2D function. Point in 21
2D is a 2D point associated with a scalar

value.
Equation (4) can be rewritten in a matrix form as

Aλ = h, (5)

where Aij = ϕ(‖xi − ξj‖) is the entry of the matrix in the i−th row and j−th
column, the number of rows N � M , M is the number of unknown weights
λ = [λ1, . . . , λM ]T , i.e. a number of reference points, and h = [h1, . . . , hN ]T is
a vector of values in the given points. The presented system is overdetermined,
i.e. the number of equations N is higher than the number of variables M . This
linear system of equations can be solved by the least squares method (LSE) as

AT Aλ = AT h, (6)
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Fig. 1. Data values, the RBF collocation functions, the resulting interpolant (from
[26]).

where the matrix AT A is symmetrical. Another possibility to solve the overde-
termined system of linear equations Aλ = h is using the QR decomposition.

The RBF approximation can be done using “global” or “local” functions.
When using “global” radial basis functions, the matrix A will be full and ill
conditioned in general. When using “local” radial basis functions, the matrix
A might be sparse, which can be beneficial when solving the overdetermined
system of linear equations Aλ = h.

3 Proposed Approach

We propose a new approach for scattered data approximation of 21
2D functions

using Radial basis functions with respecting inflection points of the function.
Inflection points are computed from the discrete mesh and from curves given
by implicit points. For a simplicity, the proposed approach is demonstrated on
sampled regular grid.

The input 21
2D function f(x, y) is for the sake of simplicity of evaluation

sampled on a regular grid. For a general case neighbours have to be determined,
e.g. by using a kd-tree. One important feature when computing the RBF approx-
imation is the location of radial basis functions. We will show two main groups
of locations, where the radial basis functions should be placed.

The first group are extreme points of the input data set. Most of the radial
basis functions have the property of having its maximum at its center (we will
use only those) and thus it is very suitable to place the radial basis functions at
the locations of extreme points.

The second group are inflection points of the input data set. The inflection
points are important as the surface crosses its tangent plane, i.e. the surface
changes from being concave to being convex, or vice versa. The surface at those
locations should be approximated as accurately as possible in order to maintain
the main features of the surface.

9. Author’s contribution

86



326 M. Cervenka et al.

3.1 Determination of Extreme Points

The local extreme points of the function f(x, y) can be either minimum or max-
imum, i.e.

∂f

∂x
= 0 &

∂f

∂y
= 0. (7)

The decision if a point is a local extreme point can be done using only surround-
ing points. In our case, i.e. regular grid, we use four surrounding points, i.e.
point on the right, left, up and down. In general case, neighbor points need to
be determined, e.g. using a kd-tree. If a point is a local maximum, then all four
surrounding points must be lower. The same also applies to a local minimum,
i.e all four surrounding points must be higher (Fig. 2).

Fig. 2. Location of local extreme points. The values 1 and 8 (green) are local extremes,
i.e. local minimum and local maximum. The value 4 (red) is not a local extreme as the
four surrounding values are higher and smaller as well. (Color figure online)

The situation on the border of the input data set is a little bit different as we
cannot use all four surrounding points, there will always be at least one missing.
One solution is to skip the border of the input data set, however in this way
we could omit some important extremes. Therefore, we determine the extremes
from only three or two surrounding points.

3.2 Determination of Inflection Points

The second group of important locations for radial basis functions placement are
inflection points, which forms actually curves of implicit points. The inflection
points are located where the Gaussian curvature is equal zero. The Gaussian
curvature for 21

2D function f(x, y) is computed as

kgauss =

∂2f

∂x2

∂2f

∂y2
−

(
∂2f

∂x∂y

)2

((
∂f

∂x

)2

+

(
∂f

∂y

)2

+ 1

)2 . (8)

The Gaussian curvature is equal zero when

∂2f

∂x2

∂2f

∂y2
−

(
∂2f

∂x∂y

)2

= 0. (9)
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This formula is equivalent to the calculation using the Hessian matrix, i.e.
∣∣∣∣∣∣∣∣

∂2f

∂x2

∂2f

∂x∂y
∂2f

∂y∂x

∂2f

∂y2

∣∣∣∣∣∣∣∣
= 0. (10)

To find out the locations, where the Gaussian curvature, i.e. the determinant
of Hessian matrix, is equal zero, we can sample the following function from the
input discrete data set.

I(x, y) =
∂2f

∂x2

∂2f

∂y2
−

(
∂2f

∂x∂y

)2

. (11)

An application example of (11) can be seen in Fig. 3.
Now, we need to find out the locations, where this sampled function is equal

zero. We again use the four surrounding points. If at least one is positive and at
least one is negative, then there must be a zero value in between them. For the
simplicity and to speed-up the calculation we consider the center point as the
inflection point (see Figs. 3 and 4 for illustration).

Fig. 3. Location of inflection points. The green positions with values 1 are considered
as inflection points. The red position with value 4 is not an inflection point as all four
surrounding values from (11) are positive. (Color figure online)

The resulting inflection points form a curve of implicit points. It is quite
densely sampled. However, for the purpose of the RBF approximation, we can
reduce the inflection points to obtain a specific number of inflection points or
reduce them as the distance between the closest two is larger than some threshold
value.

3.3 RBF Approximation with Respecting Inflection Points

In the previous chapters, we presented the location of radial basis functions
for 21

2D function approximation. These locations are well placed to capture the
main shape of the function f(x, y). However we should add some more additional
points to cover the whole approximation space. One set of additional radial basis
functions is placed on the border and in the corners. The last additional radial
basis functions are placed at locations with Halton distribution [4]

Halton(p)k =

�log pk�∑

i=0

1

pi+1

(⌊
k

pi

⌋
mod p

)
, (12)
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Fig. 4. An example of 2 1
2
D function with the curves of inflection points. The red curve

represents the location of inflection points calculated using (11). (Color figure online)

where p is the prime number and k is the index of the calculated element, see
Fig. 5 for an example of denerated points distribution. It is recommended to use
different primes for x and y coordinate.

Fig. 5. The example of 103 Halton points. The Halton sequence was generated using
two prime numbers [2, 3], i.e. for x coordinates a Halton sequence with the prime
number 2 and for y coordinates a Halton sequence with the prime number 3.

Knowing all the positions of radial basis functions, we can compute the RBF
approximation of the 21

2D function. For the calculation we use the approach
described in Sect. 2.1.

4 Experimental Results

In this section, we test the proposed approach for Radial basis function approxi-
mation. We tested the approach on all standard testing functions from [6]. In this

9.1. A New Strategy for Scattered Data Approx. Using RBF Respecting Points of Inflection

89



A New Strategy for Scattered Data Approximation Using RBF 329

paper we present the experimental results on only three testing functions, while
the results for other testing functions are similar. The selected testing functions
are the following

f1(x, y) =
2

11

(
sin

(
4x2 + 4y2

)
− (x + y) +

5

2

)
(13)

f2(x, y) =
3

4
e− 1

4 ((9x−2)2+(9y−2)2) +
3

4
e− 1

49 (9x+1)2− 1
10 (9y+1)2

+
1

2
e− 1

4 (9x−7)2− 1
4 (9y−3)2 − 1

5
e−(9x−4)2−(9y−7)2 (14)

f3(x, y) =
1

9
tanh (9y − 9x) + 1 (15)

All testing functions z = f(x, y) were “normalized” to the interval x, y ∈
〈−1, 1〉 and the “height” z to 〈0, 1〉 in order to easily compare the proposed
approximation properties and approximation error for all testing functions and
we used Gaussian radial basis function in all experiments.

ϕ(r) = e−εr2

. (16)

Only some representative results are presented in this chapter. The visualization
of (13) is in Fig. 6, the visualization of (14) is in Fig. 9 and the visualization of
(15) is in Fig. 12.

The first function (13) is an inclined sine wave. This function contains inflec-
tion points formed in the elliptical shapes as can be seen in Fig. 8b. In the
experiments we used the Gaussian radial basis function with a shape parameter
ε = 1. The visualization of original function together with the RBF approxima-
tion is in Fig. 6. The approximation consists of 246 radial basis functions (78 are
at locations of inflection points and extremes, 24 are at the borders and 144 are
Halton points). It can be seen that the RBF approximation is visually identical
to the original one. Also precision of approximation is very high, see Fig. 8a

To have a more closer look at the quality of RBF approximation, we computed
the isocontours of the both original and approximated functions, see Fig. 7. Those
isocontours are again visualy identical and cannot be seen any difference.

To compare the original and RBF approximated functions, we can compute
the approximation error using the following formula for each point of evaluation.

Err = |f(x, y) − fRBF (x, y)|, (17)

where f(x, y) is the value from input data set and fRBF (x, y) is the approximated
value. Absolute error is used for evaluations data are normalized to 〈−1, 1〉 ×
〈−1, 1〉 × 〈0, 1〉 as described recently. If we compute the approximation error for
all input sample points, then we can calculate the average approximation error,
which is 2.37 · 10−4, and also the histogram of approximation error, see Fig. 8a.
It can be seen that the most common approximation errors are quite low values
below 0.4%. The higher approximation errors appear only few times. This proves
a good properties of the approximation method.
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(a) Original data set. (b) RBF approximation.

Fig. 6. The RBF approximation of 2 1
2
D function (13). The total number of RBF

centers is 246 (red marks). (Color figure online)
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(a) Original data set.
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(b) RBF approximation.

Fig. 7. The comparison of function isocontours.

The next testing function (14) is visualized together with the RBF approxi-
mation in Fig. 9. This function consists of four hills and the RBF approximation
preserves the main shape. The only small difference is at the borders, which can
be seen in more details in Fig. 10. The Gauss function with the shape parameter
ε = 26 was used as radial basis function.

The average approximation error is 2.75 · 10−3 and the distribution of the
approximation error can be seen in the histogram in Fig. 11.
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(a) Histogram of approximation error. (b) Inflection and extreme points.

Fig. 8. The histogram (a) of approximation error for the function (13). The horizon-
tal axis represents the absolute approximation error computed as (17). It should be
noted, that the vertical axis is in logarithmic scale. The visualization (b) of all located
inflection and extreme points.

(a) Original data set. (b) RBF approximation.

Fig. 9. The RBF approximation of 2 1
2
D function (14). The total number of RBF

centers is 244 (red marks). (Color figure online)

The last function (15) for testing the proposed RBF approximation is visu-
alized in Fig. 12a. This function is quite exceptional, because it has a sharp cliff
on x = y. Such sharp cliffs are always very hard to approximate using the RBF.
However using the proposed distribution of the radial basis functions, we are
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(a) Original data set.
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(b) RBF approximation.

Fig. 10. The comparison of function isocontours.
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Fig. 11. The histogram of approximation error for the function (14). The horizontal
axis represents the absolute approximation error computed as (17). It should be noted,
that the vertical axis is in logarithmic scale.

able to approximate the sharp cliff quite well, see Fig. 12b. The problem, that
comes up, is the wavy surface for y > x, see more details in Fig. 13. The Gauss
function with the shape parameter ε = 25 was used as the radial basis function.

The average approximation error for this specific function is 1.22 ·10−2. This
result is quite positive as the function is very hard to approximate using the RBF
approximation technique. The histogram of the approximation error is visualized
in Fig. 14.
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(a) Original data set. (b) RBF approximation.

Fig. 12. The RBF approximation of 2 1
2
D function (15). The total number of RBF

centers is 244 (red marks). (Color figure online)
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(a) RBF approximation isocontours.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

X

Y

(b) Approximation error isocontours.

Fig. 13. The visualization of approximated function isocontours (a). The visualization
of approximation error as isocontours plot (b), please note that the average approxi-
mation error is 1.22 · 10−2.
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Fig. 14. The histogram of approximation error for the function (15). The horizontal
axis represents the absolute approximation error computed as (17). It should be noted,
that the vertical axis is in logarithmic scale.

5 Conclusion

We presented a new approach for approximation of 21
2D scattered data using

Radial basis functions respecting inflection points in the given data set. The RBF
approximation uses the properties of the input data set, namely the extreme
and the inflection points to determine the location of radial basis functions.
This sophisticated placement of radial basis functions significantly improves the
quality of the RBF approximation. It reduces the needed number of radial basis
functions and thus creates even more compressed RBF approximation, too.

In future, the proposed approach is to be extended to approximate 31
2D

scattered data, while utilizing the properties of the input data set for the optimal
placement of radial basis functions. Also efficient finding a shape parameters is
to be explored.
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9.2 Novel RBF Approximation Method
Based on Geometrical Properties for
Signal Processing with a New RBF
Function: Experimental Comparison

The primary objective of the second con-

tribution of the authors, as described in

[93], was to exhaustively investigate the be-

haviour of a carefully chosen subset of RBFs.

The study involved testing the performance

of CSRBF, Gaussian RBF, and TPS RBF, to-

gether with a newly proposed radial basis

function was performed, to choose the suit-

able RBFs. Sixteen distinct 1D signals, strate-

gically designed to expose potential weak-

nesses in each type of RBF, were used for the testing. The methodology used in the

previous article [3] was adopted as a comparable centre placement approach.

The experiment results revealed that accurate approximations could be achieved,

with amean square error consistently below 1% for all global RBFs. In particular, the

proposed RBF, denoted 𝜑 (𝑟) = 𝑟2 (𝑟𝛼 − 1), outperformed all other RBFs in these
cases. However, more extensive testing is required to ensure its relevance to real-

world data, especially when dealing with higher-dimensional datasets. The Gaussian

RBF showed suboptimal performance in the testing scenarios, although it was stable

in terms of the conditionality of the equation system and increased predictability.

The exploration of individual RBFs in this study laid the foundation for a more

informed and efficient selection of RBFs for muscle modelling. The novel and the

Gaussian RBFs were tested as potential candidates to approximate a muscle model,

emerging as the best options among those investigated in this study. Further re-

search and testing are recommended to refine the proposed RBF’s understanding

and suitability for practical applications involving higher-dimensional datasets.

Publication [93]:

SKALA, V.; CERVENKA, M. Novel RBF Approximation Method Based on

Geometrical Properties for Signal Processing with a New RBF Function:

Experimental Comparison. Informatics 2019, IEEE proceedings. 2019, pp. 357–
362. isbn 978-1-7281-3178-8. Available from doi: https://doi.org/10.

1109/Informatics47936.2019.9119276. UT WoS: 000610452900074, EID:

2-s2.0-85087090327, OBD: 43929007
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Abstract— Interpolation and approximation methods are wi-
dely used in many areas. They can be divided to methods based
on meshing (tessellation) of the data domain and to meshless
(meshfree) methods, which do not require the domain tessellation
of scattered data. Scattered n-dimensional data radial basis func-
tion (RBF) interpolation and approximation leads to a solution
of linear system of equations.

This contribution presents a new approach to the RBF approx-
imation based on analysis of geometrical properties of signals,
i.e. sampled curves. Also a newly developed radial basis function
was used and proved better precision of approximation.

Experimental comparison of several RBF functions (Gauss,
Thin-Plate Spline, CS-RBF and a new proposed RBF) is de-
scribed with analysis of their properties. Special attention was
taken to the precision of approximation and conditionality issues.
The proposed approach can be extended to a higher dimensional
case and for vector data, e.q. fluid flow, too.

Index Terms—Approximation, Radial basis functions, RBF,
Signal processing, Computer graphics, Meshless methods.

I. INTRODUCTION

Interpolation and approximation of scattered data is re-
quired in many areas. As there is no ordering defined for d-
dimensional case, if d ≥ 1, usually two approaches are taken:
• Tessellation of the data domain, e.g. using Delaunay

triangulation and application of a selected interpolation
or approximation method. However, the Delaunay tessel-
lation has a computational complexity O

(
ndd

2/2e
)

.
This leads high computational complexity and to imple-
mentation problems in the case that d > 2. Another
computational problems can be expected, if smoothness
of the interpolation or approximation is required.

• Use of meshless methods based on Radial Basis Func-
tions (RBF) use leads to a solution of a linear system
of equations Ax = b, in general, and the computational
complexity is nearly independent from the dimension-
ality of the data domain, see Hardy [1], . Even more,
if relevant RBF function is selected, higher degree of
smoothness is obtained. On the other hand, interpolation

The research was supported by Czech Science Foundation (GACR) project
No.GA 17-05534S and partially by SGS 2019-016 project

1 Corresponding author

and approximation methods based on meshless approach
usually have a problem with a precision on borders or
on discontinuities, in general. The meshless methods can
be also used for approximation of vector data, i.e. fluid
flow etc. However, some RBFs applications might lead to
numerical problems due to ill-conditioned matrix of the
linear system, especially for large data sets.

Usually, the approximation methods use a general method,
which is not taking directly geometrical properties of the signal
into account, e.g. Singh [2], Skala & Smolik & Nedved [3].
However, if some information on signal geometry can be
extracted from data and used, the approximation should be
more precise and simpler. Such approach has been used by
Majdisova & Skala & Smolik [4]. This approach seems to be
quite complicated, as it is based on properties of cubic curve
in floating data window.

This contribution is focused on the following main aspects:

• how geometrical properties of a signal can be efficiently
used for good and robust approximation,

• how to approximate a signal, i.e. a sampled curves, with
a good precision with a minimal number of radial basis
functions (RBFs),

• what kind of RBFs probably gives better results,
• what are properties of a newly developed RBF in terms

of precision and numerical precision.

As some RBF functions have a parameter, called a shape
parameter, some problems can be expected with an optimal
shape parameter selection or estimation. Some proposal how
to select suitable shape parameters were introduced by Kara-
georghis [5], Wang & Liu [6] for range of shape parameters
generation, Afiatdoust & Esmaeilbeigi [7] presented use of
genetic algorithm. Moreover, Sarra & Sturgill [8] propose
non-deterministic approach based on random shape parameter
generation. However, some experiments recently made by
Skala & Karim & Zabran [9] proved, that there is probably no
optimal constant shape parameter nor one vector of optimal
shape parameters for each RBF.

Another problem is shape parameter selection Karageorghis
[5]. There are two particular cases which may occur in
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general: approximation will be inaccurate or the problem may
become ill-conditioned. That is why correct shape parameter
selection is needed. Some approaches to select suitable shape
parameters already exists. Approach introduced by Wang &
Liu [6] for example generates range of shape parameters,
Afiatdoust & Esmaeilbeigi [7] presented theirs approach using
genetic algorithm. Moreover, Sarra & Sturgill [8] propose non-
deterministic approach based on random generator. Some re-
cent research have been devoted to variable shape parameters,
i.e, each RBF function has a different shape parameter, e.g.
Majdisova [4], Skala [9].

Application of the RBF interpolation and approximation
in engineering practice can be found in Biancolini [10],
Fasshauer [11], Menandro [12] . Also RBFs are used for vector
field interpolation and approximation, e.g. Smolik [13], [14],
[15], [16], Skala [17], solution of partial differential equations
(PDE) Zhang [18], Neural Networks RBF Yinwey [19] and
reconstruction of implicit curves Cuomo [20]. Comparison of
selected RBFs can be found in Majdisova [21].

II. RBF INTERPOLATION

According to Hardy [22], RBF interpolation is based on
determining the distance of two point (in the d-dimensional
space in general). The interpolation is given in the form:

h (x) =
N∑

j=1

λjϕ (||x− xj ||) =
N∑

j=1

λjϕ (rj) (1)

where ri is the distance from a point x to the point xi. As the
parameter of the function ϕ is a distance of two points in the
d-dimensional space, the interpolation is non-separable by a
dimension. The RFBs will be described in detailed latter on.

For each point xi the interpolating function has to have
value hi. Therefore, we are getting a system of linear equa-
tions:

h (xi) =
N∑

j=1

λjϕ (||xi − xj ||) =
N∑

j=1

λjϕ (rij) (2)

where λj are unknown weights for each radial basis function,
N is the number of given points and ϕ is the radial basis
function itself. It can be rewritten if the matrix form as:

Aλ = h (3)

or in a detailed form as (4):



ϕ11 · · · ϕ1j · · · ϕ1N

...
. . .

...
. . .

...
ϕi1 · · · ϕij · · · ϕiN

...
. . .

...
. . .

...
ϕN1 · · · ϕNj · · · ϕNN







λ1
...
λi
...
λN



=




h1
...
hi
...
hN




(4)
After solving the system of linear equations, interpolated
value at the point x is computed using (1). However, due
to numerical robustness and stability, additional polynomial

conditions are usually added Skala [23] [24]. In the case of
an additional polynomial we obtain:

h (xi) =
N∑

j=1

λjϕ (||xi − xj ||) + Pk(xi) (5)

In the case of a linear polynomial (in 2 1
2D case):

Pk (x, y) = a0 + a1x+ a2y (6)

This additional conditions can be rewritten as:
N∑

j=1

λj = 0
N∑

j=1

λjxj = 0 (7)




ϕ11 . . . ϕ1N 1 x1 y1
...

. . .
... 1

...
...

ϕN1 . . . ϕNN 1 xN yN
1 1 1 0 0 0
x1 . . . xN 0 0 0
y1 . . . yN 0 0 0







λ1
...
λ1
a0
a1
a2



=




λ1
...
λ1
0
0
0




(8)
This matrix can be further rewritten in more compact way:

[
A P
PT 0

] [
λ
a

]
=

[
h
0

]
(9)

The matrix P represents polynomial additional conditions, λ is
vector of RBF weights, vector a contains resulting polynomial
coefficients and h are given values at the given points.

It should be noted that in some cases that it can be
counterproductive especially for large scope of domain data
Jäger [25], Skala [23] [24].

III. RBF APPROXIMATION

Approximation methods are slightly different from inter-
polation as the final approximated curve does not need to
”pass” all the given points. If the matrix A is a square matrix
(RBF count M is equal to size of the x vector), this is an
interpolation problem. On the other hand, when M is smaller,
it becomes approximation problem, because equation system
became over-determined. Let us ξj are significant points in the
given signal, then the approximation can be formulated as:

h (xi) =
M∑

j=1

λjϕ (||xi − ξj ||) (10)

where λj are weights of each radial basis function, M is
count of RBF being used and M � N , the ϕ is the RBF,
ξj are center (important) points. Then the approximation can
be expressed by equation (11):




ϕ11 · · · ϕ1M

...
. . .

...
ϕi1 · · · ϕiM

...
. . .

...
ϕN1 · · · ϕNM






λ1
...
λM


 =




h1
...
hi
...
hN




(11)
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Overdetermined linear equation system is to be solved, e.q. by
the Least Square Error method (12).

x =
(
ATA

)−1
ATh (12)

However, in the approximation case, the additional polynomial
conditions cannot be used Majdisova [26], [27].

IV. RBF FUNCTIONS

There are several radial basis functions Fasshauer [11],
Majdisova [28] [29], Buhmann [30]. They can be divided into
two major groups (Smolik [13]):
• ”global” RBFs having global influence, e.g. r2lg(r),
exp(−αr2), sqrt(α + r2) 1/sqrt(α + r2), 1/(α + r2),
etc. where α is a shape parameter. The RBF matrix is
usually full and ill conditioned.

• ”local” RBFs - Compactly Supported RBF (CS-RBF)
have a non-zero value for the interval 〈0, 1〉 only. The
RBF matrix is usually sparse as it depends on the scaling
of the interval 〈0, 1〉 to the required one. Some examples
are listed in Tab.I and they are shown on Fig.1. The article
Menandro [12] describes this class of RBFs.

Some examples of RBFs are listed in Tab.I and at Fig.1.

ID Function

1 (1− r)+

2 (1− r)3+ (3r + 1)

3 (1− r)5+
(
8r2 + 5r + 1

)

4 (1− r)2+

5 (1− r)4+ (4r + 1)

6 (1− r)6+
(
35r2 + 18r + 3

)

7 (1− r)8+
(
32r3 + 25r2 + 8r + 3

)

8 (1− r)3+

9 (1− r)3+ (5r + 1)

10 (1− r)7+
(
16r2 + 7r + 1

)

TABLE I: List of well-known CS-RBF.

V. PROPOSED RBF

In this paper a new global radial basis function is proposed.
It has one shape parameter and is defined as is in (13).

ϕ (r) = r2 (rα − 1) (13)

where α is a shape parameter (we use α = 1.8 globally). The
function is shown at Fig.2.

VI. DESCRIPTION OF EXPERIMENTS

For sake of simplicity, all signal values has been normalized
to interval h (xi) ∈ 〈0, 1〉, i. e. yi = h (xi). Signal domain has
been set to the xi ∈ 〈0, 1〉 as well for the same reason.

As already mentioned, four RBF has been used for testing
purposes. Gaussian RBF (in equation (14)) is global radial
basis function with one shape parameter α defining its disper-
sion.

ϕ (r) = e−αr
2

(14)

Fig. 1: Plotted CSRBFs taken from [13].
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Fig. 2: Proposed RBF function with various shape parameters.

Thin plate spline (TPS) function is the next one which has
been tested. It is global RBF as well, and it is defined in (15).

ϕ (r) = r2 log r (15)

Next class of function on the list is CS-RBF. In particular,
(16) function has been selected from the Tab.I. It is worth
noting that this function (like all CS-RBF) is local.

ϕ (r) = (1− r)7+
(
16r2 + 7r + 1

)
(16)

Last but not least we propose another RBF. It is global RBF
with a shape parameter α and it is described by equation (13).

Described radial basis functions approximation has been
tested against multiple signals, however, there are listed only
some of tested signals in this paper. This signal subset contains
following functions:
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Fig. 4: Function 2.

1) f1 (x) = 50
(
0.4sin

(
15x2

)
+ 5x

)

2) f2 (x) = atan
(
(10x− 5)

3
)
+ 0.5atan

(
(10x− 8)

3
)

3) f3 (x) = e10x−6sin
(
(5x− 2)

2
)
+ (3x− 1)3

4) f4 (x) = sin
(
15x2

)
+ 5x

Selected signals (sampled curves) are shown at Fig.3 – 6.
The RBF center points ξi are shown as various marks on

plotted signal curve on each plot. Four already mentioned
RBFs (Gauss, TPS, CS-RBF and the proposed one) were
selected to approximate these signals (among others).

VII. EXPERIMENTAL RESULTS

The proposed approach was tested on several testing func-
tions, see Tab.II. It should be noted explicitly, that all function
were normalized for the interval x ∈ 〈0, 1〉 , y ∈ 〈0, 1〉. In
order to easily compare errors of the proposed RBF approxi-
mation methods.

As the proposed RBF approximation is based on finding
significant geometric properties, such as maxima, minima, in-
flection points, etc., the conditionality of the RBF metrics and

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Function: @(x) (exp (10 * x - 6) .* sin ((5 * x - 2) . 2) + (3 * x - 1) . 3)

Original

f(
x
)

x

Fig. 5: Function 3.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Function: @(x) (sin (15 * x . 2) + 5 * x)

Original

|h
(x
)-
f(
x
)|

x

Fig. 6: Function 4.

mutual comparison of errors were analyzed. Error behaviour
is considered as the critical issue in approximation in general.

In this contribution only couple of function used are
presented, see Fig.3 – 6. The relevant approximation error
behaviour is presented at Fig.7 – 10.

Tab.III – V present the error behaviour numerically. Exact
numerical experimental results are presented in following
Tab.III (mean square error), Tab.IV (maximum absolute error)
and Tab.V (condition numbers of equation system matrix A
defined in equation 3) respectively. It can be seen that the
high error is caused by significant under-sampling. Inclusion
of additional point(s) leads to significant decrease of the
approximation error. It should be noted, that this contribution
is analyzing the approximation behaviour at the lowest border
of the sampling frequency.

The experiments proved that the sampled curves can be
efficiently approximated by the few ”important” points, i.e.
extrema, inflections etc., with acceptably low error. The pro-
posed method also leads to good data compression.
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1 sin
(
15x2

)
+ 5x

2 0.5 cos (20x) + 5x

3 50
(
0.4 sin

(
15x2

)
+ 5x

)

4 sin (8πx)

5 sin
(
6πx2

)

6 sin (25x+ 0.1)/ (25x+ 0.1)

7 2 sin (2πx) + sin (4πx)

8 2 sin (2πx) + sin (4πx) + sin (8πx)

9 −2 sin (2πx) + cos (6πx)

10 2 sin (2πx) + cos (6πx)

11 −2 sin (2πx) + cos (6πx)− x

12 −2 cos (2πx)− cos (4πx)

13 atan
(
(10x− 5)3

)
+ 0.5atan

(
(10x− 8)3

)

14 (4.48x− 1.88) sin
(
(4.88x− 1.88)2

)
+ 1

15 e10x−6) sin
(
(5x− 2)2

)
+ (3x− 1)3

16 (1/9) tanh (9x+ 0.5)

TABLE II: Tested artificial signals.
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Fig. 7: Differences for y = f1 (x).
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Fig. 8: Differences for y = f2 (x).
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Fig. 10: Differences for y = f4 (x).

Experiments also proved that application of the CS-RBFs
with a constant shape parameter is not convenient, unless addi-
tional points are not included in the approximation. (maximum
error for the function 2, if CS-RBF is used).

The proposed RBF approximation method was also tested
for a newly developed RBF. The experiments proved signif-
icant precision improvement of the final approximation over
the TPS function.

Function Radial basis function

number CS-RBF TPS Gauss Proposed

1 2.41·10−4 6.40·10−6 3.13 ·10−7 1.21 ·10−7

2 1.54·10−1 3.95·10−6 2.56 ·10−2 2.34 ·10−6

3 9.21·10−4 8.67·10−6 2.51 ·10−4 3.30 ·10−7

4 7.92·10−4 2.56·10−5 3.12 ·10−7 5.23 ·10−7

TABLE III: Mean square error.

VIII. CONCLUSION

In this contribution a novel approach for RBF approximation
based on geometrical properties of a sampled curve (signal)
is presented. Experiments proved advantages of the global
functions over CS-RBFs are sensitive to the shape parameter
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Function Radial basis function

number CS-RBF TPS Gauss Proposed

1 7.33·10−2 7.76·10−3 1.70 ·10−3 9.21 ·10−4

2 1.81·100 5.24·10−3 5.19 ·10−1 6.29 ·10−3

3 1.44·10−1 1.39·10−2 5.09 ·10−2 2.30 ·10−3

4 1.33·10−1 1.52·10−2 1.76 ·10−3 1.89 ·10−3

TABLE IV: Maximum absolute error.

Function Radial basis function

number CS-RBF TPS Gauss Proposed

1 6.60·10−19 8.80·10−6 1.44 ·10−12 2.49 ·10−9

2 2.68·10−18 8.47·10−5 2.43 ·10−12 1.05 ·10−7

3 4.05·10−18 4.58·10−6 2.35 ·10−12 2.25 ·10−9

4 2.78·10−18 2.44·10−6 9.17 ·10−14 3.20 ·10−10

TABLE V: Condition numbers.

selection and require more points for acceptable approximation
in general.

The newly developed RBF function is better in the precision
terms over the TPS function, however, the TPS function has
a little bit worse conditionality which can be improved by
additional polynomial.

The proposed RBF seems to be an alternative to the TPS
function offering better error, however the influence of the
shape parameter α is under investigation. The optimal choice
of the shape parameter α is an open question.

The experiments also proved that the CS-RBFs require vari-
able shape parameter which is significant result as CS-RBFs
are used in many areas, e.g. solution of partial differential
equations, etc. The adaptive shape parameter for CS-RBFs is
to be explored in future.
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9.3 Modified Radial Basis Functions
Approximation Respecting Data Local
Features

The subsequent paper [94] builds on the

foundations established in the initial paper

[3]. This specific contribution exploits di-

verse features of the input function as op-

timal locations for RBF centres. These fea-

tures contain edges, stationary curvature

points, pseudorandom positions, and cen-

tres at the function’s borders. It is necessary

to include the latter two features according

to Section 9.1. The centres situated at edges

(identified, e.g. through the Canny edge detector on the height map image of the

function) and stationary curvature points yield an even more enhanced interpola-

tion result than inflexion points and local extrema.

The exploration of curvature concepts was further developed and ultimately

integrated into the author’s most recent publication, as elucidated in Section 9.13.

Furthermore, the discussion in Section 9.1 emphasised the importance of includ-

ing pseudorandom positions and centres at the border. This deliberate integration

stems from the overarching belief that centres located at edges and stationary cur-

vature points possess the potential to enhance interpolation results beyond what

can be achieved with inflexion points and local extrema alone.

The research presented in [94] not only builds on the concepts introduced in [3]

but also advances the understanding of optimal RBF centre placement by consider-

ing a broader spectrum of features in the input function. The continued evolution

and practical applicability are underscored by the subsequent developments, as out-

lined in Section 9.13, showing its relevance in subsequent research.

Publication [94]:

VASTA, J.; SKALA, V.; SMOLIK, M.; CERVENKA, M. Modified Radial Basis

Functions Approximation Respecting Data Local Features. Informatics 2019,
IEEE proceedings. 2019, pp. 445–449. isbn 978-1-7281-3178-8. Available from
doi: https://doi.org/10.1109/Informatics47936.2019.9119330. UT

WoS: 000610452900015, EID: 2-s2.0-8508762067, OBD: 43928987
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Abstract—This paper presents new approaches for Radial
basis function (RBF) approximation of 2D height data. The
proposed approaches respect local properties of the input data,
i.e. stationary points, inflection points, the curvature and other
important features of the data. Positions of radial basis functions
for RBF approximation are selected according to these features,
as the placement of radial basis functions has significant impacts
on the final approximation error. The proposed approaches were
tested on several data sets. The tests proved significantly better
approximation results than the standard RBF approximation
with the random distribution of placements of radial basis
functions.

Index Terms—Radial basis function, approximation, inflection
points, stationary points, Canny edge detector, curvature

I. INTRODUCTION

The approximation is commonly used and well known
technique in many computer science disciplines. This tech-
nique can be divided into two groups. The first one is the
approximation that use the mesh and its connectivity. Some
well known approaches that use the triangulation are [1]–[4].
However, all those approaches need the mesh connectivity,
i.e. triangulation, which can be time consuming and difficult
to compute for higher dimensions. On the opposite site, the
second group are approximation techniques that does not
require any mesh, i.e. they are called meshless methods. This
paper focuses on this kind of approximation.

In the book [5] is provided an introduction for each of
the most important and classic meshless methods along with
the complete mathematical formulations. In total, it presents
19 meshless methods in detail with full mathematical for-
mulations showing numerical properties such as convergence,
consistency and stability. One example of approximation tech-
nique is Kriging [6]. It depends on expressing spatial variation

The authors would like to thank their colleagues at the University of West
Bohemia, Plzen, for their discussions and suggestions. The research was sup-
ported by the projects: Czech Science Foundation (GACR) No. GA17-05534S
and partially by SGS 2019-016.

of the property in terms of the variogram, and it minimizes the
prediction errors which are themselves estimated. Extension
and variations of this method are available in [7]–[9]. Another
approximation technique is weighted least square method [10],
[11] it is simple because it is based on the well-known standard
least squares theory. It is attractive because it allows one
to directly use the existing body of knowledge of the least
squares theory and it is flexible because it can be used to a
broad field of applications in the error-invariable models. Very
similar approach is the LOWESS method [12] which is used
for meshless smoothing and approximation of noisy data.

The Radial basis function (RBF) methods have been widely
used for approximation of scattered data, recently. A brief
introduction to this method is in [13]. Comparison of different
radial basis functions is in [14], [15]. The paper [16] presents
an approach for large scattered data interpolation. It uses
the space subdivision to reduce the computation time and
more importantly to reduce the needed memory for RBF
approximation. A modification of this algorithm for 3D vector
field data approximation is presented in [17]. Very important
for the final RBF approximation quality is the distribution of
radial basis functions. This problem is described and suggested
solution in [18], [19]. Many papers also propose a solution
to the selection of the best shape parameters of radial basis
functions [20]–[24].

II. RADIAL BASIS FUNCTIONS

The Radial basis functions (RBF) are commonly used for
n-dimensional scattered data approximation and interpolation.
This approach is used in many areas, e.g. image reconstruction
[25], [26], neural networks [27] and surface reconstruction
[28], [29]. The task can be stated as follow. Find analytic
function for given pairs of values (xi, hi), where xi is a
point position in n-dimensional space and hi is value in
this point. For such data it is not possible to use standard
approximation and interpolation techniques because lack of
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knowledge about data connectivity and ordering. Therefore,
the RBF approximation has the following attributes:

• Designed for scattered data approximation/interpolation
• Independent of the data dimension
• Not separable, i.e. it is not valid to approxi-

mate/interpolate data ”dimension by dimension”
• Invariant with respect to euclidean transformations

Hardy [30] proposed RBF interpolation based on interpola-
tion equation:

f(~x) =
M∑

i=1

λiθ (||~x− ~xi||), (1)

where ~xi is data point and λi is point weight. θ(rij) is radial
basis function, where rij = ||~x − ~xi||. Radial basis function
can differ, but they can be divided into two main groups by
theirs range of influence, i.e. global and local functions.

RBF approximation/interpolation leads to the linear equa-
tion system A~x = ~b, where approximation differ from inter-
polation only with form of matrix A. Solvability and stability
problems were solved for example in [31] [32]. Wright [32]
extend original RBF interpolation with polynomial and added
more conditions.

A. Radial Basis Functions approximation

RBF approximation is based on point distance in n-
dimensional space and is derived from the same equation (2)
as interpolation is.

f(~x) =
M∑

i=1

λiθ (||~x− εi||), (2)

where M is number of radial basis functions, λi is weight
of radial basis function, θ is radial basis function and εi is
placement of radial basis function.

Given set of value pairs {~xi, hi}N1 , where ~xi is point
position in n-dimensional space, hi is value in this point, N
is number of given points. N �M therefore we obtain over-
determined system of linear equations.

hi = f(~xi) =
M∑

i=1

λiθ (|| ~xj − εj ||)

i = {1, . . . , N},M � N (3)

It can be rewritten in matrix form

A~λ = ~h (4)

This over-determined system of linear equations can be
solved by LSE or QR decomposition.

III. PROPOSED APPROACH

Radial basis function placement is important factor for ap-
proximation error. In this contribution, property of these good
points are proposed with the way to find them. First group are
extreme points i.e. local/global minimum or maximum. Next
group are points of inflection. These points represents changes
in data. Another proposed group of points are stationary points
of curvature. These points represents extreme curvature values
and in some case they are similar to points of inflection.
Last group are edge points as known from image processing,
because we can look at data as on image depending on data
structure or sampling. Search for important points is amended
with Halton sequence [13] sampling with special stress on
border and corner sampling for covering whole data set. The
last step is reduction of points number with nearest neighbour
condition.

The Halton sequence is computed using the following
formula:

Halton(p)k =

blogp kc∑

i=0

1

pi+1

(⌊
k

pi

⌋
mod p

)
, (5)

where p is a prime number, k is the order of the element of
the Halton sequence, i.e. k ∈ {1, . . . , n}. For generation of
random points with Halton distribution in higher dimension,
different values of p are used for each dimension.

A. RBF Approximation with Stationary Points

It is known that stationary points are such points that hold
equation

δf

δx
= 0 ∧ δf

δy
= 0 (6)

This condition is not enough to determine whether the point
is global/local extreme or just a saddle point. It is necessary
to examine Hessian to determine point property. On the other
hand it can be seen that saddle points are as important as
points of extreme.

Evaluation of partial derivatives and comparing with zero
is not optimal way to find stationary points. Better way is
to compare given point with its surrounding i.e. masks for
minimum, maximum and saddle point can be created.

B. RBF Approximation with Inflection Points

Points of inflection are such points where surface change
from convex to concave or the other way round. For points
of inflection in continuous space hold that Gauss curvature is
equal to zero

κgauss =

δ2f
δx2

δ2f
δy2 −

(
δ2f
δxδy

)2

((
δf
δx

)2
+
(
δf
δy

)2
+ 1

)2 (7)

It can be seen, from equations above, that Gauss curvature
is zero only when numerator is equal zero, i.e. Hessian matrix
determinant is equal to zero.
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It is not necessary to compute exact curvature value to find
point of inflection. We need to find just points where curvature
sign change from negative to positive or vice versa. It can be
seen that sign of Gauss curvature only depends on numerator
sign because denominator is always positive.

C. RBF Approximation with Stationary Points of Curvature

From (7) we can compute curvature of given surface in
every data point. Then it is possible to find stationary points
in curvature similar to process described in the section III-A

D. RBF Approximation with Edge Detection

In the simplified scenario, where the points are sampled in
the grid pattern, we can look at the data as image i.e. value h
on position [x, y] can be considered to be brightness intensity I
in pixel (i, j). In case of scatter data there is need to use some
special data structure to obtain points adjacency information
e.g. kd-tree or adjust used algorithms.

We proposed to detect edges in image i.e. transitions be-
tween low and high values. Another suggested approach is to
compute data gradient magnitude in each data point and then
run edge detector over such field of gradient magnitudes. This
approach will find transitions between low and high gradient
magnitude areas. To detect edges we can use existing detectors
from image processing e.g. Canny, Sobel, Prewitt etc.

Fig. 1: Test function

IV. EXPERIMENTAL RESULTS

Proposed methods were tested on several test functions
which were designed to represent special data set behaviour.
Sampling step is 0.01 and functions are normalized to interval
(x, y, z) ∈ 〈−1, 1〉×〈−1, 1〉×〈0, 1〉 for comparison purposes.
For all functions Gauss radial basis function φ(r) = e−εr

2

was
used.

(a) Height map converted to im-
age

(b) Gradient magnitudes con-
verted to image

(c) Edge detector over height
map

(d) Edge detector over gradient
magnitudes map

Fig. 2: The edge detection from height map (a), (c). The edge
detection from gradient magnitudes map (b), (d).

f1 (x, y) =
2

11

(
sin
(
4x2 + 4y2

)
− x+ y − 5

2

)

f2 (x, y) =
3

4
e−

1
4 ((9x−2)2+(9y−2)2)

+
3

4
e−

1
49 ((9x+1)2− 1

10 (9y+1)2)

+
1

2
e−

1
4 ((9x−7)2+(9y−3)2) − 1

5
e−(9x−4)

2−(9y−7)2

f3 (x, y) =
1

9
tanh (9y − 9x) + 1

(8)

For comparison was used square mean error per point as can
be seen in Fig. 6, Fig. 7 and Fig. 8. In the 1st test function
(8) random distribution of placement with Halton sequence
provide good results in comparison with other methods, see
Fig. 3. This is caused by function shape which fill whole space.

In the 2nd test function (8) can be seen improvement when
proposed methods are used because of its special behaviour
only in some areas of its domain, see Fig. 4.

The last test function (8) is design to test RBF approxima-
tion in general and even with our improvements lot of methods
fails, see Fig. 5. What is even more it was found that with
proper placement it has no effect on precision to add more
points from Halton sequence.
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(a) Stationary (b) Edges

(c) Inflection

(d) Curvature

Fig. 3: Methods applied on 1st test function

V. CONCLUSION

The proposed methods were tested on several standard test-
ing functions, however, only some representative functions are
mentioned in this contribution. The above presented methods
proved very good results in precision of approximation, even
thought some special types of functions, e.g. fast changes,
are problematic for all approaches. The experiments also
proved validity of the proposed methods for the Radial basis
function approximation of scattered data, with regard to a low
approximation error with high points reduction leading to a
high compression ratio.
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(a) Stationary (b) Edges

(c) Inflection

(d) Curvature

Fig. 4: Methods applied on 2nd test function

(a) Stationary (b) Edges

(c) Inflection (d) Curvature

Fig. 5: Methods applied on 3rd test function
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Fig. 6: Mean square error on 1st test function (8)

Fig. 7: Mean square error on 2nd test function (8)

Fig. 8: Mean square error on 3rd test function (8)
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9. Author’s contribution

9.4 Fast and Realistic Approach to Virtual
Muscle Deformation

The fourth article [65] provided an overview

of the contemporary landscape at its cre-

ation. It delved into a muscle modelling

approach rooted in position-based dynam-

ics, serving as a fundamental algorithm. Al-

though this approach was operated directly

on a triangular mesh representing the mus-

cle surface, it is essential to note that it is

still undergoing development, as indicated

in sections 9.8 and 9.10. However, the au-

thor has since redirected their focus towards muscle modelling methods using Ra-

dial Basis Function (RBF) approximation techniques, as detailed throughout the

text.

Within the paper, Section 6, titled "Discussion," not only expounded upon the

state-of-the-art but also scrutinised various challenges and impediments associated

with employing techniques such as Position-Based Dynamics (PBD), Finite Element

Method (FEM), Mass-spring systems (MSS), via-points approaches, wrapping ob-

stacles, and more.

The identified issues encompassed the lack of smoothness in the model, the pos-

sible difficulties in collision detection and response (exemplified by the hip joint issue

discussed in the article, subsequently addressed in further research, as evidenced in

Section 9.10), and the excessive amount of data utilised for the model compared to

its actual requirements. Faced with these challenges, the notion of adopting an en-

tirely different geometrical description for a muscle emerged at the time of writing.

However, this concept has not yet been formally presented in the paper.

Publication [65]:

CERVENKA, M.; KOHOUT, J. Fast and Realistic Approach to Virtual Mus-

cle Deformation. in Proceedings of the 14th International Joint Conference on
Biomedical Engineering Systems and Technologies - Volume 5: HEALTHINF.
2020, pp. 217–227. isbn 978-989-758-398-8. Available from doi: https://

doi.org/10.5220/0009129302170227. UT WoS: 000571479400020, EID:

2-s2.0-85083710925, OBD: 43929104
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Department of Computer Science and Engineering, Czech Republic
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Abstract: This paper describes a real-time simulation of muscle movement that is based on inverse kinematics where
bone placement is known apriori and muscle shape is calculated by a modified position-based dynamics (PBD)
method. The method is comparable and competitive with the others, moreover, it is enhanced with some novel
features like approach for respecting muscle anisotropy, really fast simplistic collision detection, etc. This
real-time simulation presents visual plausibility of resulting muscle deformation in most cases.

1 INTRODUCTION

One of the diseases with high prevalence is osteoporo-
sis (Wade et al., 2014). This disease causes weaken-
ing of bone tissue, which results in weak bones prone
to break. This is a valid reason to be concerned about
forces employed to softened bones. Bergmann et. al.
(Bergmann et al., 2001) show that twice as much force
is exerted during walking than during standing. In se-
vere cases, there is a chance that a weak bone is not
able to absorb surrounding forces and fractures.

Osteoarthritis is another musculoskeletal disease
to consider. In advanced stages, a form of treatment
is needed, which is usually done by replacing the
bone joint with an artificial one. Knowledge of forces
impacting the bone joint is essential for surgeons to
choose suitable artificial joint (Oatis, 2013). An inac-
curate choice of artificial joint may be painful for the
patient or even cause further harm.

A well-built model can be useful to predict the dis-
cussed forces. Such a model should be physically cor-
rect and should be also patient-specific because body
constitution varies in patients.

Modern technologies allow us to use computers to
simulate the musculoskeletal system (or its model, re-
spectively) and get some form of approximate values

a https://orcid.org/0000-0001-9625-1872
b https://orcid.org/0000-0002-3231-2573
∗This work was supported by the Ministry of Educa-

tion, Youth and Sports of the Czech Republic, project SGS-
2019-016 and project PUNTIS (LO1506).

from this process. There are some models (e.g. (Delp
et al., 1990), (Arnold et al., 2009)) measured on single
patient; unfortunately, we need patient-specific mod-
els. Even though it may seem like a good idea to use
model measured on single patient for every other pa-
tient (for the sake of simplicity etc.), it neglects sig-
nificant features of the individual patient. There are
statistical models as well (e.g., PCA based statisti-
cal model using data from 26 patients by Zhang et.
al. (Zhang et al., 2016)), which can achieve better re-
sults in general, despite these statistical models can-
not be as good as patient-specific models. However,
getting complete patient-specific data is nearly impos-
sible due to inaccurate measuring, complexity of data
processing, time consumption etc.

To give a real-life example where the simulation
is needed, calculation of the stresses to which bones
are subjected when performing a specific action can
provide fracture prediction for people suffering from
osteoporosis. This information enables better progno-
sis and more precise treatment, and a dynamical anal-
ysis and visualisation of muscle activity may help to
identify issues in the action of a professional athlete
that can lead to more effective training procedures and
the identification of ways in which performance can
be improved. For such applications, a patient-specific
or subject-specific musculoskeletal model is essential
for the simulation and its visualisation.

We present a novel, real-time approach for mus-
cle modelling, derived from position-based dynam-
ics (well known in modern computer graphics field).

Cervenka, M. and Kohout, J.
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PBD was originally proposed by Müller (Müller et al.,
2007) and is currently still in development (e.g. cloth
and fluid simulation (Shao et al., 2017)). Main contri-
butions are:

• Using computer graphics related PBD (position
based dynamic) method for muscle deformation,

• Extending PBD by concerning anisotropy of mus-
cles,

• Fast minimalistic implementation of muscle mod-
elling approach.

2 APPROACH

2.1 Static Model

Construction of a patient-specific model requires hav-
ing data on the anatomy of the individual patient.
Muscle parameters such as geometrical shape, attach-
ment sites, fibre orientation, etc. are essential to
get accurate results of simulations. The geometrical
shape of a muscle can be extracted from MRI images
and this can be done automatically, though with some
issues. However, most parameters regarding the mus-
cle architecture cannot be extracted from these images
and generally, they are very difficult, if not impossi-
ble, to get in vivo. Nevertheless, this information can
be obtained from cadaver measurements (not patient-
specific). It is possible then to combine this general
information with specific patient data.

In this paper, a subset of a comprehensive female
cadaver anatomical dataset (81 y/o, 167 cm, 63kg) is
used. Specifically, pelvic and femur bones together
with several muscles from the pelvic region have been
selected.

The complete data are publicly available in LHDL
dataset (Viceconti et al., 2008) and has been selected
because it includes high-quality surface meshes of
bones and muscles. Furthermore, the dataset was
improved by removing non-manifold edges, dupli-
cated vertices and degenerate triangles followed by
surface smoothing in both muscle and bone models
using MeshLab (Cignoni et al., 2008). The dataset
also contains muscle attachment areas and geometri-
cal paths of superficial fibres obtained from dissection
(Van Sint Jan, 2005).

2.2 Dynamic Model

Having a static model, a dynamic one can be ob-
tained quite simply providing that the motion data
for that model are available. If bones are assumed

as completely rigid, motion can be simulated via in-
verse kinematics. Inverse kinematics means that the
location and movement of all bones are known, and
muscle actual shape has to be determined according to
these situations. We note this is exactly the opposite
to what can be seen in real situation, where muscles
control bone movement.

In this paper, position-based dynamics (PBD),
which was introduced in (Müller et al., 2007) as a fast,
stable, and controllable solution to various problems
in computer graphics, e.g., simulations of cloth or flu-
ids, is used to reposition the vertices of the surface
mesh of muscle with the modelling constraints to pre-
serve the shape and volume of the muscle and prevent
mutual penetration of the muscle with the bones. De-
tails will be described in Section 3.

The muscle is then decomposed into a set of fibres
using either Kukacka (Kohout and Kukacka, 2014) or
CHMD (Kohout and Cholt, 2017) method, depending
on which one is more appropriate in the concrete case.
Note that this set represents the dynamics of muscle
architecture. Details regarding muscle decomposition
will be described in Section 5.5.

3 PBD

Müller (Müller et al., 2007) in his paper described
PBD with four requirements:

1. Preserve local distances,

2. Maintain local shape,

3. Keep the original volume,

4. Not collide with other models.

In the context of muscle modelling, another re-
quirement, which considers muscle anisotropy, must
be introduced to model muscle motion accurately.
This will be described later.

PBD method is based on solving equation 1 for
discretized muscle model over and over again. It de-
scribes a movement of a single point (vertex) dur-
ing simulation (∆pi denote the difference in position
of ith point of the model), maintaining various fea-
tures. Mentioned features can be for example volume
or shape preservation, but it can be anything giving
meaning. Some of the preserved features are men-
tioned and further described later in the text.

∆pi =−
5piC (p1, . . . ,pn)

∑ j
∣∣5p jC (p1, . . . ,pn)

∣∣2 ·C (p1, . . . ,pn) (1)

In above equation, C is a constraint function (more
details below), n is the number of points in the muscle
model and j is the number of constraint functions.
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Mathematically speaking, constraint function and
its gradients must be known to solve the deformation
problem.

3.1 Distance Constraint

A rather basic constraint, which we can imagine, is
restricting each model point to change the distance
from the others in its neighbourhood. This constraint
can be formulated as is in (2), where d is the original
distance between points p1 and p2.

C (p1,p2) = |p1−p2|2−d (2)

3.2 Volume Constraint

Next, we can restrict the muscle model to change its
volume during the simulation process. To calculate
this constraint, we need to know how to measure the
volume of the model. Assuming triangular mesh, the
volume can be computed tetrahedron by tetrahedron,
which in summation eventually leads to constraint
function:

C (p1, . . . ,pn) =
m

∑
i=1

(
pt i

1
·
(

pt i
2
×pt i

3

))
−V0 (3)

In this function, m describes number of triangles
forming the muscle model, V0 is muscle original vol-
ume and pt i

j
denotes jth point of the ith triangle.

3.3 Local Shape Constraint

Above described constraints are not enough to pre-
vent the surface from becoming noisy, full of unreal-
istic spikes. One possible solution to this problem is
to use the distance constraint not only to keep the dis-
tances between adjacent points but also between the
pairs of points lying on the opposite sides of the mus-
cle. This would, however, need to create a 3D mesh
first, which would be quite complex to do. Another
option is to ensure that the local shape is maintained.
To achieve this, the angles between neighbouring tri-
angles should stay the same during deformation. Cal-
culating the angle of two triangles is integrated into
equation (4), where two triangles are described by
four points, sharing points with index 1 and 2.

C (p1,p2,p3,p4) = arccos(n1 ·n2)−ϕ0

= arccos
(

(p2−p1)× (p3−p1)

|(p2−p1)× (p3−p1)|2
·

· (p2−p1)× (p4−p1)

|(p2−p1)× (p4−p1)|2

)
−ϕ0

(4)

3.4 Anisotropy

The PBD algorithm has been originally proposed in
the computer graphics field to model isotropic mate-
rials (e.g., cloths). However, muscles are anisotropic
(may behave differently in two distinct directions), so
it is appropriate to take anisotropy into account. The
main idea is that muscle surface is stiffer in the direc-
tion perpendicular to the muscle fibres and more flexi-
ble in the direction parallel to these fibres. Mathemat-
ically speaking, we multiply the distance constraint in
(2) with the result of equation (5).

ki = 1−ui ·vi (5)

The direction of ith edge is described by normal-
ized vector ui, vi denotes tangential direction normal
vector of nearest fibre on the surface. If both vectors
are collinear, the result ki will be zero, meaning no
distance is preserved. If these two vectors are per-
pendicular, then k1 is equal to one and edge length
will be well preserved. This behaviour is assured be-
cause value ki multiplies the result of distance con-
straint function in (2).

4 COLLISION HANDLING

In the simulation, moving muscles and bones should
not intersect each other. There are some methods with
different advantages and disadvantages, some of them
are described below.

4.1 Brute Force

The most simple way to detect a collision is to test
each primitive of a surface mesh with all primitives
of the other mesh for an intersection. Time complex-
ity in big-O notation is O(n2), where n is the number
of primitives (triangles in our case), which makes the
brute force approach suitable only for small models,
for which the overhead associated with more sophis-
ticated approaches is not amortized. For bigger (real)
models, we need a sort of space division algorithm.

4.2 Bounding Volume Hierarchies

One of the data structure suitable for space division is
a bounding volume hierarchy. The basic idea behind
the structure is that space is recursively subdivided
employing some volumetric (in 3D, planar in 2D) ge-
ometrical primitives (box, sphere, etc.). In big-O no-
tation, we achieve O

(
n ˙logn

)
or even O

(
log2 n

)
, as-

suming the number of vertices of both tested meshes
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depends linearly on each other. The main disadvan-
tage is that the structure has to be built before the sim-
ulation or even updated every time the muscle shape
changes.

4.2.1 octree

A special case of bounding volume hierarchies is an
octree. The octree divides the three-dimensional box
into eight (therefore octree) smaller boxes (box is di-
vided in half in each axis). The division is done recur-
sively and stops when the box contains a sufficiently
small number of elements, i.e., vertices or triangles.

4.3 Voxelization

In this approach, the given three-dimensional box is
divided into n3 (n division in each axis) equally sized
boxes. If n is selected carefully, every box contains
a (sufficiently small) constant number of element, so
testing can be theoretically done in O(1) time using
big-O notation, however, memory complexity will be
O
(
n3
)

as far as every cube content has to be stored in
memory.

Our goal is to do a fast deformation, so we decided
memory is not an issue, therefore voxelization is used
in the proposed approach.

4.4 Collision Response

In our case, two main scenarios have to be distin-
guished. In the first one, a muscle moves (e.g. be-
cause of surrounding forces) and hits a bone. When
vertices of the muscle collide, they are pushed back
in the direction they enter the bone so they will not
penetrate the bone anymore.

In the second scenario, a bone moves into a mus-
cle. In this case, the colliding muscle vertices did not
”enter” the bone, so we do not know the entering di-
rection. We propose a solution where the same trans-
formation used on colliding bone is applied to collid-
ing muscle vertices as well.

5 EXPERIMENTAL RESULTS

The real data described in Section 2.1 is used along
with an artificial dataset (described below) to test the
proposed approach. The results of the experiments
are described in detail below.

5.1 Artificial Data

To test collision detection and behaviour in extreme
cases, we prepared an artificial dataset, where a box
of 5292 triangles on its surface is squished between
two plates (12 triangles each). The initial setup is vi-
sualized in Fig.1.

Figure 1: Input artificial data.

At first, in one hundred iterations, the top plate
moves to decrease the space between both places.
The distance between plates in 100th iteration is 10%
of the original distance in the first iteration. Inverse
movement is then performed between 100th and 200th

iteration, returning the plates to their initial position.
Additional one hundred iterations are used for box
stabilization.

As it can be seen in Fig.2, the box is squished quite
a lot. Despite the fact, it returns to its original shape
in 300th iteration (only with slight rotation caused by
asymmetrical triangulation). Even in 200th iteration
the results is acceptable, except one corner of the box.

0 50 100

150 200 300

Figure 2: Results in different simulation frames (artificial
data).

5.2 Iliacus

We also tested iliacus muscle, which connects the fe-
mur and pelvic bones from the front side. The bones
and the muscle are visualized in Fig.3. The muscle
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Figure 3: Input iliacus muscle and adjacent bones.

and bones are closed triangular meshes with 13858
and 254442 (42456 for femur) triangles, respectively.

A very similar simulation scenario like in the ar-
tificial data case has been applied to iliacus dataset.
The first hundred iterations are used for hip flexion.
The femur bone rotates one radian during this move-
ment. The second hundred iteration is allocated for
the inverse movement. The last hundred (200th-300th)
iterations are present to stabilize the muscle.

0 50 100

150 200 300

Figure 4: Results in different simulation frames (Iliacus
muscle data).

The posterior part of the iliacus muscle is pushed
into the joint during the flexion, as it can be seen in
Fig.4. The explanation for this behaviour is as fol-
lows. This part of the mesh is unrealistically arched
towards the joint and, therefore, distance and local
shape constraints tend to move the points of this part
closer to the joint. As the femur and pelvic bones do
not touch, there is a narrow space into which this part
of the mesh can squeeze, and from which it is difficult
to get out. Even though the result is not visually plau-
sible, the quantitative tests (described later) show that
all key factors of the muscle are preserved as much as
possible.

5.3 Gluteus Maximus

Gluteus maximus muscle is attached to the same
bones as iliacus muscle but from the other side. Tri-

Figure 5: Input gluteus maximus muscle and adjacent
bones.

angular mesh of the consits of 19752 triangles. Fig.5
shows how the model looks like.

The muscle undergoes the same movement sce-
nario as iliacus mentioned above. Visualization in 6
important iterations is shown in Fig.6. As we can see,
the result in iteration 300 is nearly the same as in the
first iteration (the original muscle pose).

0 50 100

150 200 300

Figure 6: Results in different simulation frames (gluteus
maximus muscle data).

5.4 Other Muscles

Within this testing procedure, we have tested gluteus
medius and adductor brevis muscles. Both muscles
deform quite realistically, as it can be see in Fig.7 and
Fig.8, where the situation in the maximal hip flexion
(same scenario like in gluteus maximus and iliacus
case) is shown.
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Figure 7: Gluteus medius in maximum flexion position.

Figure 8: Adductor brevis in maximum flexion position.

5.5 Muscle Decomposition

The approach described so far works primarily with
the surface model of a muscle. To calculate the forces
(and other physical properties of the muscle), the
muscle needs to be decomposed into individual fibres.
This can be done using, for example, Kukacka or
CHMD muscle decomposition methods, which were
proposed in (Kohout and Kukacka, 2014) and (Ko-
hout and Cholt, 2017), respectively. In the following
subsections, we briefly describes these methods.

5.5.1 Kukacka Decomposition

The inputs of the Kukacka decomposition method
(Kohout and Kukacka, 2014) are:
• Triangular (and manifold) surface model of the

muscle to decompose,
• Fibre template, giving information about internal

fibre arrangement,
• Attachment areas to adjacent bones (origin and in-

sertion), defined by a set of points lying on the
adjacent bone surface models

Decomposition is then done as follows. Attach-
ment areas are projected from the bone surface onto
the muscle surface to define the parts of the mus-
cle that are subsequently removed. Isocontours are
then computed on the modified muscle model, using
a piece-wise linear scalar field. The scalar field has its
maximum on the insertion boundary vertices, whereas
it has its minimum on the origin boundary vertices.
User can specify how many isocontours are generated
in this process.

Similarly to (Delp, 2005), muscle fibre architec-
ture (template) is represented by a unit 3D space
with arbitrary (user-defined) number of fibres inside
the space. The fibres are represented analytically by
Bezier spline curves. From multiple templates, one is
selected according to the muscle being modelled (de-
pends on if it has parallel or pennate fibres, optionally
on a pennate angle, etc.) and it is mapped one-to-one
on isocontours calculated in the previous step, form-
ing the fibres going through the muscle model. Fi-
nally, noise is eliminated using quadratic smoothing
to make the result more realistic and visually plausi-
ble.

Figure 9: Gluteus maximus decomposed to individual fibres
by Kukacka’s (Kohout and Kukacka, 2014) algorithm.

5.5.2 CHMD Decomposition

A technique by Kohout & Cholt (Kohout and Cholt,
2017) performs a centripetal Catmull-Rom interpo-
lation of the input fibres lying on the surface model
of the muscle, or nearby, to get the fibres inside the
muscle. Their approach can even work with multiple
headed muscles, distributing the fibres automatically
among the heads.

In comparison with Kukacka’s proposed method,
this method needs specification of fibres on the sur-
face, which typically requires some manual effort
because these are not available for the patient but
must be adopted from a cadaveric dataset. On the
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Figure 10: Gluteus maximus decomposed to fibres by
Cholt’s (Kohout and Cholt, 2017) algorithm.

other hand, it can work with multiple headed muscles,
whereas Kukacka’s approach can not.

5.6 Quantitative Tests

To make some exact result, we use quantitative tests.
These tell us how well are constraints satisfied during
simulation.

Volume preservation constraint is tested by deter-
mining ratio between both original and actual vol-
umes. Fig.11 for artificial data, Fig.12 and Fig.13 for
real data respectively, show us the volume preserva-
tion results.
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Figure 11: Volume preservation of artificial data.
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Figure 12: Volume preservation of iliacus muscle data.
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Figure 13: Volume preservation of gluteus maximus muscle
data.

As we can see from the results, the volume is well
preserved in both real data (the error is less than 1% in
both cases), on artificial data, there is a nice curve de-
scribing squishing (reducing) box volume during the
simulation and then restoring.

Next measurable property is average edge exten-
sion. At first, we cannot say much about artificial data
(squished box) from the plot on Fig.14. As for the il-
iacus muscle, some edges remain longer than normal
(see Fig.15) because they are stuck in the hip joint. In
the case of gluteus maximus dataset (Fig.16), the first
100 iterations show edge extension during hip flexion
(it is correct behaviour because muscle extends in this
phase) and the second hundred iterations return the
average length extension to almost 1 (i.e., the mus-
cle returns to its original pose correctly). We can also
see that the last 100 iterations are not crucial in this
scenario.

We also tested how well the dihedral angles are
preserved during the simulation. In this paper, the di-
hedral angle is the angle between two adjacent trian-
gles in the muscle triangle mesh. According to plots
in Fig.17, Fig.18 and Fig.19, we can conclude that
there are some pairs of triangles which do not pre-
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Figure 14: Average edge extension of artificial data.
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Figure 15: Average edge extension of iliacus muscle data.
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Figure 16: Average edge extension of gluteus maximus
muscle data.

serve its original angle, but most of them do.

5.7 Fibre Length

Last but not least, the lengths of fibres were analyzed.
In the iliacus muscle case, as we can see in Fig.20,
many length curves exhibit two big bumps shortly af-
ter 100th iteration. This is caused by the fact that a

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

Iteration

A
b

s
o
lu

te
 d

ih
e
d

ra
l a

n
g

le
 c

h
a

n
g

e
 [
d

e
g

re
e
s
]

Dihedral angle preservation - Artificial

10% quartile

25% quartile

50% quartile

75% quartile

90% quartile

Figure 17: Average absolute dihedral angle change of arti-
ficial data.
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Figure 18: Average absolute dihedral angle change of ilia-
cus muscle data.
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Figure 19: Average absolute dihedral angle change of glu-
teus maximus muscle data.

part of the muscle is stuck in the hip joint (as dis-
cussed previously). Nevertheless, when the bones re-
turn to their initial rest-pose (i.e., after 200 iterations),
the vast majority of fibres restore their original lengths
quite well. Gluteus maximus muscle behaves as ex-
pected – see Fig.21. During the flexion, all lengths
increase; during the extension, they decrease.
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Figure 20: Total length of each individual fibre during sim-
ulation in iliacus muscle.
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Figure 21: Total length of each individual fibre during sim-
ulation in gluteus maximus muscle.

5.8 Speed

The proposed method was designed to be not only
precise, but mainly, fast. It was implemented in
C++ using VTK toolkit. Its current version is
publicly available at https://github.com/cervenkam/
muscle-deformation-PBD.

All testing scenarios above were measured how
fast each one is. FPS (Frames Per Second) is used
as speed metric in this case.

All tests were performed on Intel R© CoreTM i7-
4930K 3.40GHz CPU, Radeon HD 8740 GPU and
WDC WD40EURX-64WRWY0 4TB HDD. Results
are listed on Tab.1.

As it can be seen from the results, FPS strictly de-
pends on number of triangles (Spearman’s ρ = −1).
The more triangles is used, the slower the method is.

Even though the program is mostly unoptimized
and runs sequentially at the moment, the FPS is suffi-
cient for considered purposes in general.

Table 1: FPS of each simulation.

Deforming object Triangle count FPS
Gluteus maximus 19752 33.85
Abductor brevis 17124 35.89
Iliacus 13858 47.21
Gluteus medius 10622 57.12
Artificial box 5292 153.61

6 DISCUSSION

The most simple approach to muscle deformation
problem is probably to use line segments to approxi-
mate both muscles and tendons. An example is shown
in Fig.22. The coordinates of each end-point of the
corresponding line segments are updated when bone
moves, causing shortening or extending of the line
segments. Various values (e.g., moment arms) can be
consequently calculated from the length of each line.
These models are popular in practice (they are used,
e.g., in AnyBody1 or OpenSim2) because of their sim-
plicity and speed. However, the accuracy of calcula-
tions based on these models is, especially, for com-
plex muscles, e.g., gluteus medius, low (Delp, 2005).
A model can be more precise if we assume more lines
(Valente et al., 2012) per a muscle or if we use more
complex lines wrapping around some kind of para-
metric surfaces (e.g. spheres, cylinders (Audenaert
and Audenaert, 2008), etc.), nonetheless, all of these
are difficult to set up. This may be the reason why
most studies use gait2392 model shipped with Open-
Sim software even though there are no more than
three lines per muscle and these lines penetrate the
bones in some poses. Using our approach, described
in this paper, the user can easily generate hundreds of
lines (i.e., fibres) automatically and impenetrability of
muscles and bones is guaranteed.

Figure 22: Muscle approximation using line segments – yel-
low lines (taken from (Kohout et al., 2013)).

Position-based dynamics (PBD), which is the core
part of our approach, was firstly introduced in (Müller
et al., 2007) as a computer graphics algorithm. Since

1https://www.anybodytex.com/software/
2https://opensim.stanford.edu/
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then, it has been further developed (e.g., (Macklin
et al., 2019) proposed recently some speed and ac-
curacy improvements) and has found many (close to)
real-time applications, not only in computer graph-
ics but even in other domains. For example, Kotsalos
et. al. use PBD to model blood cells (Kotsalos et al.,
2019). As far as we know, however, there is no PBD-
based method for muscle modelling even though one
could expect a good compromise between speed and
accuracy from such a method.

A mass-spring system (MSS) is another approach
to consider. Janak et al. use MSS to approxi-
mate muscle (Janak, 2012), showing promising, sim-
ple method with visually plausible results. How-
ever, there are some issues in the approach they pro-
posed. First, to avoid penetration between muscles
and bones, the authors choose a particle-based colli-
sion detection method requiring many particles to get
reasonable results, which, however, causes high time
and memory complexity. Secondly, and more impor-
tantly, the main issue is that muscle volume is not pre-
served during deformation. This could be probably
solved using the approach described in (Hong et al.,
2006), however, it would increase computational time
dramatically. Finally, our experiments show that al-
though this method retains the smooth shape of ili-
acus muscle during flexion, it twists the part of the
muscle close to the insertion. This is because, un-
like our method, the particles are in the entire volume
of the muscle, which results in a model that is much
more rigid, and as anisotropy is not exploited, rigid in
all directions. Our method supports anisotropy, pre-
serves the volume and runs in a fraction of time while
requiring no extra parameter or input in comparison
with this method.

On the contrary to line segment approximation,
finite element method (FEM) is the most complex
method. Well discretized muscle provides a phys-
ically very accurate result (see e.g., (Delp, 2005)).
However, computational complexity is high, mean-
ing the FEM-based methods are unsatisfactorily slow.
Therefore, it is quite impractical for real-time appli-
cation or even clinical assessments. Next issue is a
difficult set up of FEM methods, making them un-
suitable for personalised musculoskeletal method de-
formation. Despite these facts, these methods can be
seen in the movie industry, see e.g. Ziva VFX3 plu-
gin for Maya, and in muscle physiology research, see
e.g. (Oberhofer et al., 2009) or (Kojic et al., 1998). In
comparison with these methods, our method is quite
simple to set up and runs fast providing the promising
results in most cases.

3https://zivadynamics.com/

7 CONCLUSION & FUTURE
WORK

The proposed muscle deformation technique is capa-
ble to do fast and relatively accurate simulation. De-
spite problems with muscle trapped in the hip joint,
we believe that a better collision detection can fix the
issue.

Moreover, the method is ready to be included in
OpenSim (a state-of-the-art simulation software) as
a plugin, allowing common users to use the method
more intuitively. Its source code is available at https:
//github.com/cervenkam/muscle-deformation-PBD.

In this paper, we verified the method, but to prove
correctness, the method needs to be validated in real
life. There are some works (e.g. (Modenese et al.,
2018)) providing correct momentum values during
muscle movement, which can be useful for validation.
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9.5 Behavioral Study of Various Radial
Basis Functions for Approximation and
Interpolation Purposes

The study [89] further explores various

RBFs, where the placement of the centre

was mainly adopted from the previous pa-

per [93] described in Section 9.3. The new

RBF of that paper has also been tested.

These more in-depth tests of the narrowed

subset of RBFs showed some weaknesses

of the author’s RBF, mainly that there is

a pattern (whole-numbered shape param-

eter), while the RBF approximation is ill-

conditioned. The Gaussian RBF does not

provide that shortcoming in the case of 1D signals; however, it also has its issues

with shape parameter selection considering conditionality (see Section 9.7).

Specifically, the results presented in the article show that selecting a whole num-

ber as the shape parameter 𝛼 for the proposed RBF can lead to peaks or singularities

in the mean square error and conditionality plots. These singularities indicate insta-

bility or significant variations in the approximation error and conditionality, which

can affect the reliability and performance of the RBF approximation. Therefore,

considering and potentially avoiding whole-numbered shape parameters might be

advisable in RBF approximation tasks to ensure more stable and consistent results.

Publication [89]:

CERVENKA, M.; SKALA, V. Behavioral Study of Various Radial Basis Func-

tions for Approximation and Interpolation Purposes. IEEE 18th World Sym-
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pp. 135–140. isbn 978-1-7281-3149-8. Available from doi: https://doi.

org/10.1109/SAMI48414.2020.9108712. UT WoS: 000589772600026, EID:
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Abstract— Both approximation and interpolation are tech-
niques commonly used in many scientific areas. Many approaches
are depending on input data type, result purpose etc. Input data
can be formed in a mesh or not (meshless/meshfree data).

This contribution is oriented on meshless data approximation
and interpolation using Radial Basis Functions (RBFs). Different
RBFs behaves differently, but many of them have a shape
parameter. This paper compares various RBFs concerning its
shape parameters and provides some experimental results for
each of the selected RBF.

Index Terms—RBF, radial basis function, interpolation, ap-
proximation, shape parameter, axis scaling

I. INTRODUCTION

There are many ares for approximation and interpolation in
using RBF metohds, despite the fact its higher computational
cost. Biancolini [1], Menandro [2] and Fasshauer [3] used
RBF methods in engineering practise. The RBF technique can
be also used for image reconstruction [4], GIS systems [5],
meteorology [6], partial differential equations [7], [8] etc.

There are two main groups of data representation i.e. mesh-
based and meshfree/meshless. In the case of mesh-based data,
a structure of the data is well-known apriori, in opposite to
meshfree data, which are scattered in space. Meshfree data
lack of connectivity information, so it is typically harder to
approximate/interpolate.

Tesselation can be made to transform scattered data (mesh-
free) to structured data (mesh). A common tesselation tech-
nique is Delaunay triangulation, however, its computational
complexity is O

(
ndd/2e+1

)
in d-dimensional space, i.e. for

d = 2 is O
(
n2
)

and for d = 3 is O
(
n3
)

(more in Smolik
[9]).

Dimension of the data is important, too. The higher the
dimension is, the more complex and time-consuming algo-
rithm is used. This is not completely true in the case of RBF
approximation, which is nearly independent of problem dimen-
sionality. Another advantage, which RBF technique brings, is
that RBF approximation and interpolation is invariant to all
rigid Euclidean transformations. It means that it is indifferent
whether RBF is used and then transformation is made or the
other way around.

The research was supported by the Czech Science Foundation (GACR)
project No.GA 17-05534S and partially by SGS 2019-016 project.
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The RBF method is relatively old (Hardy [10], 1971), but
there are still many issues to deal with. Some of them are
described in the following.

This contribution is focused to determine the behaviour of
RBF approximation under certain conditions:
• when RBF shape parameter varies (see ”Shape parameter

selection”),
• how is approximation or interpolation affected by scaling

the X (domain) axis of the original approximated func-
tion.

II. RADIAL BASIS FUNCTION

A radial basis function is a function, which value depends
only on the distance from one single point, called centre. It
means that distance is the only independent variable of the
RBF, following notation will be used from now on:

ϕ (||x− ξ||) (1)

Where ξ is RBF ϕ centre coordinate point and u is arbitrary
independent point in the space. ||x|| denotes euclidean norm
of vector x. It means that the RBF is a single variable function
returning a single variable as well.

There are two groups of RBF in general:
• global radial basis function is not limited and affects

whole space
• local radial basis function, which has zero value from

some radius and further

A. Global RBF

A typical global RBF function is Gaussian RBF, which is
defined as:

ϕ (r) = e−αr (2)

Plot of this function is a Gaussian bell curve, which has non-
zero values on R. It means that this function influences the
whole space (will be explained later on).

Another well-known global RBF is thin-plate spline (TPS),
which is defined in (3).

ϕ (r) = r2 log r =
1

2
r2 log r2 (3)

There are many various global RBF. In this paper, proposed
RBF global function with variable exponent is discussed, too:

ϕ (r) = r2 (rα − 1) (4)
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B. Local RBF

Local RBFs are then defined in (5). This kind of functions
has been introduced by Wendland [11], more of them can
be found in paper from Skala [12]. It is nothing more than
multiplication of polynomial P (r) with some power of cutted
polynomial 1− r (+ sign denotes that all negative values are
changed to zero), so its value will not be negative.

ϕ (r) = (1− r)q+ P (r)

ϕ (r) =

{
(1− r)q P (r) 0 ≤ r ≤ 1

0 r > 1
(5)

From the group of local radial basis function, it is worth
mentioning the simpliest local RBF:

ϕ (r) = (1− r)+ (6)

If higher power and a reasonable polynomial is used, the
resulting RBF can be defined as:

ϕ (r) = (1− r)7+
(
16r2 + 7r + 1

)
(7)

In this paper, four RBFs defined above are used and plotted
together in Fig.1.
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-0.4
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0.8

1

x

φ
(x

)

Radial basis functions

Gauss (50)

TPS

Variable exponent (1.8)

CSRBF (0.8)

Fig. 1: Plot of the selected RBFs.

In the case of TPS and RBF with variable exponent, both
functions ”start” in 0 (f(0) = 0) and go directly through
zero once more (f(1) = 0), then they rise to infinity
(limx→+∞ f(x) = +∞). The other two functions (Gaussian
and CSRBF) ”start” in 1 (f(0) = 1) and fall to zero
limx→+∞ f(x) = 0), CSRBF with given shape parameter λ
(0.8) even satisfies f(x) = 0,∀x ≥ 1.25.

Using a weighted sum of infinitely many these elementary
functions, it is possible to describe any function. In reality,
however, there is a limit on how many RBF is used. In this
case, the input function is not described precisely but is only
approximated.

III. RBF APPROXIMATION

Function approximation using RBF is done using formula
(8). In order to be able to solve this equation, all N RBF center
points ξj has to be known apriori as well as eventual shape
parameter(s) αi of each RBF ϕ. Weights λj are unknowns and
will be computed.

h (x) =

M∑

j=1

λjϕ (||x− ξj ||) =
M∑

j=1

λjϕ (rj) (8)

Where N is number of points and M is number of reference
points (centres). The introduced equation can be expressed in
matrix form, which leads to system of linear equations:

Ax = b, Aij = ϕij ,b = hi,x = λj , N > M, i = 1, . . . , N
(9)

Matrix A is the rectangular matrix in general and the overde-
termined system is obtained. There are several methods to
solve the overdetermined system of equations. To minimize
mean square error, the Ordinary Least Squares method (OLS)
is used. Weights λj can be computed using OLS method by
pseudoinverse as:

λ =
(
ATA

)−1
ATh (10)

The solution of this equation leads to good approximation.
However, Skala [13] shows that there may be some instability
problems. Moreover, Majdisova [14] proved that in case of
solving this equation via OLS additional polynomial condi-
tions cannot be included.

IV. RBF INTERPOLATION

The RBF interpolation differs mathematically from approx-
imation. In this case only distances between center points are
considered. Equation for the RBF interpolation shown below:

h (xi) =

N∑

j=1

λjϕ (||xi − xj ||) =
N∑

j=1

λjϕ (rij) (11)

It is possible to rewrite this equation to matrix form the same
way as in approximation (equation (9)). In approximation,
resulting matrix is rectangular in general, whereas in this case
the result A is a square matrix of the linear equation system.

In opposite of approximation, the matrix A can be further
extended with polynomial conditions, now. The extended
system is shown in formula (12).

[
A P
PT 0

] [
λ
a

]
=

[
h
0

]
(12)

The matrix P represents polynomial additional conditions,
λ is a vector of RBF weights, vector a contains resulting
polynomial coefficients, N is number of points and h are given
values at the given points, see Skala [15].

According to Jäger [16] and Skala [17] [18], in some cases it
can be counterproductive to introduce polynomial conditions,
especially for large scope of domain data.
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V. RBF CENTRES PLACEMENT

The placement of RBF functions (setting their centre points)
is another task to solve. A naı̈ve method is to uniformly sample
input function, but it does not take function properties into
account. Despite this fact sometimes this approach is used,
e.g. Singh [19]. Orr [20] in his paper proposes a regularization
method, Wright [21] brings an improvement of this method
near function boundaries. Majdisova et. al. [22] compare
different techniques of RBF placement. In this paper, the
geometrical properties of input signals are considered. RBFs
are placed where input signals reach minima, maxima (1st

order derivative is zero), inflexion points (2nd order derivative
is zero) and to locations where 3rd order derivative is zero as
well. This approach is inspired by [15], whereas in this paper
there is a 1 1

2 dimensional case (single parameter function)
instead of 21

2D (double parameter function). An example is
shown in Fig.2, red crosses denote these points.

Function boundaries are often problematic, because there
may not be any geometrically important points (minima,
maxima, etc.). To solve this issue, artificial centres are added to
the exact border. Even with this modification, the largest errors
are still located near boundaries. This is solved by adding more
points near boundaries. In 1 1

2D case, four points should solve
this issue (placed to 0%, 5%, 95% and 100% ratio of the
domain space).

At this point, geometrically important points are covered,
but it may happen that there will be a large ”gap” between
two consecutive centre points. One of the solution is to force
minimal constant frequency, so large gaps will be filled with
one or more another centre points.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

f(
x)

Function: @(x) (.5 * cos (20 * x) + 5 * x)

RBF centers

Original function

Fig. 2: Geometrically important points. The extension of this
approach to the 2 1

2D case was already explored by Vasta [23].

VI. SHAPE PARAMETER SELECTION

The selection of the shape parameter is a crucial part to
do accurate interpolation or approximation. Shape parameter

can be selected for each RBF independently, which has an
advantage of more precise results, on the other hand, all shape
parameter values have to be stored then. A task of independent
selection is an open question. Experiments from Skala, Karim
and Zabran [24] showed, that there is probably no optimal
global shape parameter. Suitable parameter selection is pro-
posed by Wang and Liu [25], Afiatodust and Esmaeilbeigi [26]
(using genetic algorithm) or Sarra and Sturgill [27] (random
non-deterministic approach), however, none of them can find
optimal shape parameter for each RBF. Optimal selection is
due to this fact still an open question.

To simplify the problem, one single global shape parameter
can be selected for all of RBFs, which results in less accurate
approximation in general, but there is no need to store all val-
ues of shape parameters. In this case for each RBF one global
shape parameter has been empirically selected in experiments
described below.

VII. EXPERIMENTAL RESULTS

For testing purposes, we used 18 different functions (see
Tab. I) taken from [15]. These functions, when approximated,
discover various behaviour of chosen RBF approximation
approach.

1 sin
(
15x2

)
+ 5x

2 0.5 cos (20x) + 5x

3 50
(
0.4 sin

(
15x2

)
+ 5x

)

4 sin (8πx)

5 sin
(
6πx2

)

6 sin (25x+ 0.1)/ (25x+ 0.1)

7 2 sin (2πx) + sin (4πx)

8 2 sin (2πx) + sin (4πx) + sin (8πx)

9 −2 sin (2πx) + cos (6πx)

10 2 sin (2πx) + cos (6πx)

11 −2 sin (2πx) + cos (6πx)− x

12 −2 cos (2πx)− cos (4πx)

13 atan
(
(10x− 5)3

)
+ 0.5atan

(
(10x− 8)3

)

14 (4.48x− 1.88) sin
(
(4.88x− 1.88)2

)
+ 1

15 e10x−6) sin
(
(5x− 2)2

)
+ (3x− 1)3

16 (1/9) tanh (9x+ 0.5)

17 6

(1+16(x+0.5)2)+log(0.01∗(x−.25)2+10−5)+4

18 6

(1+16(x+0.5)2)+log(0.01∗(x−.25)2+10−10)+4

TABLE I: Tested artificial signals (taken from [15], extended).

For simplification of comparison, all 18 input signals have
been tested for x ∈ 〈0, 1〉 and for simple comparison of errors
all values in given domain have been scaled to f(x) ∈ 〈0, 1〉
as well. Mean square error and condition number of matrix
A (from equation (9)) are quantitative criteria for following
tests.

A. Detecting geometrically significant points

Geometrically significant points are points with special
properties. Special properties can be anything, in this case
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special points are points which n-th derivative is zero, mean-
ing:

f (n) (x) = 0 (13)

There are two groups of methods of how to detect significant
points. One of them works in discrete space, the other in con-
tinuous space. To get these points in continuous space, either
analytical solution of equation (13) is needed or numerical
solution is required (gradient descent etc.).

In this paper, discrete space detection is selected. In this
case, the function is sampled to N points (specifically 1000
points in this paper), which are denoted an. To get local
extrema, differentiation is done, as follows:

a′n = an−1 − an (14)

When consecutive elements a′n and a′n+1 differs in sign,
then local extrema is detected (difference go opposite way in
two consecutive elements). If the differentiation is done twice,
inflexion points are detected. It is possible then to continue
with higher-order differentiation. In this paper it is done at
most three times.

Short explanation: three-element signal [3, 5, 4], which has
obvious local extrema (maximum) of 5. After differentiation,
[−2, 1] vector is obtained. An only consecutive pair of ele-
ments differs in sign, meaning there were a local extrema.

This simplistic approach is sufficient for smooth functions,
on noisy signal it would detect much more points than it should
(smoothing is required).

B. Influence of the shape parameter

To test how much dependent the resulting approximation to
shape parameter selection is, the range of the parameters is
used. For every shape parameter, mean square error and con-
dition number (of the matrix A in equation (9) are computed
and showed in the following figures.

The first RBF tested is global Gaussian RBF. There are
plotted results of mean square error depending on the selected
shape parameter in Fig.3. It seems that the lower shape
parameter α is selected, the lower average error is reached, but
some functions do not respect this trend. It is risky to select
lower shape parameter (e.g. α < 20), but for some functions
it gives the best result.

Condition number values of the matrix A are presented in
Fig.4. The higher value of shape parameter α is chosen, the
better conditionality the problem has.

On the other hand, RBF r2 (rα − 1) behaves the other way
around. The higher shape parameter is selected, the lower error
is possible to get, but it has worse conditionality at this point.
Results are plotted in Fig.5 (mean square error) and Fig.6
(conditionality). There are some peaks (singularities) on this
plot, which are caused by selecting the whole number as the
shape parameter α.

0 10 20 30 40 50 60 70
10

-18

10
-17

10
-16

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

10
-09

10
-08

10
-07

10
-06

10
-05

10
-04

10
-03

10
-02

10
-01

10
00

Shape parameter

M
S

E
 v

al
ue

Mean square error, RBF: Gauss

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Fig. 3: Mean square error for Gaussian RBF. Note logarithmic
scale on Y axis.
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Fig. 4: Condition number values for Gaussian RBF. Note
logarithmic scale on Y axis.

C. Influence of X-axis scaling

Idea is that scaling of the X-axis should influence resulting
approximation error. This test stretches or squishes X-axis.
Scaling X-axis is a similar operation to changing shape pa-
rameter, but these two operations are not linear in general. It
should be noted that shape parameters are fixed during this
test.

VIII. CONCLUSION

Different RBF functions have different properties and differ-
ent behaviour in respect to its parameter(s), even using differ-
ent signal which has to be approximated and does not have a
significant impact. It seems there is a pattern between various
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Fig. 5: Mean square error for proposed RBF. Note logarithmic
scale on Y axis.
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Fig. 6: Condition number values for proposed RBF. Note
logarithmic scale on the Y-axis.

approximated signals as far as RBFs with same parameters are
used and it is currently under investigation.

The tests with X-axis scaling show that the Gaussian RBF
tends to have worse conditionality while scaling down, but
it may reach lower approximation error. Second tested RBF
seems to be independent to scaling (except one singularity)
if approximation error is considered, conditionality is good
without scaling, it is getting worse when scaling is applied.

Presented results show that there is a tradeoff between pre-
cision and conditionality in general. Selected shape parameter
is due to this fact dependent on the predefined goal, which
should be achieved. If the low error is requested, scaling
down the X-axis may help. If the conditionality has to be
high, scale-up may help in that case. This study may help to
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Fig. 7: Mean square error for Gaussian RBF. Note logarithmic
scale on Y axis.
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Fig. 8: Condition number values for Gaussian RBF. Note
logarithmic scale on Y-axis.

select appropriate scaling factor as well as shape parameter,
according to the approximation goal.
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9.6 Finding Points of Importance for
Radial Basis Function Approximation
of Large Scattered Data

This article [88] focuses mainly on describ-

ing the experimental results demonstrating

the previously proposed approaches’ effec-

tiveness. The results showed high approxi-

mation precision in tests involving various

functions, using only a fraction of the avail-

able data points. For instance, the proposed

approximation method exhibits a compres-

sion ratio between 5% and 10%, still main-

taining good precision and a high compres-

sion ratio, showing that there can be data reduction and simplification in the case

of muscle modelling.

The study’s conclusion highlights the simplicity and efficiency of the RBF-based

approximation method, which achieves relatively low error rates and high data

compression. However, there are still many other function points of importance,

whichmay even enhance the approximation’s precision by including them.However,

evaluating neighbouring points is crucial for scattered data to identify the points

of importance accurately. The study underscores the potential for future research,

especially in analyzing approximation behaviour at interval borders in 3D scenarios,

which is identified as a critical aspect for further development. Studying behaviour

on borders in 3D scenarios is beneficial for muscle modelling.

The article also contributes to data approximation, particularly in handling large

and complex data sets. The proposedmethod stands out for its ability to simplify the

approximation process while maintaining high accuracy and efficiency. It mainly

benefits engineering and scientific computations involving large scattered data sets.

Publication [88]:

SKALA, V.; KARIM, S.; CERVENKA, M. Finding Points of Importance for

Radial Basis Function Approximation of Large Scattered Data. Computational
Science - ICCS 2020, Part VI, LNCS 12142. 2020, pp. 239–250. Available from
doi: https://doi.org/10.1007/978-3-030-50433-5 19. OBD: 43932925,

UT WoS: 000841676000019, EID: 2-s2.0-85087274721
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Abstract. Interpolation and approximation methods are used in many fields
such as in engineering as well as other disciplines for various scientific dis-
coveries. If the data domain is formed by scattered data, approximation methods
may become very complicated as well as time-consuming. Usually, the given
data is tessellated by some method, not necessarily the Delaunay triangulation,
to produce triangular or tetrahedral meshes. After that approximation methods
can be used to produce the surface. However, it is difficult to ensure the con-
tinuity and smoothness of the final interpolant along with all adjacent triangles.
In this contribution, a meshless approach is proposed by using radial basis
functions (RBFs). It is applicable to explicit functions of two variables and it is
suitable for all types of scattered data in general. The key point for the RBF
approximation is finding the important points that give a good approximation
with high precision to the scattered data. Since the compactly supported RBFs
(CSRBF) has limited influence in numerical computation, large data sets can be
processed efficiently as well as very fast via some efficient algorithm. The main
advantage of the RBF is, that it leads to a solution of a system of linear equa-
tions (SLE) Ax = b. Thus any efficient method solves the systems of linear
equations that can be used. In this study is we propose a new method of
determining the importance points on the scattered data that produces a very
good reconstructed surface with higher accuracy while maintaining the
smoothness of the surface.
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© Springer Nature Switzerland AG 2020
V. V. Krzhizhanovskaya et al. (Eds.): ICCS 2020, LNCS 12142, pp. 239–250, 2020.
https://doi.org/10.1007/978-3-030-50433-5_19

9. Author’s contribution

132



1 Introduction

Interpolation and approximation techniques are used in the solution of many engi-
neering problems. However, the interpolation of unorganized scattered data is still a
severe problem. In the one dimensional case, i.e., curves represented as y ¼ f xð Þ, it is
possible to order points according to the x-coordinate. However, in a higher dimen-
sionality this is not possible. Therefore, the standard approaches are based on the
tessellation of the domain in x; y or x; y; z spaces using, e.g. Delaunay triangulation [7],
etc. This approach is applicable for static data and t-varying data, if data in the time
domain are “framed”, i.e. given for specific time samples. It also leads to an increase of
dimensionality, i.e. from triangulation in E2 to triangulation in E3 or from triangulation
in E3 to triangulation in E4, etc. It results in significant increase of the triangulation
complexity and complexity of a triangulation algorithm implementation. This is a
significant factor influencing computation in the case of large data sets and large range
data sets, i.e. when x; y; z values are spanned over several magnitudes.

On the contrary, meshless interpolations based on Radial Basis Functions
(RBF) offer several significant advantages, namely:

• RBF interpolation is applicable generally to d-dimensional problems and does not
require tessellation of the definition domain

• RBF interpolation and approximation is especially convenient for scattered data
interpolation, including interpolation of scattered data in time as well

• RBF interpolation is smooth by a definition
• RBF interpolation can be applied for interpolation of scalar fields and vector fields

as well, which can be used for scalar and vector fields visualization
• If the Compactly Supported RBFs (CSRBF) are used, sparse matrix data structures

can be used which decreases memory requirements significantly.

However, there are some weak points of RBF application in real problems solution:

• there is a real problem for large data sets with robustness and reliability of the RBF
application due to high conditionality of the matrix A of the system of linear
equations, which is to be solved

• numerical stability and representation is to be applied over a large span of x; y; z
values, i.e. if values are spanned over several magnitudes

• problems with memory management as the memory requirements are of O N2ð Þ
complexity, where N is a number of points in which values are given

• the computational complexity of a solution of the linear system, which is O N3ð Þ,
resp. O kN2ð Þ, where k is a number of iteration if the iterative method are used, but k
is relatively high, in general.

• Problems with unexpected behavior at geometrical borders

Many contributions are solving some issues of the RBF interpolation and
approximation available. Numerical tests are mostly made using some standard testing
functions and restricted domain span, mostly taking interval h0; 1i or similar. However,
in many physically based applications, the span of the domain is higher, usually over
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several magnitudes and large data sets need to be processed. Also large data sets are to
be processed.

As the meshless techniques are easily scalable to higher dimensions and can handle
spatial scattered data and spatial-temporal data as well, they can be used in many
engineering and economical computations, etc. Polygonal representations (tessellated
domains) are used in computer graphics and visualization as a surface representation
and for surface rendering. In time-varying objects, a surface is represented as a tri-
angular mesh with constant connectivity.

On the other hand, all polygonal based techniques, in the case of scattered data,
require tessellations, e.g. Delaunay triangulation with O N d=2þ 1b c� �

computational
complexity for N points in d-dimensional space or another tessellation method.
However, the complexity of tessellation algorithms implementation grows significantly
with dimensionality and severe problems with robustness might be expected, as well.

In the case of data visualization smooth interpolation or approximation on
unstructured meshes is required, e.g. on triangular or tetrahedral meshes, when physical
phenomena are associated with points, in general. This is quite a difficult task espe-
cially if the smoothness of interpolation is needed. However, it is a natural requirement
in physically-based problems.

2 Meshless Interpolation

Meshless (meshfree) methods are based on the idea of Radial Basis Function
(RBF) interpolation [1, 2, 22, 23], which is not separable. RBF based techniques are
easily scalable to d-dimensional space and do not require tessellation of the geometric
domain and offer smooth interpolation naturally. In general, meshless techniques lead
to a solution of a linear system equations (LS) [4, 5] with a full or sparse matrix.

Generally, meshless methods for scattered data can be split into two main groups in
computer graphics and visualization:

• “implicit” – F xð Þ ¼ 0, i.e. F x; y; zð Þ ¼ 0 used in the case of a surface representation
in E3, e.g. surface reconstruction resulting into an implicit function representation.
This problem is originated from the implicit function modeling [15] approach,

• “explicit” – F xð Þ ¼ h used in interpolation or approximation resulting in a func-
tional representation, e.g. a height map in E2, i.e. h ¼ F x; yð Þ.

where: x is a point represented generally in d-dimensional space, e.g. in the case of 2-
dimensional case x ¼ x; y½ �T and h is a scalar value or a vector value.

The RBF interpolation is based on computing of the distance of two points in the d
–dimensional space and it is defined by a function:

f xð Þ ¼
XM
j¼1

kju x� xj
�� ��� � ¼ XM

j¼1

kju rj
� � ð1Þ
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where: rj ¼ x� xj
�� ��

2 def
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xj
� �2 þ y� yj

� �2q
(in 2-dimensional case) and kj are

weights to be computed. Due to some stability issues, usually a polynomial Pk xð Þ of
a degree k is added [6]. It means that for the given data set hxi; hiif gM1 , where hi are
associated values to be interpolated and xi are domain coordinates, we obtain a linear
system of equations:

hi ¼ f xið Þ ¼
XM
j¼1

kj u xi � xj
�� ��� � þPk xið Þ i ¼ 1; . . .;M x ¼ x; y : 1½ �T ð2Þ

For a practical use, a polynomial of the 1st degree is used, i.e. linear polynomial
P1 xð Þ ¼ aTx in many applications. Therefore, the interpolation function has the form:

f xið Þ ¼ PM
j¼1

kj u xi � xj
�� ��� �þ aTxi hi ¼ f xið Þ i ¼ 1; . . .;M

¼ PM
j¼1

kj ui;j þ aTxi
ð3Þ

and additional conditions are to be applied:

XM
j¼1

kixi ¼ 0 i:e:
XM
j¼1

kixi ¼ 0
XM
j¼1

kiyi ¼ 0
XM
j¼1

ki ¼ 0 ð4Þ

It can be seen that for the d-dimensional case a system of Mþ dþ 1ð Þ linear system
has to be solved, where M is a number of points in the dataset and d is the dimen-
sionality of data. For d ¼ 2 vectors xi and a are in the form xi ¼ xi; yi; 1½ �T and

a ¼ ax; ay; a0
� �T

, we can write:

u1;1 :: u1;M x1 y1 1

: . .
.

: : : :
uM;1 :: uM;M xM yM 1
x1 :: xM 0 0 0
y1 :: yM 0 0 0
1 :: 1 0 0 0

2
66666664

3
77777775

k1
:
kM
ax
ay
a0

2
6666664

3
7777775
¼

h1
:
hM
0
0
0

2
6666664

3
7777775

ð5Þ

This can be rewritten in the matrix form as:

B P
PT 0

� 	
k

a

� 	
¼ f

0

� 	
Ax ¼ b aTxi ¼ axxi þ ayyi þ a0 ð6Þ
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For the two-dimensional case and M points given a system of Mþ 3ð Þ linear
equations has to be solved. If “global” functions, e.g. u rð Þ ¼ r2lg r, are used, then the
matrix B is “full”, if “local” functions CSRBFs are used, the matrix B can be sparse.

The RBF interpolation was originally introduced by Hardy as the multiquadric
method in 1971 [5], which was called Radial Basis Function (RBF) method. Since then
many different RFB interpolation schemes have been developed with some specific
properties, e.g. 4 uses u rð Þ ¼ r2lg r, which is called Thin-Plate Spline (TPS), a

function u rð Þ ¼ e� 2rð Þ2 was proposed in [23]. However, the shape parameter 2 might
leads to an ill-conditioned system of linear equations [26].

The CSRBFs were introduced as:

u rð Þ ¼ 1� rð ÞqP rð Þ; 0� r� 1
0; r[ 1



ð7Þ

where: P rð Þ is a polynomial function and q is a parameter. Theoretical problems with
numerical stability were solved in [4]. In the case of global functions, the linear system
of equations is becoming ill conditioned and problems with convergence can be
expected. On the other hand, if the CSRBFs are taken, the matrix A is becoming
relatively sparse, i.e. computation of the linear system will be faster, but we need to
carefully select the scaling factor a (which can be “tricky”) and the final function might
tend to be “blobby” shaped, see Table 1 and Fig. 1.

The compactly supported RBFs are defined for the “normalized” interval r 2 0; 1,
but for the practical use a scaling is used, i.e. the value r is multiplied by shape
parameter a, where a[ 0.

Meshless techniques are primarily based on the approaches mentioned above. They
are used in engineering problem solutions, nowadays, e.g. partial differential equations,
surface modeling, surface reconstruction of scanned objects [13, 14], reconstruction of
corrupted images [21], etc. More generally, meshless object representation is based on
specific interpolation or approximation techniques [1, 6, 23].

Table 1. Typical examples of “local” functions – CSRBF (“þ ” means – value zero out of
h0; 1i)

ID Function ID Function

1 1� rð Þþ 6 1� rð Þ6þ 35r2 þ 18rþ 3ð Þ
2 1� rð Þ3þ 3rþ 1ð Þ 7 1� rð Þ8þ 32r3 þ 25r2 þ 8rþ 3ð Þ
3 1� rð Þ5þ 8r2 þ 5rþ 1ð Þ 8 1� rð Þ3þ
4 1� rð Þ2þ 9 1� rð Þ3þ 5rþ 1ð Þ
5 1� rð Þ4þ 4rþ 1ð Þ 10 1� rð Þ7þ 16r2 þ 7rþ 1ð Þ
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The resulting matrix A tends to be large and
ill-conditioned. Therefore, some specific
numerical methods have to be taken to increase
the robustness of a solution, like preconditioning
methods or parallel computing on GPU [9, 10],
etc. In addition, subdivision or hierarchical
methods are used to decrease the sizes of com-
putations and increase robustness [15, 16, 27].

It should be noted, that the computational
complexity of meshless methods actually covers
the complexity of tessellation itself and inter-
polation and approximation methods. This
results in problems with large data set process-
ing, i.e. numerical stability and memory
requirements, etc.

If global RBF functions are considered, the
RBF matrix is full and in the case of 106 of points, the RBF matrix is of the size approx.
106 � 106 ! On the other hand, if CSRBF used, the relevant matrix is sparse and
computational and memory requirements are decreased significantly using special data
structures [8, 10, 20, 27].

In the case of physical phenomena visualization, data received by simulation,
computation or obtained by experiments usually are oversampled in some areas and
also numerically more or less precise. It seems possible to apply approximation
methods to decrease computational complexity significantly by adding virtual points in
the place of interest and use analogy of the least square method modified for the RBF
case [3, 12, 17, 25].

Due to the CSRBF representation the space of data can be subdivided, interpola-
tion, resp. the approximation can be split to independent parts and computed more or
less independently [20]. This process can be also parallelized and if appropriate
computational architecture is used, e.g. GPU, etc. it will lead to faster computation as
well. The approach was experimentally verified for scalar and vector data used in the
visualization of physical phenomena.

3 Points of Importance

Algorithms developed recently were based on different specific properties of “global”
RBFs or “local” compactly supported RBFs (CS-RBFs) and application areas expected,
e.g. for interpolation, approximation, solution of partial differential equations, etc.,
expecting “reasonable” density of points. However, there are still some important
problems to be analyzed and hopefully solved, especially:

• What is an acceptable compromise between the precision of approximation and
compression ratio, i.e. reduction of points, if applicable?

• What is the optimal constant shape parameter, if does exist and how to estimate it
efficiently [26]?

Fig. 1. Properties of CSRBFs
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• What are optimal shape parameters a for every single u r; að Þ [24, 26]?
• What is the robustness and stability of the RBF for large data and large range span

of data with regard to shape parameters [16, 17]?

In this contribution, we will analyze a specific problem related to the first question.
Let us consider given points of a curve (samples of a signal), described by explicit

function y ¼ f xð Þ. According to the Nyquist-Shannon theorem, the sampling frequency
should be at least double the frequency of the highest frequency of the original signal.
The idea is, how “points of importance”, i.e. points of inflection and extrema can be

used for smooth precise curve approximation.
Let us consider sampled curves in Fig. 2, i.e. a signal without noise (the blue points

are values at the borders, red are maxima, the black are inflection and added points. It
can be seen that the reconstruction based on radial basis functions (RBF) has to pass:

• points at the interval borders
• points at extremes, maxima and minima
• some other important points, like points of inflection etc., and perhaps some

additional points of the given data to improve signal reconstruction.

However, there several factors to be considered as well, namely:

• extensibility from 2 D to 3 D for explicit functions of two variables, i.e. z ¼ f x; yð Þ
and hopefully to higher dimension robustness of computation as given discrete data
are given.

For extrema finding, the first derivative f 0 xð Þ is to be replaced by a standard discrete
scheme. At the left, resp. right margin, forward, resp. the backward difference is to be
used. Inside of the interval, the central difference scheme is recommended, as it also
“filters” high frequencies. The simple scheme for the second derivative estimation is
shown, too. It can be seen, that this is easily extensible for the 3 D case as well.

Fig. 2. Testing functions and resulting approximation based on the points of importance (red
points are extrema, black points are additional points of importance) (Color figure online)
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f 0 xð Þ � f xiþ 1ð Þ�f xið Þ
xiþ 1�xi

f 0 xð Þ � f xið Þ�f xi�1ð Þ
xi�xi�1

f 00 xð Þ � xiþ 1ð Þ�f xi�1ð Þ
2 xiþ 1�xi�1ð Þ f 00 xð Þ � f xiþ 1ð Þ�2f xið Þþ f xi�1ð Þ

xiþ 1�xið Þ xi�xi�1ð Þ
ð8Þ

So far, a finding of extrema is a simple task, now. However, due to the discrete data, the
extrema is detected by

sign f xiþ 1ð Þ � f xið Þð Þ 6¼ sign f xið Þ � f xi�1ð Þð Þ ð9Þ

as we need to detect the change of the sign, only. This increases the robustness of
computation as well. The points of inflections rely on a second derivative, i.e.
f 00 xð Þ ¼ 0; a similar condition can be derived from (8).

Now, all the important points, i.e. points at the interval borders, maxima, minima
and points of inflection, are detected and found. However, it is necessary to include
some more points at the interval borders (at least one on each side) to respect the local
behavior of the curve and increase the precision of approximation. It is recommended
to include at least one or two points which are closest to the borders to respect a curve
behavior at the beginning and end of the interval. Also, if additional points are inserted
ideally between extreme and inflection points, the approximation precision increases.
Now, the standard RBF interpolation scheme can be applied.

B P
PT 0

� 	
k

a

� 	
¼ f

0

� 	
Ax ¼ b aTxi ¼ axxi þ a0 ð10Þ

where: B represents the RBF submatrix, k the weights of RBFs, P represents points for
the polynomial a represents coefficients of the polynomial, f given function values.

It should be noted, that in the case of scattered data, neighbors for each point are to
be found, before the estimation of the derivative is made. In the 2 D case, ordering is
possible, in the 3 D case computation is to be made on neighbors found. If the regular
sampling in each dimension (along the axis) is given, computation simplifies
significantly.

It is necessary to note that the curve reconstruction is at the Nyquist-Shannon
theorem boundary and probably limits of the compression were obtained with very low
relative error, which is less than 0:1%. However, we have many more points available
and if a higher precision is needed, the approximation based on Least Square Error
(LSE) computational scheme with Lagrange multipliers might be used [11]. The RBF
methods usually lead to an ill-conditioned system of linear equations [26]. In the case
of approximation, it can be partially improved by geometry algebra in projective space
[18, 19] approach.
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4 Experimental Results

The presented approach was tested on several testing functions used for evaluation of
errors, stability, robustness of computation, see Table 2:

Table 2. Examples of testing functions

ID Function ID Function

1 y ¼ sin 15x2 þ 5xð Þ 2 y ¼ cos 20xð Þ=2þ 5x

3 y ¼ 50 0:4 sin 15x2ð Þþ 5xð Þ 4 y ¼ sin 8pxð Þ
5 y ¼ sin 6px2ð Þ 6 y ¼ sin 25xþ 0:1ð Þ= 25xþ 0:1ð Þ
7 y ¼ 2 sin 2pxð Þþ sin 4pxð Þ 8 y ¼ 2 sin 2pxð Þþ sin 4pxð Þþ sin 8pxð Þ
9 y ¼ 2 sin p 2x� 1ð Þð Þþ sin 3p 2x� 1=2ð Þð Þ 10 y ¼ 2 sin p 1� 2xð Þð Þþ sin 3p 2x� 1=2ð Þð Þ
11 y ¼ 2 sin p 2x� 1ð Þð Þþ sin 3p 2x� 1=2ð Þð Þ � x 12 y ¼ 2 sin 2px� p

2

� �þ sin 3p 2x� 1=2ð Þð Þ
13 y ¼ atan 10x� 5ð Þ3 þ atan 10x� 8ð Þ3=2 14 y ¼ 4:88x� 1:88ð Þ � sin 4:88x� 1:88ð Þ2 þ 1

15 y ¼ exp 10x� 6ð Þ � sin 5x� 2ð Þ3 þ 3x� 1ð Þ3 16 y ¼ tanh 9xþ 1=2ð Þ=9

Fig. 3. Examples of approximation for selected functions.
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The experiments have also proven, that for large data and data with a large span of
data a polynomial Pk xð Þ should be Pk xð Þ ¼ a0, i.e. k ¼ 0, see [16, 17].

Selected results of the approximation of some functions are presented at Fig. 3. It
can be seen, that the proposed approximation based actually on RBF interpolation
scheme using points of importance offers good precision of approximation a with good
compression ratio. The functions were sampled in 200 points approx. and 10–20 points
are actually used for the proposed approximation method.

5 Conclusion

This contribution briefly describes a method for efficient RBF approximation of large
scattered data based on finding points of importance. This leads to a simple RBF based
approximation of data with relatively low error with high compression. The precision
of approximation can be increased significantly by covering some additional points.
The approach is easily extensible to the 3D case, especially if data are ordered.
However, if data are scattered, the neighbor points must be evaluated to find points of
importance.

Experiments proved relatively high precision of approximation based on RFB
interpolation using found points of importance leading to high data compression as
well.

In future, deep analysis of an approximation behavior at the interval borders is
expected as it is a critical issue for the 3D case, i.e. z ¼ f x; yð Þ, as the first already made
experiments shown. Also, the discrete points of curves of inflection are to be taken into
account, i.e. discrete points of implicit curves F x; yð Þ ¼ 0.
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9.7 Conditionality Analysis of the Radial
Basis Function Matrix

The conditionality analysis [91] paper is a

more in-depth study of a Gaussian RBF. The

goal was to take the knowledge from the

previous paper and take the approach to

the higher (2D) dimensions to ensure there

are no problems with the approach. Also,

the uniform centre point distribution was

tested thoroughly.

The research aimed to figure out the

most suitable shape parameter, and the test-

ing scenario was simplified for that purpose. The testing scenario involves a

⟨0, 1⟩ × ⟨0, 1⟩ domain, where variable number of RBF centres 𝑁 was put uniformly

with a variable (global) shape parameter 𝛽.

During the research, two significant outcomes emerged. The first outcome is that

if the uniform distribution is used, some shape parameters lead to an ill-conditional

linear equation system. We were also able to find those experimentally and analyt-

ically. The second one is that the uniform distribution is unsuitable for the RBF

approximation because the resulting linear equation system is ill-conditioned, in

contrast to using some pseudorandom, e.g., Halton distribution.

Also, previously less discussed TPS RBF was rigorously tested. In the case of this

RBF, a shape parameter also exists, which leads to ill-conditionality; however, there

is only one for each number of RBFs tested.

This research proved the facts from the previous ones, that the pseudorandom

distribution on points (where no other viable placement option exists) is better

than the uniform one, considering the conditionality of the RBF equation system to

solve. Due to that fact, further research did not consider the uniform distribution

for placement at all.

Publication [91]:

CERVENKA, M.; SKALA, V. Conditionality Analysis of the Radial Basis Func-

tion Matrix. ICCSA 2020 proceedings, part II, LNCS. 2020, pp. 30–43. Avail-
able from doi: https://doi.org/10.1007/978-3-030-58802-1 3. UT

WoS: 000719685200003, EID: 2-s2.0-85093112881, OBD: 43932697
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Abstract. The global Radial Basis Functions (RBFs) may lead to ill-
conditioned system of linear equations. This contribution analyzes con-
ditionality of the Gauss and the Thin Plate Spline (TPS) functions.
Experiments made proved dependency between the shape parameter and
number of RBF center points where the matrix is ill-conditioned. The
dependency can be further described as an analytical function.

Keywords: Radial basis function · System of linear equations ·
Condition number · Matrix conditionality

1 Introduction

Interpolation and approximation of scattered data is a common problem in many
engineering and research areas, e.g. Oliver et al. [1] use interpolation (kriging)
method on geographical data, Kaymaz [2] finds usage of this technique in struc-
tural reliability problem. Sakata et al. [3] model wing structure with an approx-
imation method, Joseph et al. [4] even create metamodels. The RBF methods
are also used in the solution of partial differential equations (PDE) especially in
connection with engineering problems.

To solve interpolation and approximation problems, we use two main
approaches:

– Tesselated approach – it requires tesselation of the data domain (e.g. Delaunay
triangulation) to generate associations between pairs of points in the tesse-
lated cloud of points. Some algorithms were developed (Lee et al. [5] show
two of them, Smolik et al. [6] show a fast parallel algorithm for triangulation
of large datasets, Zeu et al. [7] recently use tesselation for seismic data etc.)
for triangulation and tesselation. Even though it seems simple, tesselation is
a slow process in general1.

1 The Delaunay triangulation has time complexity of O
(
n�d/2�+1

)
, where d is number

of tesselated dimensions.

The research was supported by projects Czech Science Foundation (GACR) No. 17-
05534S and partially by SGS 2019-016.
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– Meshless approach – a method based on RBFs can be used, which does not
require any from of tesselation. Hardy [8] shown that the complexity of this
approach is nearly independent to the problem dimensionality, therefore it is
a better alternative to tesselation in higher dimensions. On the other hand,
RBF methods require solving a system of linear equations which leads to
some problems as well.
There are several meshless approaches e.g. Fasshauer [9] implements some of
the meshless algorithms in MATLAB, Franke [10] compares some interpola-
tion methods of the scattered data.
Conditionality of the matrix of a linear system of equation is a key element
to determine whether the system is well solvable or not.

RBF research was recently targeted:

– to find out RBF applicability for large geosciences data, see Majdisova [11],
– to interpolate and approximate vector data, see Smolik [12],
– to study robustness of the RBF data for large datasets, see Skala [13,14].
– to find out optimal variable shape parameters, see Skala [15].

This research is aimed to find optimal (or at least suboptimal) shape param-
eters of the RBF interpolation. This contribution describes briefly analysis of
some of the most commonly used RBFs and determines its problematic shape
parameters, causing ill-conditionality of the equation system matrix.

2 RBF Approximation and Interpolation

The basic idea behind the RBF approach is the partial unity approach, i.e.
summing multiple weighted radial basis functions together to obtain complex
interpolating function. The Fig. 1 presents two RBFs (marked by red color)
forming an interpolating final function (blue one).

The RBF approach was introduced by Hardy [8] and modified in [16]. Since
then, this method has been further developed and modified. Majdisova et al. [17]
and Cervenka et al. [18] proposed multiple placement methods. There are also
some behavioural studies of the shape parameters, e.g. searching the optimal
ones from Wang et al. [19], Afiatdoust et al. [20] or using different local shape
parameters from Cohen et al. [21], Sarra et al. [22], Skala et al. [15].

This contribution analyzes the worst cases of the RBF matrix conditionality
in order to avoid bad shape parameters, therefore the bad shape parameters can
be avoided.

2.1 RBF Method Principle

The RBF interpolation is defined by Eq. 1,

h (xi) =

N∑

j=1

λjϕ (||xi − xj ||) =

N∑

j=1

λjϕ (rij) (1)
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Fig. 1. Two RBFs (in red) and result of the addition (in blue). (Color figure online)

where h (xi) is the resulting interpolant, N is the number of RBFs, λi is a weight
of the i-th RBF, ϕ is the selected RBF and rij is a distance between points xi

and xj . The points xj are all the points on the sampled original function, where
the function value is known.

The RBF approximation is slightly different, see Eq. 2. The notation is the
same as above, however, xj are replaced by reference points ξj , j = 1, . . . ,M .
Some arbitrary (sufficiently small M � N) number of points from the data
domain are taken instead. More details can be found in Skala [23].

h (xi) =

M∑

j=1

λjϕ (||xi − ξj ||), i = 1, . . . , N (2)

In both cases, i.e. approximation and interpolation, the equations can be
expressed in a matrix form as:

Aλ = b, b = h (x) ,Aij = ϕij (3)

In the interpolation case, the matrix A is a square matrix, while in the approx-
imation case, the matrix A is rectangular and the result is an overdetermined
system of linear equations. In this case, we do not obtain exact values for the
already calculated reference points ξj .

2.2 RBF Classification

There are many RBFs and still new ones are being proposed e.g. Menandro [24].
In general, we can divide the RBFs into two main groups, “global” and “local”
ones, see Fig. 3 and Fig. 2.
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– Global RBFs influence the interpolated values globally. The matrix A will
be dense and rather ill-conditioned. Typical examples of the global RBF are
the Gaussian, the TPS or the inverse multiquadric RBFs.

– Local RBFs have limited influence to a limited space near its centre point
(hypersphere, in general). The advantage of the local RBFs is that they lead
to a sparse matrix A. RBFs belonging to this group are called “Compactly
Supported” RBFs (CS-RBFs, in short).

Global RBFs are functions, which influence is not limited and its value may
be nonzero for each value in its domain. The well-known ones are the Gaussian
or the TPS functions. However, there are other functions, see e.g. Table 1 or Lin
et al. [25]. Mentioned functions are illustrated in Fig. 2.

Fig. 2. Some of the global RBF functions.

Table 1. Various global RBF functions.

Name Expression

Gaussian RBF e−αr2

TPS RBF 1
2
r2 log

(
βr2

)

Multiquadratic RBF 1
1+(εr)2

Inverse Multiquadratic RBF 1√
1+(εr)2

The CS-RBF or compactly supported radial basis function is a function
limited to a given interval. Some of CS-RBFs are presented on Fig. 3. Generally,
these functions are limited to an interval (usually r ∈ 〈0, 1〉) otherwise the value
equals zero. These functions are defined by Eq. 4, where P (r) is a polynomial
function, r is the distance of two points and q is a parameter.
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Fig. 3. Some of the CS-RBF functions. [26] (edited)

ϕ (r) =

{
(1 − r)

q
P (r) 0 � r < 1,

0 r � 1
(4)

It should be noted that some new CS-RBFs have been recently defined by Menan-
dro [24].

3 Matrix Conditionality

Assuming a linear system of equations Ax = b, the condition number of the
matrix A describes how the result (vector b) can change when the input vector
x is slightly modified. This number describes sensitivity to changes in the input
vector. We aim for the lowest possible sensitivity, in order to get reasonable
results. In terms of linear algebra, we can define conditionality of a normal
matrix A using eigenvalues λi ∈ C1 as:

κ (A) =
|λmax (A) |
|λmin (A) | (5)

where κ (A) is the condition number of the normal matrix A, |λmax (A)| is the
highest absolute eigenvalue of the matrix A and |λmin (A)| is the lowest absolute
eigenvalue of the matrix.

The higher the value κ (A) is, the more sensitive the matrix A is, meaning
that κ (A) = 1 is the best option, forcing all eigenvalues λ to have the same
value.

It is worth noting that the conditionality is closely related to the matrix
determinant. In the case when the determinant is zero, we have at least one
eigenvalue equaling zero, so the conditionality will be infinite, see Eq. 6.
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det (A) = 0 → |λmin (A)| = 0 → κ (A) = +∞ ⇔ |λmax (A)| 	= 0 (6)

This is only a brief introduction to the matrix conditionality. Details can be
found in e.g. Ikramov [27] or Skala [14], some experimental results can be found
in Skala [28].

4 Experimental Results of RBF Approximation

In the RBF approximation problem, we normally have two main issues to deal
with – selecting number of RBFs and its global shape parameter. To obtain a
robust solution, the matrix A of the linear system of equations should not be ill-
conditioned. We did some experiments to show how the condition number of the
matrix A depends on the number of RBFs (N) used and a shape parameter (α or
β, see below). To make things easier, all RBFs have been distributed uniformly
on x ∈ 〈0, 1〉 interval and have the same constant shape parameter.

4.1 Gaussian RBF

The Gaussian RBF is defined by Eq. 7. It is the unnormalized probability den-
sity function of a Gaussian distribution centred at zero and with a variance of
1
2α . Variable r denotes the distance from its centre points and α is the shape
parameter.

ϕ (r, α) = e−αr2

(7)

Figure 4 presents dependence of matrix conditionality on Gaussian RBF
shape parameter α and number of uniformly distributed RBF reference points.

A hyperbolic function (Eq. 8) was used to fit extremal points of each curve
(Table 2).

Table 2. Analytical form of first 9 hyperboles.

Hyperbole a b c Hyperbole a b c

1 7.64 38.36 −3.58 6 8.47 1387.35 −30.84

2 13.49 1.93 −7.98 7 17.98 1218.46 −49.14

3 9.17 277.29 −11.95 8 49.16 278.29 −78.53

4 9.44 509.55 −18.37 9 93.81 63.73 16.11

5 12.02 545.66 −31.8

β = a +
b

N + c
(8)

The plot at Fig. 5 describes the situation. These curves describe number of
RBFs N and shape parameter α when the matrix is ill-conditioned.
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Fig. 4. Matrix conditionality values for Gaussian RBF.

Fig. 5. Worst conditionality shape parameters α for Gauss RBF.

4.2 Thin Plate Spline RBF

The Thin Plate Spline (TPS) radial basis function is defined by the Eq. 9. The
TPS was introduced by Duchon [29] and used for RBF approximation afterwards.
Variable r is the same as in the Gaussian RBF – the distance from its centre
point and parameter β is the shape parameter.

ϕ (r, β) =
1

2
r2 log

(
βr2

)
(9)

The Fig. 6 presents a result for a simulated experiment to the recent Gaussian
RBF case using the TPS function instead. There is only one curve which has a
hyperbolic shape similar to the Gaussian RBF case.
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Fig. 6. Matrix conditionality values for TPS RBFs.
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Fig. 7. Worst conditionality shape parameters β for the TPS RBF.

The Fig. 7 also represents the curve, when the matrix A is close to singular.
The Table 3 presents dependency of the βexp shape parameter for different N as
an function when the matrix A is significantly ill-conditioned.

We obtained a hyperbolic function from the graph on Fig. 7 (coefficients are
rounded to 2 decimal places).

β = 0.79 +
0.36

N − 1.24
(10)
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38 M. Červenka and V. Skala

The Table 3 presents the shape parameters βcalc evaluated for small numbers of
RBF functions according to Eq. 10.

The experimental results presented above led to a question, how the results
are related from the analytical side. This led to the validation of experiments
with two analytical results described in this section.

5 Theoretical Analysis

Let us calculate values of the TPS shape parameter β for N = 3 and N = 4 in
a way that the matrix A will be ill-conditioned (κ (A) = +∞).

It should be noted that the multiplicative constant 1
2 is ommited in the Eq. 11

as it has no influence to the conditionality evaluation. In the first case, i.e. N = 3,
the RBF matrix A has the form (using equidistant distribution of RBF center
points):

A3 =

⎡
⎣

0 r2 log
(
βr2

)
(2r)2 log

(
β4r2

)

r2 log
(
βr2

)
0 r2 log

(
βr2

)

(2r)2 log
(
β4r2

)
r2 log

(
βr2

)
0

⎤
⎦ (11)

Let us explore singularity of the matrix A3, when det (A3) = 0, the deter-
minant will have the form:

r6

∣∣∣∣∣∣

0 log
(
βr2

)
4 log

(
β4r2

)

log
(
βr2

)
0 log

(
βr2

)

4 log
(
β4r2

)
log

(
βr2

)
0

∣∣∣∣∣∣
= 0 (12)

As r 	= 0 for all pairs of different points, limr→0 r2 log
(
r2

)
= 0 and equidis-

tant point distribution.
For the sake of simplicity, we substitute q = log

(
βr2

)
, a = log 4 and use

formula log (ab) = log a + log b so we get:

∣∣∣∣∣∣

0 q 4(q + a)
q 0 q

4(q + a) q 0

∣∣∣∣∣∣
= 0

8(q + a)q2 = 0 → q = 0 ∨ q = −a

log
(
βr2

)
= − log 4 = log

1

4

βr2 =
1

4

β =
1

4r2
(13)

In the experiments, we used interval x ∈ 〈0, 1〉 and with three points (0, 0.5, 1).
The distance between two consecutive points r is 0.5, which led to β = 1. This
exact value we obtained from experiments as well (see Table 3).
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Table 3. βexp-values for TPS RBF for some small N (number of RBFs) obtained by
experiment as well as βcalc values calculated by Eq. 10

N βexp βcalc N βexp βcalc N βexp βcalc

3 1.00000 0.99874 23 0.81338 0.81319 43 0.80535 0.80536

4 0.92206 0.92564 24 0.81264 0.81247 44 0.80515 0.80516

5 0.89118 0.89141 25 0.81197 0.81182 45 0.80496 0.80497

6 0.87182 0.87155 26 0.81135 0.81121 46 0.80477 0.80479

7 0.85909 0.85858 27 0.81078 0.81065 47 0.80459 0.80462

8 0.85002 0.84945 28 0.81025 0.81014 48 0.80442 0.80445

9 0.84324 0.84268 29 0.80976 0.80966 49 0.80426 0.80429

10 0.83799 0.83744 30 0.80930 0.80921 50 0.80410 0.80414

11 0.83379 0.83329 31 0.80888 0.80880 51 0.80395 0.80399

12 0.83037 0.82990 32 0.80848 0.80841 52 0.80380 0.80385

13 0.82753 0.82709 33 0.80811 0.80804 53 0.80366 0.80372

14 0.82512 0.82472 34 0.80776 0.80770 54 0.80353 0.80359

15 0.82306 0.82269 35 0.80743 0.80738 55 0.80340 0.80346

16 0.82128 0.82094 36 0.80711 0.80708 56 0.80328 0.80334

17 0.81973 0.81941 37 0.80682 0.80679 57 0.80316 0.80322

18 0.81835 0.81807 38 0.80654 0.80652 58 0.80304 0.80311

19 0.81713 0.81687 39 0.80628 0.80626 59 0.80293 0.80300

20 0.81605 0.81581 40 0.80603 0.80602 60 0.80282 0.80290

21 0.81507 0.81485 41 0.80579 0.80579 61 0.80272 0.80280

22 0.81418 0.81398 42 0.80557 0.80557 62 0.80262 0.80270

In the second case, i.e. N = 4, a similar approach has been taken. In this
case the matrix A4 is defined as:

A4 =

⎡
⎢⎢⎣

0 r2 log
(
βr2

)
(2r)2 log

(
β4r2

)
(3r)2 log

(
β9r2

)

r2 log
(
βr2

)
0 r2 log

(
βr2

)
(2r)2 log

(
β4r2

)

(2r)2 log
(
β4r2

)
r2 log

(
βr2

)
0 r2 log

(
βr2

)

(3r)2 log
(
β9r2

)
(2r)2 log

(
β4r2

)
r2 log

(
βr2

)
0

⎤
⎥⎥⎦

(14)

Similarly as in the case for N = 3, we can write the det (A4) and declare the
matrix singular if:

r8

∣∣∣∣∣∣∣∣

0 log
(
βr2

)
4 log

(
β4r2

)
9 log

(
β9r2

)

log
(
βr2

)
0 log

(
βr2

)
4 log

(
β4r2

)

4 log
(
β4r2

)
log

(
βr2

)
0 log

(
βr2

)

9 log
(
β9r2

)
4 log

(
β4r2

)
log

(
βr2

)
0

∣∣∣∣∣∣∣∣
= 0 (15)
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Using the substitutions q = log
(
βr2

)
, a = log 4 and b = log 9, we obtain:

∣∣∣∣∣∣∣∣

0 q 4 (q + a) 9 (q + b)
q 0 q 4 (q + a)

4 (q + a) q 0 q
9 (q + b) 4 (q + a) q 0

∣∣∣∣∣∣∣∣
(16)

This can be further expressed as:

(4 (q + a))
4

+ q4 + q2 (9 (q + b))
2

= −2q3 (9 (q + b)) − 2q (4 (q + a))
2
(9 (q + b)) − 2q2 (4 (q + a))

2

= 256(q + a)4 + q4 + 81q2(q + b)2 − 18q3(q + b) (17)

− 288q(q + a)(q + b)2 − 32q2(q + a)2

This leads to the cubic equation:

(383a − 144b)q3 + (1216a2 + 81b2 − 576ab)q2

+ (1024a3 − 288a2b)q + 256a4 = 0 (18)

Solving this cubic equation (Eq. 18), one real and two complex (complex conju-
gate) roots are obtained:

q1 ≈ −2.2784

q2 ≈ −1.1149 + 0.8239i (19)

q3 ≈ −1.1149 − 0.8239i

As we have four points distributed uniformly on the interval x ∈ 〈0, 1〉, the
distance between two adjacent nodes is r = 1

3 . Now, using the real root of the
Eq. 19, i.e. q = −2.2784, we can estimate the shape parameter β as follows:

q = log
(
βr2

)
≈ −2.2784

βr2 ≈ e−2.2784 ≈ 0.10245 (20)

β ≈ e−2.2784

r2

β ≈ e−2.2784

(
1
3

)2 = 9e−2.2784 ≈ 0.92206

From the experiments, we obtained value β̂ = 0.92206 which is consistent
with this theoretical estimation. Both these analytical examples support the
argument that the experiments made are correct.

It should be noted, that if irregular point distribution is used, i.e. using
Halton points distributions, the ill-conditionality get slightly worse.

9.7. Conditionality Analysis of the Radial Basis Function Matrix

155



Conditionality Analysis of the Radial Basis Function Matrix 41

6 Conclusion

In this paper, we discussed some properties of the two well-known RBFs. We
find out that there are some regularities in the shape parameters, where the
RBF matrix is ill-conditioned. Our experiments proved that there are no global
optimal shape parameters from the RBF matrix conditionality point of view.

In the future, the RBF conditionality problem is to be explored for higher
dimension, especially for d = 2, d = 3 and in the context of partial differential
equations.
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9.8 Muscle Deformation Using Position
Based Dynamics

In this article [71], we followed our recent re-

search [65] on muscle deformation using a trian-

gular mesh model of a musculoskeletal system,

already described in Section 9.4. The approach

emphasises the volume preservation constraint,

evident in the results where the volume is well

preserved with less than 1% error in all cases.

This emphasis on volume preservation is a key

improvement, ensuring more accurate and real-

istic muscle simulations. It also presents a de-

tailed analysis of the average displacement of

points in the more complex adductor brevis muscle during hip flexion with different num-

bers of PBD solver iterations. This analysis contributes to the muscle deformation dynamics,

testing the previous method [65] more rigorously. Also, multiple issues were described:

1. The approach relies on detecting muscle points that should move with bones based

on the information about attachment areas of the muscle. However, muscle attach-

ment sites cannot be automatically extracted from medical images, and their manual

specification by an expert is time-consuming.

2. The collision handling method is inaccurate, leading to sharp spikes on the surface

of the muscle, especially when using a coarse voxel representation of bones. As the

memory grows cubically, using a refined voxel representation becomes impractical.

3. The simulation results are susceptible to the parameter settings. Although the sim-

ulation runs in real-time, even with an unoptimized sequential algorithm, careful

adjustment and calibration of parameters are required to achieve accurate results.

These disadvantages highlight the challenges in accurately simulating muscle deformation,

particularly in efficiently handling collision and the complexity of setting up accuratemuscle

attachment points. The first issue (attachment area specification) was further discussed

in our research in Section 9.11. The issues described in the second point were improved

significantly (see Section 9.10). The third issue is at the time of writing a work in progress.

Publication [71]:

KOHOUT, J.; CERVENKA, M. Muscle Deformation Using Position Based

Dynamics. Ye X. et al. (eds) Biomedical Engineering Systems and Technologies.
BIOSTEC 2020. Communications in Computer and Information Science. 2021,
vol. 1400. Available from doi: https://doi.org/10.1007/978-3-030-

72379-8 24. EID: 2-s2.0-85107281398, OBD: 43932927
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besoft@ntis.zcu.cz
2 Department of Computer Science and Engineering, Faculty of Applied Sciences,

University of West Bohemia, Univerzitńı 8, Plzeň, Czech Republic
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Abstract. This paper describes an approach to personalized muscu-
loskeletal modelling, in which the muscle represented by its triangu-
lar mesh is subject to deformation, based on a modified position-based
dynamic (PBD) method, followed by decomposition of its volume into a
set of muscle fibres. The PBD was enhanced by respecting some muscle-
specific features, mainly its anisotropy. The proposed method builds no
internal structures and works only with the muscle surface model. It runs
in real-time on commodity hardware while maintaining visual plausibil-
ity of the resulting deformation. For decomposition, the state-of-the-art
Kukačka method is used. Experiments with the gluteus maximus, gluteus
medius, iliacus and adductor brevis deforming during the simulation of
the hip flexion and decomposed into 100 fibres of 15 line segments show
that the approach is capable of achieving promising results comparable
with those in the literature, at least in the term of muscle fibre lengths.

Keywords: Position based dynamics · Musculoskeletal system ·
Muscle deformation · Muscle fibres · Personalised model

1 Introduction

For decades, musculoskeletal modelling has been an important topic of research
interest because of its ability to estimate internal loading on the human skeleton,
which cannot be measured in-vivo. These estimations are useful, e.g., for preop-
erative surgical planning and postoperative assessment in orthopaedic surgery,
rehabilitation procedures, prosthesis design, or prevention of injuries in profes-
sional sport.

Musculoskeletal models used in common practice (see, e.g., [1,2,6,8,11]) rep-
resent a muscle (or even a group of muscles) as one or more Hill-type one-
dimensional structures, commonly referred as lines of action or fibres, connecting

This work was supported by the Ministry of Education, Youth and Sports of the Czech
Republic, project SGS-2019-016 and project PUNTIS (LO1506).

c© Springer Nature Switzerland AG 2021
X. Ye et al. (Eds.): BIOSTEC 2020, CCIS 1400, pp. 486–509, 2021.
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the origin and insertion points of the muscle, i.e., the sites at which the muscle
is attached to the bone by a tendon, and passing through a couple of predefined
via points, fixed to the underlying bone, or wrapping around predefined para-
metric objects (e.g. spheres, cylinders, or ellipsoids). Due to apparent difficulties
with the specification of the locations of insertion, origin, and via points, it is
common that there are no more than three fibres per muscle and they penetrate
the bones in some poses. Figure 1 shows an example of models of this kind. An
advantage of this approach, which makes it so popular, is its simplicity and rapid
processing speed.

Fig. 1. Musculoskeletal models used in common practice: left – Anybody (http://
www.anybodytech.com/) default model, middle – OpenSim (https://simtk.org/home/
opensim) gait2392 model, right – LHDL model [22].

As acquiring complete patient-specific or subject-specific data is nearly
impossible due to technological limitations of scanning devices, these muscu-
loskeletal models have anatomical parameters derived from cadaver experiments.
However, to answer specific subject-related questions, it is generally believed
that a patient-specific or subject-specific model is needed. The current practice
is, therefore, to take some of these generic models and adapt it to get a person-
alized model, which most typically consists of a non-uniform scaling (see, e.g.,
[38]) and a change of optimum fibre length.

Bolsterlee et al. [3] pointed out that many parameters in a model are inter-
related. Adapting the model to the subject by scaling improves the anatomical
resemblance between the model and the subject but may not improve force
prediction. Unfortunately, it is not known how to adapt the other parameters.
Several studies, e.g., [10,12,31], warn that attachment sites of muscles show
high inter-subject variability, which may considerably affect muscle moment-
arms because it has been shown that small differences in location of muscle
attachment points often affect muscle force predictions to a great extent (see
e.g., [4]).

9.8. Muscle Deformation Using Position Based Dynamics
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Valente et al. [34] showed that representing a muscle, especially, a complex
one, e.g., the gluteus medius, by a single line segment can produce errors up to
75% suggesting thus that the number of fibres in musculoskeletal models being in
used might not be enough. Recently, Weinhandl & Bennett [37] confirmed that
high number of fibres are required for the muscle surrounding the hip joint to
provide an accurate estimation of joint contact forces. Modenese et al. [26] found
out that representing the muscles surrounding the hip joint by fibres with none
or a few via points only may limit the accuracy of hip contact force predictions.

To reduce the human effort associated with the construction of subject-
specific musculoskeletal models, some researchers proposed algorithms to gen-
erate the fibres automatically providing that the surface model of a muscle is
available [18,20,30]. The problem is how to update the shape of these fibres in
reaction to the movement of bones. One approach to this problem is to express
their vertices to be relative to the vertices of the surface mesh of the muscle,
first, and then use some of the existing algorithms for surface mesh deformation
proposed in the context of musculoskeletal modelling, e.g., [9,16,17,32].

In our conference paper [9], we proposed a new algorithm for muscle mesh
deformation, based on position-based dynamics [28], and demonstrated its fea-
tures on three hip muscles deforming during flexion of the right leg. In this paper,
which is an extended version of that paper, we newly include:

– a description of the implementation details of our algorithm such as its ini-
tialization for muscle deformation, constraints calculations,

– a proposal of alternative algorithms for detecting the muscle points that
should move with the bones,

– new experiments demonstrating the sensitivity of the results on its various
parameters (e.g., anisotropy, number of iterations, resolution of the mesh),

– new experiments showing the lengths of fibres generated in the volume of hip
muscles, and comparing them with those obtained by other approaches.

2 Position-Based Dynamics

Position-based dynamics (PBD), which is the core part of our approach, was
firstly introduced in [28] as a fast, stable, and controllable alternative to mass-
spring systems used in computer graphics algorithm. Since then, it has been
further developed (e.g., [25] proposed recently some speed and accuracy improve-
ments) and has found many (close to) real-time applications, not only in com-
puter graphics, e.g., for simulations of cloth or fluids [33], but even in other
domains. For example, Kotsalos et al. use PBD to model blood cells [24].

PBD represents a dynamic object, e.g., a muscle, by a set of N points, having
associated mass and velocity, and a set of M constraints restricting the free-
dom of the movement of these points during the simulation. In their paper [28],
Müller et al. presented the restraints to maintain distances among the points,
the shape of the object and its volume, and to avoid collisions with other objects,
however, one can use any constraint that is meaningful in their application con-
text. Mathematically speaking, assuming that every point has the same mass,
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the PBD method solves Eq. 1 that describes a movement of a single point pi

restricted by a constraint function C with cardinality n, where Δpi denotes the
difference in position of ith point and �pi

C is the gradient of the function C
with respect to point pi.

Δpi = − �pi
C (p1, . . . ,pn)

∑n
j=1

∣∣�pj
C (p1, . . . ,pn)

∣∣2 · C (p1, . . . ,pn) (1)

2.1 Distance Constraint

Distance constraint is restricting each model point to change the distance from
the others in its neighbourhood. It is described by Eq. 2, where d is the original
distance between points p1 and p2.

C (p1,p2) = |p1 − p2| − d (2)

At this point, the gradient of this function has to be determined. Calculation
procedure of determining the gradient of the vector norm is shown in (3).

�p1
C (p1,p2) = �p1

(|p1 − p2| − d)

=

[
∂(p1x−p2x)2

∂p1x

∂(p1y−p2y)2

∂p1y

∂(p1z−p2z)2

∂p1z

]

2 |p1 − p2|
=

p1 − p2

|p1 − p2|
= u

�p2
C (p1,p2) =

p2 − p1

|p1 − p2|
= −u

(3)

Coincidentally, the result is the unit directional vector u of given edge.

2.2 Volume Constraint

Volume constraint restricts the object to change its volume during the simulation
process. Assuming that this object is a triangular mesh model, the constraint
function is:

C (p1, . . . ,pn) =

m∑

i=1

(
pti

1
·
(
pti

2
× pti

3

))
− V0 (4)

where m is the number of triangles forming the mesh, V0 is its original volume,
and pti

j
is jth vertex of triangle i.

To obtain complete gradient of volume constraint function, all triangles are
treated independently and their results are just summed together:

�pi
C (p1, . . . ,pn) =

t∑

h=1

pj × pk; i �= j �= k (5)

9.8. Muscle Deformation Using Position Based Dynamics

163



490 J. Kohout and M. Červenka

2.3 Local Shape Constraint

Above described constraints are not enough to prevent the triangular mesh model
from becoming noisy, full of unrealistic spikes. One possible solution to this
problem is to use the distance constraint not only to keep the distances between
adjacent points but also between the pairs of points lying on the opposite sides
of the model. This would, however, need to create a 3D mesh model first, which
would be quite complex to do. Another option is to ensure that the local shape is
maintained. To achieve this, the dihedral angles between neighbouring triangles
should stay the same during deformation.

Equation 6 presents the local shape constraint function of triangles p1,p2,p3

and triangle p2,p1,p4 sharing points p1 and p2. In this equation, n1 and n2 are
normal vectors of these triangles and ϕ0 is the original dihedral angle between
them. Gradients are defined in (7).

C (p1,p2,p3,p4) = arccos (n1 · n2) − ϕ0

= arccos

(
(p2 − p1) × (p3 − p1)

|(p2 − p1) × (p3 − p1)|2
· (p2 − p1) × (p4 − p1)

|(p2 − p1) × (p4 − p1)|2

)
− ϕ0

(6)

d =n1 · n2

�p′
4
C = − 1√

1 − d2

(
�p′

4
(n2) · n1

)

�p′
3
C = − 1√

1 − d2

(
�p′

3
(n1) · n2

)

�p′
2
C = − 1√

1 − d2

(
�p′

2
(n1) · n2 + �p′

2
(n2) · n1

)

�p′
1
C = −

4∑

i=2

�p′
i
C

(7)

3 Our Approach

The requested inputs of our approach are 1) a set of bones, each of which is rep-
resented by a triangular mesh and has an associated time-dependent transforma-
tion describing its movement, and 2) a muscle, also represented by a triangular
mesh. We note that the first input is standard when creating any subject-specific
musculoskeletal model. A muscle model is obtainable with a little effort from the
medical images by segmentation (similarly as models of bones). Optionally, the
user may specify a set of muscle fibres, represented by polylines, obtained, e.g.,
by Kohout & Kukačka [19], Kohout & Cholt [21], or Otake et al. [30] method.
Furthermore, the user may also specify a set of attachment areas that describes
the sites where the muscle attaches to the bones. As the muscle attachment sites

9. Author’s contribution

164



Muscle Deformation Using Position Based Dynamics 491

Fig. 2. Gluteus Maximus deformed by our approach: a) the input (origin and insertion
attachment sites denoted by red and blue spheres), b) bones move from their initial
rest-pose to the current pose (wireframe), c) the muscle surface adapted to the change
of bones by PBD, d) the output. (color figure online)

are not apparent from the medical images, these are traditionally identified man-
ually by an expert, typically as a set of landmarks fixed to the bones. Figure 2a
shows an example of a typical input.

At each vertex of the muscle mesh, we create one PBD point with the mass
being 1.0 and the initial velocity 0. For each pair of PBD points corresponding to
the vertices connected in the muscle mesh by an edge, we establish the distance
constraint (see Sect. 2.1) modified to support the anisotropic feature of muscles
– see Sect. 3.1. Similarly, we create the local shape constraint (see Sect. 2.3) and
the volume constraint (see Sect. 2.2). We note that we do not create any distance
constraint between points of opposite sides of the muscle to avoid an unnatural
change of the muscle shape during the simulation but rely solely on the latter
two restraints in that.

We distinguish between two classes of PBD points: fixed and moveable, auto-
matically detected as described in Sect. 3.3. A fixed point is bound to a single
bone and moves with it at the beginning of the PBD simulation. The movement
of the fixed points violates the equilibrium of the entire system, as described by
the constraints, and the PBD attempts to restore it by updating, iteratively, the
position of the moveable points while avoiding the penetration with the moved
bones using the mechanism for collision detection and response described in
Sect. 3.2 – see Fig. 2b,c.

Providing that the muscle fibres are specified, we compute the mean value
coordinates of every vertex of polylines representing the fibres in the domain
described by the triangular mesh of the muscle using the algorithm by Ju et al.
[15]. Mathematically speaking, this operation maps the position of a muscle fibre
vertex from E3 to En, where n is the number of vertices of the muscle mesh.
When the muscle surface deforms, the inverse mapping provides new positions
of fibre vertices within the deformed domain (see Fig. 2d):
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v′
i =

n∑

j=1

wj · p′
j (8)

In the equation above, v′
i denotes the i-th fibre vertex, wj are its mean value

coordinates and p′
j is the position of the deformed muscle vertex pj .

The entire algorithm written in pseudocode is in Algorithm1 and 2.

3.1 Anisotropy

The PBD algorithm has been originally proposed in the computer graphics field
to model isotropic materials (e.g., cloths). However, muscles are anisotropic
(may behave differently in two distinct directions), so it is appropriate to take
anisotropy into account. The main idea is that muscle surface is stiffer in the
direction perpendicular to the muscle fibres and more flexible in the direction
parallel to these fibres. Mathematically speaking, we multiply the distance con-
straint (see Eq. 2) with the result of the following equation:

Algorithm 1. Pre-processing stage of our algorithm.

1: procedure Init(M, SB , SF , SA) � M is a muscle triangular mesh, SF is a
set of muscle fibres, SB is a set of bones,
and SA is a set of attachment areas

2: for all vertices vi ∈ SF do
3: wi = computeMV C(vi, M) � compute the mean value coordinates
4: end for

5: for all bones B ∈ SB do
6: generateCollisionDataStructure(B) � see Section 3.2
7: end for

8: for all vertices pi ∈ M do
9: xi = pi, vi = 0, mi = 1 � initialize a PBD point

10: end for

11: detect fixed points � see Section 3.3

12: for all edges ei ∈ M do
13: generateDistanceConstraint(ei) � compute the original distance d
14: if SF = ∅ then
15: ki = 1 � no anisotropy used
16: else
17: ki = computeAnisotropyStiffness(ei) � see Section 3.1
18: end if
19: generateLocalShapeConstraint(ei) � compute the dihedral angle ϕ0

20: end for

21: generateV olumeConstraint(M) � compute the original volume V0

22: end procedure
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Algorithm 2. Runtime stage of our algorithm.

1: procedure Execute(simFrame) � simFrame is the index of simulation frame
2: for all bones B ∈ SB do � see also Algorithm 1
3: T = getTransform(B, simFrame) � get the transformation matrix
4: transformMesh(B, T )
5: end for

6: for all PBD points i do
7: if isFixed(i) then
8: B = getAttachmentBoneForPoint(i)
9: pi = transformPoint(xi, getTransform(B, simFrame))

10: else
11: vi = vi+ Δt · fext (xi) /mi � update velocities by external forces
12: vi = vi · cdamp � apply some damping
13: pi = xi + Δt · vi

14: end if
15: end for

16: loop solverIterations times
17: for all edges ei ∈ M do
18: projectDistanceConstraintWithAnisotropy(ei, ki) � updates pi

19: end for
20: projectV olumeConstraint()
21: for all edges ei ∈ M do
22: projectLocalShapeConstraint(ei)
23: end for
24: for all vertices i do
25: for all bones B ∈ SB do
26: T = getTransform(B, simFrame)

27: generateCollisionConstraints(B, T−1,xi,pi)
28: end for
29: projectCollisionConstraints()
30: end for
31: end loop

32: for all verticies i do
33: if NotIsF ixed(i) then

34: vi = pi−xi

Δt � compute the velocity
35: xi = pi � update the position
36: end if
37: end for

38: for all vertices pi ∈ M do
39: pi = xi � update the muscle mesh
40: end for
41: for all vertices vi ∈ SF do
42: vi = reconstructPositionFromMV C(wi, M)
43: end for
44: end procedure
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ki = 1 − ui · vi (9)

The direction of ith edge is described by normalized vector ui, vi denotes
tangential direction normal vector of nearest fibre on the surface. If both vectors
are collinear, the result ki will be zero, meaning no distance is preserved. If these
two vectors are perpendicular, then k1 is equal to one and edge length will be
preserved.

3.2 Collision Handling

The moving muscle and bones should not intersect each other. From several
approaches to this issue we considered (see our conference paper [9]), we have
opted for voxelization because of its simplicity and processing speed. In this
approach, the bounding box of a bone is divided into a uniform grid of nx ×ny ×
nz equally sized cells. For each triangle in the bone mesh, we detect the cells
intersected by it and mark them as the boundary. Assuming that the mesh is
closed, we mark the cells that are inside the bone using the flood-fill algorithm
with 8-directions. All other cells are outside. Figure 3 shows the visualization of
boundary cells when the constants nx, ny, and nz are equal and when they are
automatically determined from the sizes of the bounding box so that the overall
number of cells is roughly equal to some given constant nmax.

Fig. 3. Voxel representation of pelvis and femur. From left to right: nx = ny = nz = 64
(262 144 cells, 256 KB min), nmax = 262 144 – pelvis = 47 × 64 × 85 (255 680 cells,
250 KB min) femur = 42× 176× 34 (251 328 cells, 245 KB min), nmax = 8 · 262 144 =
2 097 152 – pelvis = 95×128×171 (2 079 360 cells, ≈2 MB min) femur = 85×352×69
(2 064 480 cells, ≈2 MB min).

During the simulation, the algorithm identifies the cell in which a PBD point
pi lies. If this cell is outside the bone, the point does not collide with the bone.
Otherwise, its position needs to be updated. Two scenarios have to be distin-
guished. In the first one, the muscle moves (e.g. because of surrounding forces)
and hits a bone. As it is, the previous position of this point (xi) is outside the
bone. The algorithm, therefore, traverses the collision data structure along the
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line segment from pi to xi until it does not find an outside cell. If this cell is
the cell of xi, pi moves back to xi; otherwise, it moves to the point on the line
segment where the traversal stopped.

In the second scenario, a bone moves into the muscle. Therefore, even the
previous position of the point (xi) no longer lies outside the bone. We propose
a solution where pi moves to xi transformed by the same transformation that
caused the collision.

3.3 Detecting the Fixed Points

Assuming that the muscle is, in fact, a musculotendon unit, i.e., its surface
touches the bones at the attachment sites, there are three approaches to detecting
the muscle points that should be fixed to some bone and move with it, each of
which has its pros and cons. In our previous work [9], we used the constructed
data structure for collision detection also for the identification of the fixed points.
However, recent analysis shows that this algorithm may inappropriately fix also
the points that are close to some bone but should slide along it – see Fig. 4. That
is the real reason for the unacceptable behaviour of the iliacus muscle during the
flexion of the right leg reported in the original paper.

We, therefore, have experimented with another approach. We fix all points
lying in the proximity of some bone, i.e., having their distances to the surface
of a bone smaller or equal to a predefined threshold. An obvious choice is to
compute the average length of edges in the muscle mesh and use it as this
threshold. Figure 5, however, shows that the results are not very different from
the results obtained by the original algorithm. Specification of the threshold
value by the user may help. Nevertheless, this is very sensitive. For example,

Fig. 4. Muscle vertices (red cubes) of Iliacus fixed to some bone, i.e., preserving their
relative position to the bone during the simulation, as identified by the original CD-
based algorithm (nx = ny = nz = 64) causing an unsatisfactory result of the deforma-
tion (right). (Color figure online)
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while 1 mm threshold seems perfect for gluteus maximus, for iliacus, a value less
than 0.5 mm is needed to get something at least reasonable.

The third approach exploits the idea that muscle attachment areas are typi-
cally required for the construction of muscle fibres and, the user, therefore, have
them readily available also for detection of the fixed points. We assume that an
attachment area is defined by a set of landmarks that are fixed to a bone and,
furthermore, they are specified in an order such that interconnecting every pair
of adjacent landmarks by a line segment would produce a closed non-intersecting
poly-line corresponding to the boundary of the attachment area. Following the
idea described by Kohout & Kukačka in [19], we detect the patch on the mus-
cle having the boundary corresponding to the boundary of the attachment area
projected onto the muscle surface and fix all the points of this patch. As Fig. 5
demonstrates, this approach provides us with the best results.

4 Experimental Results

In this paper, a subset of a comprehensive female cadaver anatomical dataset
(81 y/o, 167 cm, 63kg) is used. Specifically, pelvic and femur bones together with
several muscles from the pelvic region have been selected.

Fig. 5. Muscle vertices (red cubes) of gluteus maximus (top) and iliacus (bottom) fixed
to some bone, i.e., preserving their relative position to the bone during the simulation,
as identified by the original CD-based algorithm (nx = ny = nz = 64), the muscle-bone
proximity algorithm with the thresholds: average edge length, 0.5 mm, and 1 mm, and
by the algorithm using muscle attachment areas input data. (Color figure online)
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Fig. 6. Gluteus maximus (19 752 triangles (�)), gluteus medius (10 622 �), iliacus
(13 858 �), and adductor brevis (17 124 �) decomposed into a set of 100 fibres
composed of 15 line segments.

The complete data are publicly available in LHDL dataset [36] and has been
selected because it includes high-quality surface meshes of bones and muscles.
Furthermore, the dataset was improved by removing non-manifold edges, dupli-
cated vertices and degenerate triangles followed by surface smoothing in both
muscle and bone models using MeshLab [5]. The dataset also contains mus-
cle attachment areas and geometrical paths of superficial fibres obtained from
dissection [35].

To decompose the muscles into fibres, we use the Kohout & Kukačka method
[19] with a slight modification: establishing the inter-contour correspondence
is done by minimizing the sum of square distances between the corresponding
points. This modification increases the robustness of the method even in cases
when the user-specified number of straight-line segments per fibre is low.

We decomposed the surface meshes of gluteus maximus, gluteus medius, ilia-
cus and adductor brevis into models of 100 fibres using a template with parallel
fibres composed of 15 line segments – see Fig. 6. The decomposition took less
than 50 ms in all cases on HP EliteDesk 800 G3 TWR (Intel Core i7-7700K @
4.2 GHz, 64 GB RAM, Windows 10 64-bit).

Simulations of hip flexion (0◦ to 90◦) were performed in steps of 2◦ via
inverse kinematics. Inverse kinematics means that the location and movement
of all bones are known, and muscle actual shape has to be determined according
to these situations. We note this is exactly the opposite to what can be seen in
real situation, where muscles control bone movement.
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The default parameters in all our experiments were: nmax = 8 ·64 ·64 ·64, the
damping constant cdamp = 0.99, anisotropy on, local shape constraint stiffness =
0.9 (i.e., the solver was allowed to violate this constraint to preserve the volume
and avoid the penetration between the muscle and bones).

4.1 Number of Solver Iterations

In the first experiment, we investigated the influence of the number of iterations
of constraint projections (see the loop on line 16 in Algorithm2) on the quality of
the results and overall time required for the simulation. From Fig. 7, it is apparent
that the average displacement of points between individual iterations quickly
decreases. In a few iterations, it drops below 0.1 mm; with just 10 iterations it
is below 0.01 mm.

Average time required by one simulation step (Algorithm 2) on HP EliteDesk
800 G3 TWR (Intel Core i7-7700K @ 4.2 GHz, 64 GB RAM, Windows 10 64-bit)
using our, mostly unoptimized, C++ implementation is in Table 1.

Table 1. Times needed for one simulation step on average for adductor brevis using
various number of PBD solver iterations (NoIters).

NoIters 1 3 5 10 25 50 100

Time [ms] 53.04 62.55 74.66 104.96 193.66 441.72 658.71
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Fig. 7. The average displacement of points of adductor brevis between individual itera-
tions of the PBD solver during the hip flexion. Note the logarithmic scale on the y-axis.
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Figure 8 brings a visual comparison of the results obtained using a various
number of iterations. An unrealistic bending of the muscle is apparent, especially
when using a few iterations only. This behaviour has three reasons. First, the
speed of the femur bone is quite high; it is 2◦ per simulation step, which repre-
sents the movement of the fixed points of 3.78–6.75 mm. Next, at the beginning
of the simulation, the moving femur hits an unfixed part of the muscle giving
it a large velocity pulling it in the direction opposite to the natural movement.
Finally, the muscle mesh contains 17126 triangles, i.e., it is pretty accurate, and,
therefore, a lot of iterations are required to propagate the movement from the
points on the femur to those on the pelvis.

Hence, we reduced the number of triangles using the quadric edge collapse
decimation implemented in MeshLab software down to 3000 (L1) and 1000
(L2). Not only visual realism improves, as Fig. 9 illustrates, but also the overall
required time decreases since there are less PBD points and consequently also
fewer constraints to satisfy. For L2 mesh, 1000 iterations need 349.80 ms per
simulation step on average, which is even faster than 100 iterations for the orig-
inal, high-resolution mesh. Naturally, this higher number of iterations improves
visual appearance considerably. We note, however, that increasing the number
of iterations further, e.g., to 10000, does not bring any substantial change.

4.2 Fixed Points

Figure 8 also demonstrates the effect of the algorithm used to detect the points
to fix on the results of the deformation. Due to inaccuracies during the extraction
of the musculotendon unit, only a very small part of the adductor brevis muscle
is touching the femur. When using the original algorithm, which exploits the
collision detection mechanism, a significant area on the muscle is, therefore, not
fixed. As a result, the deformation algorithm produces the mesh with an unreal-
istic sharp spike. There is no such issue with the detection algorithm exploiting
the knowledge of muscle attachment areas.

A different case happens with the iliacus muscle – see Fig. 10. Despite the
relatively high resolution of the voxel data structure, many muscle points in
proximity of the femur ball are fixed incorrectly to the femur. As a result, this
part of the muscle moves unrealistically into the narrow space between the femur
and pelvis. Using the attachment areas improves the situation but only slightly
because the points in the proximity of the femur ball typically collide with the
coarse voxel representation of the femur and they are, therefore, transformed
using the same transformation. After turning this collision handling mechanism
off, the algorithm provides us with acceptable results with a small muscle-bone
penetration.
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Fig. 8. Adductor brevis at flexion of 40◦ using 1, 3, 5, 10 or 100 PBD solver iterations
(from left to right) with anisotropy off (odd rows) and on (even rows) when fixing the
points by the original CD-based algorithm with nmax = 8 · 262 144 (the first two rows)
and by the algorithm using muscle attachment areas (the last two rows).

4.3 Anisotropy, Volume and Other Constraints

The impact of the anisotropy on the results is apparent in Fig. 8. Surprisingly, it is
barely observable. Most probably, this is because the other constraints (especially
the volume constraint) play a dominant role. Volume preservation constraint was
tested by determining ratio between both original and actual volumes. Figure 11
show us the volume preservation results. As we can see, the volume is well
preserved (the error is less than 1% in all cases). Other quantitative tests, e.g.,
preservation of the dihedral angles between two adjacent triangles and average
edge extension, are presented in our original conference paper [9].

4.4 Muscle Fibre Lengths

Last but not least, we analyzed the lengths of fibres reconstructed at the end of
the deformation step. To remove any noise that might be present in the data, we
performed a smoothing process, repeated five times, that updates the length li
according to the equation: l′i = (li−1 + 4 · li + li+1)/6. The results are present in
Figs. 12, 13, and 14. Both gluteus maximus and gluteus medius behave during the
hip flexion as expected. The lengths of all the gluteus maximus fibres increase.
In the case of the gluteus medius, only the surface fibres extend, while the deep
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Fig. 9. Adductor brevis at flexion of 40◦ using 100 PBD solver iterations, anisotropy
on, fixing the points at muscle attachment areas when a surface mesh with 17 124,
3 000, and 1 000 triangles is used.

Fig. 10. Iliacus at flexion of 40◦ using 5 PBD solver iterations, anisotropy on, fixing
the points by the original CD-based algorithm with nmax = 8 ·262 144 (left) and by the
algorithm using muscle attachment areas with (middle) and without (right) collision
handling when a bone hits the muscle.
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Fig. 11. Volume preservation during hip flexion using 3 PBD solver iterations.
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Fig. 12. Total length of each individual fibre during simulation in the gluteus maximus
muscle. The visual results at 20◦, 50◦, and 70◦ are shown for illustration.

fibres contract. For the iliacus muscle, we can observe an unrealistic increase in
the lengths when the flexion is greater than 70◦, which is caused by the above-
described issue of pushing a part of the muscle into the joint space.

4.5 Deformation Speed

The proposed method was designed to be not only precise, but mainly, fast.
It was implemented in C++ using VTK toolkit. Its current version is publicly
available at https://github.com/cervenkam/muscle-deformation-PBD.

Using the collision detection structure with nx = ny = nz = 64 and three
PBD solver iterations, we measured the processing speed of our implementation.
All tests were performed on Intel R© CoreTM i7-4930K 3.40 GHz CPU, Radeon
HD 8740 GPU and WDC WD40EURX-64WRWY0 4TB HDD. The results, given
in FPS (Frames Per Second), i.e., the number of simulation steps per second,
are listed in Table 2. As it can be seen, the FPS strictly depends on number of
triangles (Spearman’s ρ = −1). The more triangles is used, the slower the method

9. Author’s contribution

176



Muscle Deformation Using Position Based Dynamics 503

0 20 40 60 80
hip flexion [deg]

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

fib
re

 le
ng

th
s 

[m
]

Fig. 13. Total length of each individual fibre during simulation in the gluteus medius
muscle. The visual results at 20◦, 50◦, and 70◦ are shown for illustration.

Table 2. FPS of each simulation.

Deforming object Triangle count FPS

Gluteus maximus 19752 33.85

Abductor brevis 17124 35.89

Iliacus 13858 47.21

Gluteus medius 10622 57.12

is. Even though the program is mostly unoptimized and runs sequentially at the
moment, the FPS is sufficient for considered purposes in general.

5 Discussion

In the past, several algorithms for the deformation of the surface mesh of a
muscle were proposed. Most of these algorithms, however, have unreal require-
ments on the input, e.g., [16,17] rely on existence of a muscle skeleton (centroid)

9.8. Muscle Deformation Using Position Based Dynamics

177



504 J. Kohout and M. Červenka
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Fig. 14. Total length of each individual fibre during simulation in the iliacus muscle.
The visual result at 20◦, 50◦, and 70◦ are shown for illustration. For clarity, we do not
show the fibres. Readers are referred to Fig. 10 to see the produced fibres of the iliacus
muscle.

having known a physiologically correct deformation, or they ignore important
physiological properties such as impenetrability with bones and other muscles
(e.g., [17,32]), muscle volume preservation, and anisotropy of muscles during
their contraction.

Romeo et al. [32] independently to our work developed an approach similar
to ours. The main differences are as follows. First, the authors build a complex
internal muscle structure to better preserve the shape and volume of the mus-
cle, while we work with the surface geometry only. Next, they do not include
any mechanism to prevent penetration of muscles and bones, relying thus on
manually defined various mesh-to-mesh constraints, which not only complicates
the setup but also does not guarantee impenetrability. We implemented a simple
and fast collision handling that avoids muscle-bone penetration in most cases.
Finally, their aim is to have a visually plausible skin deformation but what is
going on inside the body is not of their interest. We, on the other hand, focus
on the representation of muscles for mechanical assessments.
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Janak et al. [14] proposed a technique based on the mass-spring system to
deform the fibres while preventing their penetration with bones and fibres of
other muscles. To get reasonable results, a lot of particles are required, which
causes high time and memory complexity. More importantly, the muscle volume
is not preserved. This could be probably solved using the approach described in
[13], however, it would increase computational time dramatically. Finally, our
experiments show that although this method retains the smooth shape of iliacus
muscle during flexion, it twists the part of the muscle close to the insertion. This
is because, unlike our approach, the particles are in the entire volume of the
muscle, which results in a model that is much more rigid, and as anisotropy is
not exploited, rigid in all directions. Our method supports anisotropy, preserves
the volume and runs in a fraction of time while requiring no extra parameter or
input in comparison with this method.

The most complex way to solve muscle dynamics is by using the finite element
method (FEM). This approach is physically the most accurate one if the muscle
is well discretized (see e.g., [7]). However, computational complexity is high,
meaning the FEM-based methods are unsatisfactorily slow. Therefore, it is quite
impractical for real-time application or even clinical assessments. Next issue is
a difficult set up of FEM methods, making them unsuitable for personalised
musculoskeletal method deformation. Despite these facts, these methods can be
seen in the movie industry, see e.g. Ziva VFX1 plugin for Maya, and in muscle
physiology research, see e.g. [29] or [23]. In comparison with these methods, our
method is quite simple to set up and runs fast providing the promising results
in most cases.

Recently, Modenese & Kohout [27] presented a simple method that calcu-
lates the kinematic position of a vertex of the fibre as a linear combination of
the transformations of its rest-pose position with respect to the bones with the
attachment sites of the muscle this fibre belongs to, whereas the blending weight
is chosen as a function of the relative distance of this vertex from the origin
point of the fibre with one user-specific parameter to minimize the penetration
of the fibre with bones. Using the approach described in [18] to highly discretize
the muscles of pelvic region (up to 100 fibres of 15 line segments), the fibres’
moment arms of hip flexion, adduction, and internal rotation were validated
against measurements and models of the same muscles from the literature with
promising outcomes. Nevertheless, extending the method for muscles wrapping
around multiple bones, such as rectus femoris, is not straightforward. Further-
more, a muscle-bone penetration cannot be avoided and in the case of the iliacus
muscle, the fibres are also unrealistically pushed into the hip joint. Similarly to
[14], the volume of a muscle cannot be preserved.

We compared the length of the fibres produced by Modenese & Kohout [27]
with those produced by our approach using the same data. Figure 15 shows a
good match between the results for the gluteus medius and the iliacus. A signifi-
cant difference is apparent for the gluteus maximus. The range of lengths of our
fibres is much bigger than theirs, whereas our fibres tend to be longer. One of

1 https://zivadynamics.com/.
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Fig. 15. Comparison of the lengths of the fibres of the gluteus maximus (left), gluteus
medius (middle), and iliacus (right) muscle produced by our approach (red) and by
the approach described in [27] (blue). (Color figure online)

the reasons for this difference is that our approach guarantees impenetrability
between muscle and bones. As a result, all the fibres have to wrap around the
joint and, naturally, they must be longer than the fibres produced by the other
approach, where some fibres penetrate the femur in extreme positions. The vol-
ume preservation constraint prevents the flattening of the muscle at the greater
trochanter of the femur, which means that the surface fibres are more distant
from the bone than in the other approach. Consequently, they are longer.

There are some limitations of the proposed approach. First of all, the exper-
iments have shown that detecting the muscle points that should move with
bones exploiting the information about attachment areas of the muscle is supe-
rior in most cases when compared with proximity or collision-based detection.
The muscle attachment sites, however, cannot be extracted automatically from
the medical images and their manual specification, by an expert in anatomy,
is time-consuming. Nevertheless, Fukuda et al. [10] proposed an approach to
the automatic estimation of the muscle attachments that is based on apply-
ing a non-rigid transformation of the surface model of a normalized (average)
bone with a normalized attachment site specified onto the surface model of the
subject-specific bone. When the normalized attachment site is obtained from a
probabilistic atlas built as suggested by the authors, the estimations are quite
accurate, with dice coefficients reaching up to 70%.

Next, the proposed collision handling is inaccurate, which leads to an appear-
ance of sharp spikes on the surface of the muscle, especially, when using a coarse
voxel representation of bones. Naturally, as the memory complexity of this repre-
sentation grows cubically, it is obvious that using a refined voxel representation
is impractical. In the scenario when a bone moves into a muscle, setting the
velocities of the colliding points to zero instead of using the formula on line 34
(in Algorithm 2) could help.

Finally, the results are very sensitive to the settings of the parameters. Fortu-
nately, as the simulation runs in real-time, even using an unoptimized sequential
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implementation, the user may tune the values of these parameters until they are
satisfied with the visual output of our approach.

6 Conclusion and Future Work

The presented approach is capable of performing a visually plausible and physi-
cally correct real-time deformation of muscles represented by triangular meshes
in most cases we tested. The main issue is with the iliacus muscle, which (when
deformed) looks unrealistic. Nevertheless, the qualitative and quantitative results
(e.g., the length of the fibres produced in the volume of the deformed muscle)
are comparable with the other state-of-the-art methods. In the future, the ilia-
cus muscle deformation will be further analyzed and the issue with muscle tissue
entering the joint is to be solved.

The implementation is written in C++ and partially included in OpenSim
(a state-of-the-art simulation software) as a plugin. Its source code is available
at https://github.com/cervenkam/muscle-deformation-PBD.
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8. Delp, S.L., Loan, J.P.: A computational framework for simulating and analyzing
human and animal movement. Comput. Sci. Eng. 2(5), 46–55 (2000)
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9.9 Geometry Algebra and Gauss
Elimination method for solving a linear
system of equations without division

The results of this paper [97] can be applied

to the RBF equation system solving if Gaus-

sian elimination (GE) is used. The research

introduces an innovative approach to GE

that eliminates the need for division opera-

tions. Thismethod is significant in computa-

tional contexts where division is expensive,

not optimized, or inconvenient.

The GE process includes division oper-

ations, generating computational expense

and numerical instabilities. The division avoidance approach is produced, reducing

computational cost and maintaining numerical stability.

The proposed method involves additional multiplication and addition steps to

substitute for division operations. By avoiding division, the process reduces com-

putational expense, with only a slight increase in execution time compared to the

standard approach on modern computers. Experiments were conducted using the

Hilbertmatrix, which is known for its numerical instability during inversion. The pa-

per compares the proposed method with the traditional GE and another approach

for reducing division operations. The results demonstrate that the new method

maintains numerical stability.

The proposed method maintains accuracy and stability while being slightly

slower than the GE method on a traditional PC because the division on this hard-

ware is already optimised. The performance and correctness of the approach were

evaluated using the normalized Frobenius norm and conditionality of the inverses.

This paper contributes to computational mathematics by offering an alternative

approach to a fundamental mathematical process, potentially impacting areas where

division operations are not feasible.

Publication [97]:
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Abstract—This paper aims to calculate the Gaussian elimi-
nation method without division operation, which is useful for
cases where the division operation is considerably expensive,
not optimised or inconvenient. To substitute the division, more
multiplication steps are performed. The division is completely
avoided, reaching only 7% longer execution time on a modern
computer. Memory savings and also less multiplication has been
reached in comparison to the state-of-the-art approach.

Index Terms—Gaussian Elimination Division-free Linear equa-
tion system Geometry algebra

I. INTRODUCTION

The Linear system of equations Ax = b is defined by
matrix A of size N × N , where Aij is a coefficient of ith

equation and jth independent variable. The bi is the ith equation
constant coefficient (also called right-hand side of the equa-
tion) and xj are the dependent variable to solve. If the matrix is
rectangular, the system is over-determined/under-determined.
The over-determined system has more rows/equations than
columns/independent variables, and the under-determined is
the opposite. For the sake of simplicity, only square and regular
(with matrix A of size N ×N and order N ) equation systems
will be considered.

II. GAUSS ELIMINATION METHOD

Although the Gauss elimination method (GEM) with the
complexity of O

�
N3
�

[1] is not optimal in theory [2], it is
commonly used to solve reasonably small matrices, where
its higher asymptotic complexity is suppressed. The basic
idea behind the Gaussian elimination method is the matrix
conversion from its initial form to the identity matrix form,
using only the following operations:

• Multiplying a matrix row with a nonzero scalar value
• Adding a row to another row (or its arbitrary nonzero

multiple)
To solve for vector x, the b will be transformed in the same
fashion as A (often, b is written inside A, separated by a
vertical line). Finding the inversion of the A matrix is the same

This work was supported by the Ministry of Education, Youth and Sports
of the Czech Republic, project SGS-2022-015

problem as the linear equation solution using orthogonal unit
vectors b. All of them will form the identity matrix. Another
way to describe the problem is to apply the same operations
on the identity matrix, as there were applied on the original
matrix A.

The procedure is such that a combination of allowed op-
erations zeroes the first column below the diagonal, then the
second column, the third and so on. In the next step (backward
cycle), the part above the diagonal in the last column is zeroed,
then the second to last till the second column. The final step
is multiplying all rows to obtain the ones on the diagonal.

A "shortcut" also solves the equation system but does not
produce an inverse matrix. The shortcut lies in the backward
cycle that can be solved directly from the last variable to
the first. Further in the text, this shortcut will be called
the "half-way" Gaussian elimination method, which will be
stated explicitly. Otherwise, the complete Gaussian elimination
method is meant.

In the case of the rectangular matrix, the approach would
be the same as described here for the square matrix. However,
the same restrictions apply to this approach as to the original
GEM method (mainly the rank of the matrix should equal the
number of variables in obtaining a single solution).

A. Partial pivoting

Partial pivoting is the computational step performed in the
forward cycle to improve computational accuracy. When a new
column is zeroed below the diagonal, the remaining rows (with
higher indices than the column index) are swapped so that the
pivot will have interesting properties. It is appropriate to select
the pivot with the highest absolute value so that the roundoff
errors will be less significant [3].

B. Algorithm

The Gaussian elimination algorithm is described in Listing
1. The a denotes the one-based indexed matrix A, with the
right-hand side column vector appended to the matrix (so its
final dimension is N × (N + 1)).
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for k := 1 to n-1 do

{

# Finds the maximum pivot, #

# partial pivoting #

ii := max_arg(abs(a[i, k]),i=k...n);

if abs(a[ii, k]) <= eps

ERROR ("Matrix_is_singular!");

exit;

swap_rows (k, ii); # swaps k, ii #

# for all rows below pivot #

for i := k + 1 to n do

{ # for all remaining elements #

# in the current row #

for j := k + 1 to n+1 do

a[i, j] := a[i, j] - a[k, j]

* (a[i, k] / a[k, k]);

# fill lower triangular matrix #

# with zeros if needed #

a[i, k] := 0

}

}

for i := n downto 1 do # backward loop #

{

s:=0;

for j := i+1 to k

s := s + a[i,j] * x[j];

x[i] := (a[i,n+1) - s) / a[i,i];

}

Listing 1. Gaussian elimination algorithm [4] (modified). The backward
cycle does not edit the matrix but effectively calculates the result ("half-way"
Gaussian elimination method).

III. PROPOSED APPROACH

The main problem in the Gaussian elimination method is
that the "Gaussian elimination to solve a system of n equa-
tions for n unknowns requires n(n+1)

2 divisions, 2n3+3n2−5n
6

multiplications, and 2n3+3n2−5n
6 subtractions" [5]. Be aware

that the mentioned approach is just a "half-way" Gaussian
elimination because it will create just the upper triangular
matrix and solve it. In the case of the complete Gaussian
elimination (and able to obtain matrix inverse), it will be
even more costly than that. Luckily, the division count can
be reduced or, even better, unnecessary.

Skala’s article [6] proposed a projective extension of the
Euclidean space to reduce the number of division operations;
however, the right-hand side vector can be used instead of
the homogenous coordinate for this purpose, discarding the
homogenous coordinate multiplication step and saving some

memory (not significant in asymptotic case, though). The only
advantage is that there are two variables instead of a single
one, allowing the possibility for better numerical stability.

The idea is that in each step, every other row then a selected
one b can be multiplied by the pivot value from the row p,
using the factor app. Then, the row multiple can be added more
simply, because the factor will be a whole number instead of a
real one. The idea will work for rational numbers and irrational
ones, as the irrational number can be used as a factor for other
rows.

Operation Complexity

Gauss. elim.

/ (Division) 1
2
(N3 − N)

* (Multiplication) 1
2
(N3 − N)

- (Subtraction) 1
2
(N3 − N)

∧ (Bitwise AND) 0

∨ (Bitwise OR) 0

⊕ (Bitwise XOR) 0

Memory N2

Skala’s approach

/ (Division) 0

* (Multiplication) N3 + 2N2 − 3N

- (Subtraction) 3
2
(N3 + 2N2 + 3N)

∧ (Bitwise AND) 1
2
(N3 + 2N2 − 3N)

∨ (Bitwise OR) 1
2
(N3 + 2N2 − 3N)

⊕ (Bitwise XOR) 1
2
(N3 + 2N2 − 3N)

Memory N2 + N

Proposed approach

/ (Division) 0

* (Multiplication) N3 + N2 − 2N

- (Subtraction) 3
2
(N3 + 2N2 + 3N)

∧ (Bitwise AND) 1
2
(N3 + 2N2 − 3N)

∨ (Bitwise OR) 1
2
(N3 + 2N2 − 3N)

⊕ (Bitwise XOR) 1
2
(N3 + 2N2 − 3N)

Memory N2

TABLE I
COMPARISON OF OPERATION COUNT FOR ALL OF THE COMPLETE

GAUSSIAN ELIMINATION METHODS. THE PROPOSED APPROACH IMPROVES
THE MEMORY SIZE AND NUMBER OF MULTIPLICATION OPERATIONS OVER

SKALA’S APPROACH [6].
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A. Example of direct GEM

Let us assume an example linear equation system:

2x1 − x2 = 5 (1)
3x1 − 4x2 = 6

The classical Gauss Elimination method would look like the
following:

� �
2 1 5
3 4 6 − 3

2 I ∼
� �
2 1 5 − 2

5 II
0 5

2 − 3
2

(2)

∼
� �
2 0 28

5 × 1
2

0 5
2 − 3

2 × 2
5

∼
� �
1 0 2.8
0 1 −0.6

In the first step, the 3
2 of the first row is subtracted from the

second row to eliminate A21. In the second step, 2
5 of the

second row is subtracted from the first row to eliminate A12.
Finally, both rows are multiplied to get the identity matrix on
the left. The solution to the problem can be found on the right.

B. Example of our approach

Let us assume the same example as it was in the III-A
section with linear equation system 2x1 − x2 = 5 and 3x1 −
4x2 = 6. The issue is the division has to be done in every
computation step. To avoid that problem, a different method
is proposed, where each row i, i ̸= p is multiplied by the pivot
(excluding the row containing the pivot) from a chosen row p
(element app) as follows:

� �
2 1 5
3 4 6 ×2 ∼

� �
2 1 5
6 8 12 −3I ∼ (3)

∼
� �
2 1 5 ×5
0 5 −3 ∼

� �
10 5 25 −II
0 5 −3 ∼

∼
� �
10 0 28 × 1

10
0 5 −3 × 1

5
∼

� �
1 0 2.8
0 1 −0.6

This method multiplies each row beforehand, so there is no
need for division. The approach required only N divisions
at the end to determine the result vector (2.8,−0.6). The
main issue here is that the matrix elements may grow/decay
exponentially, making the approach useless for practical use
on the computer. This phenomenon can be seen in Equ. (3),
where diagonal elements grow, for bigger matrix will grow
even more.

IV. IMPLEMENTATION

The proposal has been tested using the C++ programming
language. Skala’s row normalization [6] step has been adopted,
which can also be done without division, mainly using bitwise
operations.

#define FLT_MASK 0x800FFFFFFFFFFFFFL

#define EXP_MIDDLE 0x3FF0000000000000L

// everything else than the exponent part

// of the "b" vector

unsigned right_data = a[i][N] & FLT_MASK;

//exponent part of the IEEE-754

// double precision variable

unsigned right_exp = (right_data ^

a[i][N]) - EXP_MIDDLE;

for(int j=k;j<N; j++){

//exponent part of each element

// in the matrix row

unsigned data = a[i][j] & FLT_MASK;

//shift the exponent to the opposite

//direction of the b vector exponent

a[i][j] = data|

((data^a[i][j])-right_exp);

}

// make exponent of the

// "b" vector element "zero"

a[i][N] = right_data | EXP_MIDDLE;

Listing 2. Exponent normalization step, bitwise implementation, for every
operation (OR, XOR, AND and subtraction), there is one of them performed
inside the loop and one outside.

The normalize function deals with growing/decaying
pivots in such a way that no division is needed. It is done
by the exponent modification, using the same modification for
each row element. As seen on Listing 2, the modification can
be easily done on IEEE 754 floating point values, using just
bitwise operations and a subtraction.

The a variable represents the matrix A, last column of
the a contains also right-hand side of the equation (col-
umn vector b). FLOAT_MASK will mask bits belonging to
the exponent part of the IEEE 754 floating point value,
EXPONENT_MIDDLE is a value with zero exponent (exponent
in IEEE 754 is shifted by 127).

V. EXPERIMENTAL RESULTS

Experiments were performed on the Hilbert matrix, where
each element of the matrix is given by:

Hij =
1

i + j − 1
(4)

This particular matrix is well-known for its numerical instabil-
ity during its inversion. The condition numbers of the matrix
increase significantly with increasing N (see Tab. II). For
the conditionality, 2-norm condition number of a matrix with
respect to inversion was used (||A||2 · ||A−1||2).

Luckily, the Hilbert inversion matrix is well-known analyt-
ically [7] and can be evaluated by the Equ. (5), so the p-norm
can be calculated more precisely using this inversion.
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N Conditionality N Conditionality

1 1.0000e+00 8 1.5257e+10

2 1.9281e+01 9 4.9315e+11

3 5.2406e+02 10 1.6024e+13

4 1.5513e+04 11 5.2227e+14

5 4.7660e+05 12 1.7515e+16

6 1.4951e+07 13 3.3441e+18

7 4.7536e+08 14 6.2008e+17
TABLE II

CONDITION NUMBER OF THE HILBERT MATRIX FOR GIVEN DIMENSION N .

The normalization step has been tested. It has been shown
that the normalization step does not need to be performed in
each computational step, but only if necessary (if the exponent
is big/small enough to make it worthwhile). This approach is
on average about 7% slower than the original, keeping all of
the advantages (no division, no additive memory), see Fig. 1,
Fig. 2 and Fig. 3.

H−1
ij = (−1)

i+j
(i + j − 1) (5)

�
n + i − 1

n − j

��
n + j − 1

n − i

��
i + j − 2

i − 1

�2
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Fig. 1. Running speed of the proposed algorithm in proportion to original
Gaussian elimination method. The Hilbert matrix inverse has been performed
of the given size. The algorithm is slower than the original one, about 10%.
It should be noted that the results may be inaccurate for higher N . The peaks
are caused by the low computation time of all methods.

In Fig. 1 it can be seen that the proposed algorithm is about
10% slower than the original algorithm. The correctness of
the execution can be seen in Fig. 2, where all of the algo-
rithms provide results with (nearly) the same conditionality.
Moreover, these results are the same as in Tab. II, caused by

the fact that the conditionality of the matrix is equal to the
conditionality of its inverse due to the commutativity property.

Forward cycle

Gaussian elimination
for(int j=k+1; j<=n+1; j++)

a[i][j] = a[i][j] - a[i][k]

* a[k][j] / a[k][k]

Skala’s algorithm [6]
for(int j=k+1; j<=n+1; j++)

a[i][j] = a[i][j] * a[k][k] -

a[i][k] * a[k][j];

a[i][HOMOG] = a[i][HOMOG]

* a[k][k];

normalize(a, k+1, n)

Proposed algorithm
for(int j=k+1; j<=n+1; j++)

a[i][j] := a[i][j] * a[k][k]

- a[i][k] * a[k][j];

normalize(a, k+1, n)

Backward cycle

Gaussian elimination
for(int j=k+1; j<=n+1; j++)

a[i][j] = a[i][j] - a[i][k]

* a[k][j] / a[k][k]

Skala’s algorithm [6]
for(int j=k+1; j<=n+1; j++)

a[i][j] = a[i][j] * a[k][k]

- a[i][k] * a[k][j];

a[i][i] := a[i][i] * a[k][k]

- a[i][k] * a[k][i];

a[i][HOMOG] = a[i][HOMOG]

* a[k][k];

normalize(a, k+1, n)

Proposed algorithm
for(int j=k+1; j<=n+1; j++)

a[i][j] := a[i][j] * a[k][k]

- a[i][k] * a[k][j];

a[i][i] := a[i][i] * a[k][k]

- a[i][k] * a[k][i];

normalize(a, k+1, n)
TABLE III

COMPARISON OF THE GAUSSIAN ELIMINATION ALGORITHM AND ITS
MODIFICATIONS. IN THE BACKWARD CYCLE, THE DIVISION-FREE

APPROACHES HAVE TO MODIFY THE DIAGONAL AS WELL.
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The output error has been measured in Fig. 3. The normal-
ized Frobenius norm of the difference of the matrix pair has
been used:

L2 (X) =

qPN
i=1

PN
j=1

�
H−1

ij − Xij

�2

N2
(6)

The H−1 has been computed analytically; see Equ. (5).

Fig. 2. Conditionality of the resulting inverse matrix. The results show
that the conditionality is nearly the same for all algorithms. The differences
between algorithms are pointless for N > 12 due to the high conditionality.
The conditionality should be even higher, as the analytical solution shows.
GNU/Octave inverse is approaching due to LU decomposition for matrix
inversion.

The difference between the original Gaussian elimination
method, Skala’s modification [6], and the proposed one is
shown on Tab. III.

VI. CONCLUSION & FUTURE WORK

The Gaussian elimination method can be done without divi-
sion and additive memory requirements, which is particularly
useful in scenarios where the division operation is expensive.
There will be no division if it is sufficient to obtain the result
in projective space or N division in the Euclidean space. The
improvement from Skala’s publication [6] is that there is no
need for storage for homogenous coordinates, saving memory
for N variables and saving N2−N multiplication operations.
Despite these facts, the desired running time improvement has
not been reached. Considering execution time, the division
operation probably causes this to be no longer crucial.

Andrilli et al. state, "The partial pivoting technique is used
to avoid roundoff errors that could be caused when dividing
every entry of a row by a pivot value that is relatively small
in comparison to its remaining row entries." [3]. Because
division is unnecessary for this paper, the future task is to
explore possibilities when partial pivoting will be avoided. It is
also true that multiplication is still present. The true challenge
will be to prevent the "nearly" zero factor, which may cause
numerical instabilities.

This approach is particularly useful when the inversion is
made not over a field of real numbers (matrix containing
real numbers), but over a ring, where not all elements have
multiplicative inverses, so dividing, in general, is impossible.
However, the application of this approach is also future work
to be done.

Fig. 3. The result difference between analytical inversion and a computed
one. The differences between the algorithms are negligible.
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9.10 Collision detection and response
approaches for computer muscle
modelling

In our research, addressing collision detec-

tion and response presented significant chal-

lenges (refer to the second point in Section

9.8 and also see Section 9.4), primarily due

to the lack of an effective solution initially.

The study highlighted in this article [72]

sought to improve collision handling by sub-

stituting the original voxelization method

with a scalar distance field (SDF) approach.

Initially, we considered two alternatives:

the scalar distance field (SDF) and the flexible collision library (FCL). Our findings

indicated that SDF was the superior option, offering enhanced computational speed

and reduced memory usage without compromising quality.

The implementation of SDF in this study markedly enhanced our collision han-

dling technique. Its success is primarily attributed to its lower discretization resolu-

tion than voxelization, with trilinear interpolation in each voxel providing sufficient

accuracy.

Furthermore, we successfully resolved a persistent issue where muscles would

get stuck in joints due to the coarse surface of the voxel grid, hindering smooth

movement out of the joint. The newmethod also significantly reduces the likelihood

of muscles entering narrow spaces between bones.

Publication [72]:

HAVLICEK, O.; CERVENKA, M.; KOHOUT, J. Collision detection and re-

sponse approaches for computer muscle modelling. Informatics 2022, IEEE
proceedings. 2022, pp. 120–125. Available from doi: https ://doi . org/

10.1109/Informatics57926.2022.10083500. EID: 2-s2.0-85153333554,

OBD: 43937869
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Abstract—Computer muscle modelling is used for many pur-
poses, from injury recovery and treatment of chronic diseases to
disease prediction. These predictions often involve computing the
muscle’s internal forces to determine further how fast something
may happen (e.g. how quickly the muscle joint wears out). During
the simulation of such a model, collisions of soft and rigid bodies
inevitably occur. This paper tests various state-of-the-art collision
handling methods: voxelisation, one using Signed Distance Fields
and one based on Bounding Volume Hierarchies. These methods
are tested in the context of muscle modelling with the previously
proposed position-based dynamics approach. Compared to the
other options, using the Discregrid library for Signed Distance
Field generation shows the best results, mainly due to its accuracy
to the speed of execution ratio. In contrast to the current system,
visually pleasant improvements are significant.

Index Terms—Collision detection, Discregrid, Signed Distance
Fields, Fast Collision Library, Voxelization, Muscle modelling,
Position-based dynamics

I. INTRODUCTION

With diseases such as osteoporosis (prevalence up to 34.3%
for females 50 years old or more in the USA, and about
10% among the average population [1]), where bone density
decreases or osteoarthrisis disease, where there may even
emerge the need for joint replacement due to bone structure
degeneration, the desire for a realistic musculoskeletal model
arises. Such a model could be used to estimate various forces
acting around the muscles and bones, which then may be used
for prediction and prevention of the named diseases and many
more.

Some state-of-the-art models (e.g. [2], [3]) use a generic
model (from cadaveric studies or measured on completely dif-
ferent patients and edited with lengthy and exhaustive manual
labour). Realistically, the human body varies greatly; with this
diversity, the need for patient-specific models becomes increas-
ingly apparent. This presumption leads to a new method, a
statistical model. An example would be a statistical model built
from 26 patients using Principal Component Analysis created

The authors would like to thank their colleagues and students at the
University of West Bohemia for their discussions and suggestions. This
work was supported by the Ministry of Education, Youth and Sports of the
Czech Republic, project SGS-2022-015 New Methods for Medical, Spatial
and Communication Data.

by [4]. Another personalized model based on Position-Based
Dynamics (PBD) was presented by [5]. This particular model
exhibits promising results in terms of model simplicity, speed
and accuracy for biomechanical studies, in comparison with
musculoskeletal models used commonly in practice. However,
in some cases, e.g. extreme flexion around the hip joint,
the muscles in this model behave unrealistically. The authors
suggest it might be due to the used collision handling system.

The aim of our research, therefore, was to propose a new
collision detection (CD) and response (CR) mechanism that
would behave adequately even in various extreme scenarios.

In this paper, we present the results of our analysis of the
current CD & CR mechanism used in the PBD muscle mod-
elling by [5], and propose two principally different approaches
for CD and a couple of minor improvements for CR. The
proposed method surpasses the former approach (based on
voxelisation) in accuracy, mainly around the problematic hip
joint area where muscles no longer get unrealistically stuck.

II. POSITION BASED DYNAMICS APPROACH

In the PBD framework presented by [5], a scene exists
consisting of a set of bones, each of which is represented
by a triangular mesh surface and has an associated time-
dependent transformation describing its movement, and a
muscle, also represented by a triangular mesh surface. Each
vertex of the muscle is interpreted as a PBD primitive node,
having associated mass and velocity, and a set of constraints
restricting the freedom of the movement of these points during
the simulation. The constraints represent external forces acting
on the muscle, including gravitation and fixation to a bone
attachment area, as well as internal forces, including local
shape and volume preservation.

Each of these constraints can be interpreted as a cost func-
tion, resulting in a nonlinear system of differential equations,
for which the PBD tries to find their global optimum in the
sense of gradient descent using an iterative Gauss-Seidel solver
[6]. In each iteration, every PBD node (i.e., a vertex of the
triangular muscle surface) is moved from its original position
x to a position p, satisfying the constraints. This new position
may end up inside a bone, which means a collision has occur-
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Fig. 1. An example of the voxelisation structure in the pelvic area [5].

red. These collisions need to be detected and resolved after
each solver iteration, i.e. the new position p of each node gets
corrected to a noncolliding position p′.

A. Collision handling

The collision handling in the work [5] was done by creating
a voxelised model (a uniform grid) of the bones, as illustrated
in Fig. 1. According to the authors, the reasons for choosing
this approach were its simplicity and feasible time require-
ments.

The CD had been designed to further satisfy the run time
and memory needs via leaving the bone collision models in
their initial rest-pose, while the nodes to test for collisions
after each solver iteration would get inversely transformed to
the rest-pose coordinate system, then checked whether or not
they are contained in any of the bone voxels. If so, then a
collision would get detected and the CR process would begin.
The result of the CR would then get transformed back to the
visual model coordinates. Otherwise, no collision would occur.

The CR is a process where given voxel size a, the position p
of the colliding point is incrementally set by the distance of a
towards the original position x, until it is no longer contained
in any of the bone voxels and therefore not colliding. The final
position is the denoted position p′. The process of CD & CR
can be seen in Fig. 2.

III. PROBLEMS IDENTIFIED

A. Tunnelling effect

The main issue to consider is that the discrete bone move-
ment may be too fast to simulate the behaviour properly.
Consider a femur bone performing the flexion. When it rotates
about just 2◦ (a typical step in simulations), the displacement
of the distal part of this bone is nearly 3 cm (considering
the average length of the bone being 41.61 cm [7]). Such a
displacement might result in muscle penetrating the bone to
the other side, as illustrated in Fig. 3.

Fig. 2. Collision response mechanism of the voxelisation approach: the point
is moving from the desired position p towards its initial position x using the
constant step of the voxel size a until it reaches free space (position p′).

B. Unavoidable collisions

Due to modelling inaccuracies, the geometrical models of
bones and muscles typically slightly penetrate even at the
beginning of the simulation, most often at the places where
the muscle is connected to the bone. In the original approach,
therefore, when the point collides even in its initial position
x, its ”noncolliding” position p′ is obtained by transforming
x using the same transformation that was applied to the bone
with which the point collides.

The problem is that the voxelisation approach falsely identi-
fies the muscle points closer to the bone surface than the voxel
size a as colliding. As a result, these points are bound to the
bone and move with it even though they should move freely.
For example, the central part of the iliacus muscle is close to
the femur head and, therefore, is bound to this bone. During
hip flexion, the consequence is dire: a part of the muscle is
wound into the free space in the hip joint.

Fig. 3. The muscle vertex (in blue) may penetrate the bone all the way
through, because of the big displacement due to the angular motion of the
bone.

2022 IEEE 16th International Scientific Conference on Informatics

– 121 –

9. Author’s contribution

192



Fig. 4. Collision of a muscle with two different bones. The problem is the
collision response as far as both bones force the vertex to move to a different
position.

C. Voxelisation problems

Another unsolved problem is a collision with multiple bones
simultaneously (see Fig. 4). One of the bones forces the muscle
vertex to be in p′

A on left and the second one forces the vertex
to the other position p′

B . Applying these CRs consecutively
would then lead to only the latter one of them being resolved,
which would sometimes leave the point in a collision.

The last problem with voxelisation is that the muscle vertex
may get stuck in a gap in between the voxels. As shown in Fig.
5, the blue vertex may move only upwards, but the side-to-side
motion is suppressed unless a much bigger force is applied,
forcing the blue vertex out. The consequence of the issue is an
unrealistic laggy movement and possibly the addition to the
problem of muscle wounding in the joint.

IV. PROPOSED METHODS

Considering the simplicity of the voxelisation method, the
urge for a more sophisticated collision handling system man-
ifests itself through some of the described problems.

Fig. 5. The blue muscle vertex is stuck in between the voxels occupied by a
bone. To get the vertex out sideways, a large force has to be applied.

The general problem seems to be that the voxelisation
CR receives on the input only the information about the
original and the colliding position of a given node and a rough
approximation of the bone surface. Therefore, we propose two
different CD & CR approaches, which both provide broader
information about the detected collision state, allowing the
CR to be more reflective of the underlying physical reality
and represent the bone more accurately.

A. Discregrid

Discregrid library is a C++ library based on a Signed Dis-
tance Field generated for a bounded finite subspace, allowing
to tell for any point in space (x, y, z) the shortest distance
and direction to the given triangular surface residing in that
subspace. Moreover, the sign of the result adds additional
information if the point is inside or outside the surface.

For the method to work, the bounded finite subspace is
firstly discretized [8] into a user-defined resolution cuboid grid
where each cuboid is a Serendipity type with 32 nodes [9].
At each node, the shortest path to a given surface, as well as
the sign, are computed as described by [10], who addresses
the problem of discontinuity of a mesh at the edges and the
vertices by defining an adequate pseudo-normal for them based
on the surrounding angles.

Once the distance, direction and sign are known at every
node of the grid, this set of values can be quickly estimated
at any point inside any of the cuboids using interpolation by
cubic Lagrange polynomials [9].

A collision is detected if the interpolation of a vertex
position has a negative sign. This collision can then easily
be resolved by pushing the vertex along the shortest distance
direction to the surface by this distance instead of the direction
it came from.

B. Flexible Collision Library

Flexible Collision Library (FCL) is a CD library written
in C++ programming language, providing multiple CD ap-
proaches, such as convex polytope-based CD, bounding vol-
ume hierarchy (BVH) CD, continuous CD, broad-phase CD,
point cloud CD and parallel CD with proximity computation.
For speedup, the Sweep and Prune approach over BVH has
been used. The library can also handle eight basic shapes:
general triangle meshes, convex triangle meshes, spheres,
AABB cuboids, cones, cylinders, ellipsoids and capsules.

The library provides so-called managers, which are objects
taking care of updating the built structures and detecting
collisions among them. The collision information also contains
the directional vector between the centroids of the colliding
basic shapes, which can be further used for CR.

The dynamic AABB tree collision manager has been used
for testing purposes. The bounding box parallel to the eu-
clidean space axes encapsulates each primitive of the object
(e.g. the triangle in triangular mesh), which can be checked
much faster if it collides with another primitive. The hierarchi-
cal structure of these AABB boxes forms a tree, which allows
for even faster CD.
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C. Collision with multiple bones

Assuming the improved accuracy of the collision models
with the proposed methods, collisions with multiple bones
should be extremely rare as the bone collision models should
not overlap in any way.

Still, in the case of Discregrid, it is possible to virtually add
margin to the collision models in hopes to prevent even edge
collisions, which could eventually result in this case. For that
case, a naive approach of adding the given gradients together
was implemented.

V. EXPERIMENTAL RESULTS

The CD approaches have been tested using an existing PBD
library originating in [5] on the LHDL dataset [11]. This
dataset was chosen because it contains the most refined surface
triangle meshes of bones and muscles. The advantage is also its
public availability. All nonmanifold edges, degenerate triangles
and duplicated vertices and the smoothing of all muscle and
bone models have also been done by [11] using MeshLab [12].
Dissection data from [13] are also included, containing muscle
attachment areas and geometrical paths of superficial fibres.

For the sake of testing, four muscle models have been
used: adductor brevis, gluteus maximus, gluteus medius and
iliacus. Their vertices count are 502, 9878, 5313 and 6931,
respectively.

The experiments were conducted on CPU Core-i5-7200U
2.5GHz, GPU NVIDIA GeForce 930MX, Windows 10, and
were compiled in C++ release mode.

A. Visual comparison

The visual comparison between all three CD algorithms
shows a clear difference. The Discregrid and FCL are superior,
resolving the problem of incorrect muscle shape near joints,
which is problematic for the voxelisation approach (see Sec-
tions III-B and III-C). To observe the difference, see Fig. 6.
We note that the FCL provides (not shown in the figure) an
even smoother surface than Discregrid, which is not surprising
considering that it works directly with the triangular mesh of
the bone.

B. Run time

The execution time shows that Discregrid and FCL are
slower than the voxelisation approach since these methods are
more complicated. As shown in Fig. 7, the FCL is performing
poorly, requiring about one second to detect the collisions.
However, we note that the FCL approach has been tested using
a single thread only, and multi-threading could improve the
performance.

The voxelisation has been originally proposed to ensure
real-time simulation (at least 30 FPS on a common PC).
The slowdown of the voxelisation means that in the same
setup, it would read 6 FPS, which is not precisely real-
time but can either be rendered directly with the visible
delays or precalculated quickly and rendered as a video for
other purposes. FCL is slower (approximately 1 frame per 7
seconds), but still applicable.

Fig. 6. Iliacus muscle deformation in detail. The voxelisation approach (on
the left) shreds the surrounding muscle tissue into the hip joint. Discregrid
(on the right) has only a slightly rough surface near the joint. The number on
the left denotes the number of the time frame in the simulation of flexion.

One of the main differences between the methods is that
in the voxelisation and Discregrid approaches, no update of
the collision model has to be made. The collision models are
also built only for the rigid bones which can then be queried
for arbitrary points whether it collides or not and even the
collision information at a constant time.

With the FCL library, BVH collision models have to be
built for every object in the scene (bones and muscles). In
contrast with the prior methods, these collision models need
to be updated each iteration - both for the bones in case of
rigid translation and for the muscles due to likely geometry
deformation. Furthermore, no arbitrary point CD seems to be
supported by the management system. As a result, the collision
information has to be post-processed to become usable for CR,
which hinders this method’s time effectiveness.
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Fig. 7. Run time of collision detection algorithms on the iliacus muscle.
The voxelisation is the fastest to execute in general. The Discregrid is
approximately 3x slower and the FCL is more than 200x slower on average.

C. Memory consumption

The memory consumption while using the iliacus muscle is
shown in Fig. 8. The smallest amount of memory has been
used by the original voxelisation algorithm, followed by the
Discregrid and FCL algorithms.

Table I shows the results for each tested muscle. All of
the consumed memory has been measured using the Visual
Studio 2019 16.11.7 Performance Profiler before the first PBD
iteration (after the CD structure allocation) and the last PBD
iteration (after the whole simulation).

As can be seen in Fig. 8, the different approaches mainly
differ in the amount of memory allocated for the collision
structures in frame 1. The rise of the memory in the graph
reflects the memory consumed by the deformation process
while the different CD & CR algorithms used do not seem
to have a great impact on the memory used during the course

TABLE I
THE MEMORY USED FOR DIFFERENT CD & CR ALGORITHMS WHILE THE

MUSCLE IS DEFORMING. ALL MEASUREMENTS ARE IN MB.

Muscle First iteration Last iteration
Voxelization

Adductor brevis 389 534
Gluteus maximus 526 735
Gluteus medius 458 660

Iliacus 537 688
Discregrid

Adductor brevis 540 740
Gluteus maximus 677 888
Gluteus medius 609 810

Iliacus 632 839
FCL

Adductor brevis 685 885
Gluteus maximus 835 1048
Gluteus medius 761 962

Iliacus 786 991
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Fig. 8. Memory consumption of all of the algorithms when iliacus muscle is
used. The voxelisation required the least amount of data, but the Discregrid
and FCL seem to be in the same memory complexity level (shifted up only
by a constant).

of the simulation. The small deviations in fact represent the
number of collisions detected and resolved.

VI. DISCUSSION

The mentioned CD and CR approaches vary significantly in
the underlining data structure. The grid approaches (Discregrid
and voxelisation) can be simply set to the desired accuracy
(changing the grid resolution) to increase the computational
speed. This can be done similarly in FCL by allowing various
approximations or modifying the narrow-phase solvers, which
is also a place for run time improvement of the FCL method
in the future since, in this paper, only the default FCL setup
has been used.

One big advantage of the FCL is that its hierarchies are
designed to be updated during runtime, allowing for CD
and CR even among muscles, which could be deformed at
any time during the simulation. This is generally hard to
achieve using the grid approaches with respect to run time
requirements, making them feasible for handling collisions
against rigid bones only. This is where the FCL approach
could be taken advantage of in the future, e.g. only handling
the collisions among muscles. This would, however, result in
a heterogeneous CD and CR, increasing the intricacy of the
solution, which may be harder to maintain or extend.

On the other hand, Discregrid seems a good successor
to voxelisation since it provides feasible accuracy and more
information about collision state can be used for CR. CR in
the direction of the bone surface results in a more realistic
behaviour, resembling the effect of the muscle sliding against
the bone surface. This does not change the fact that bone is
discretized, which is mitigated to some degree by the Signed
Distance Field interpolation, providing better accuracy than
voxelisation while running relatively fast compared to the
single-threaded FCL implementation.
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Fig. 9. Simplified illustration of the Discregrid approach respecting the PBD
constraints more than the voxelisation approach.

In comparison to the voxelisation approach, where CR
tries to revert the colliding point back to the presumably
noncolliding original position, the Discregrid approach could
be argued to respect the PBD constraints more as illustrated in
Fig. 9, where from position x, PBD may move the point either
to position pA or pB (in red). Voxelisation CR (in blue) tries to
return the point toward the original position, reducing the two
different PBD constraint results into one point. Discregrid CR
(in green) adjust the PBD positions more respectfully (points
p′

A and p′
B), merely projecting them onto the bone surface.

Additionally, as previously pointed out, FCL can run multi-
threaded, which is currently not viable in our PBD implemen-
tation. This is also a possibility for future research.

A. Tunnelling effect

From the Fig. 9, it is easy to imagine that the CR could
cause the point to travel to the other side of the bone since the
shortest path to the bone surface would reside in that direction.
This would cause the same situation as illustrated in Fig. 3.
This problem is not directly addressed in this paper, but one
possible solution could be to use Discregrid once again and get
the gradients of both the former and final positions x and p′,
respectively. Then it could be stated that if the angle between
them is bigger than some set angle e.g. 135°, the point p′

ended up on the other side of the bone and thus the tunnelling
occurs. If that happens, the final position could be set to an
intersection of the bone surface with the path defined by the
points x and p.

B. Unavoidable collisions

To overcome the roughness of voxelisation discretisation,
FCL can be utilised since it does not omit any information
and does CD at the level of the actual bone triangles and not
their grid approximation. Nevertheless, due to the impractical
running times of the currently implemented FCL solution, it
cannot be used. Instead, the Discregrid results display enough
accuracy in the iliacus muscle case and therefore seem a
reasonable compromise overall.

Because of the better CD accuracy and the fact, that the
method provides a gradient to the bone surface, there is no
longer a need for the colliding points to follow the bone
transform in case the bone moves into the muscle, as this
transform is already encompassed by the gradient.

C. Voxelisation problems

Furthermore, the problem of the muscle being stuck exposed
in Fig. 5 has not been fully solved in this paper but is to
an acceptable extent mitigated by the greater accuracy of the
proposed methods.

VII. CONCLUSION

This paper presented the analysis of CD & CR system used
by [5] and proposed one new CD approach based on Signed
Distance Fields and another one based on Bounding Volume
Hierarchies to overcome the shortcomings of a former method
in the context of a state-of-the-art PBD muscle modelling
approach. Moreover, slight modifications to CR were made
to introduce more realistic muscle sliding behaviour. The
Discregrid approach, based on the Signed Distance Fields,
proved to be a suitable trade-off between improved accuracy
and time requirements.
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9.11 Non-planar Surface Shape
Reconstruction from a Point Cloud in
the Context of Muscles Attachments
Estimation

The attachment estimation described in the

following paper [13] plays a crucial role in

muscle modelling. The article mainly tack-

les the issue described in Section 9.8, al-

ready described in that paper. The option of

automatically searching for the attachment

area according to the information about the

closeness of the muscle to the bone proved

insufficient because it often happens that the

muscle is adjacent to some bone but not at-

tached to it. Hence, additional data is required. Those data already exist as vertices

measured at the border of the attachment area as a part of the TLEM 2.0 dataset

[18]. The main issue is to find all points inside the attachment area, which would be

subsequently fixed to the adjacent bone.

The article tested 15 different curve reconstruction algorithms to reconstruct

the whole attachment boundary on the bone, and the subsequent surface bounded

by it can be restored by the radial basis function (RBF) approach, which has al-

ready been researched before. In this research, we also tested the RBF approach for

curve reconstruction, which worked to some extent but was unstable in terms of

the parameters selected, which must be chosen carefully with the prior and deep

knowledge of the RBF approximation technique.

The major outcome of this research is that the RBF technique is useful and

works very well for muscle modelling and muscle attachment area approximation;

however, the parameter selection is a crucial part of the success.

Publication [13]:

KOHOUT, J.; CERVENKA, M. Nonplanar Surface Shape Reconstruction from

a Point Cloud in the Context of Muscles Attachments Estimation. Proceed-
ings of the 17th International Joint Conference on Computer Vision, Imaging
and Computer Graphics Theory and Applications. 2022, pp. 236–243. isbn
978-989-758-555-5. Available from doi: https ://doi . org/10 . 5220/

0010869600003124. UT WoS: 000774795400024, OBD: 43936004
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Non-planar Surface Shape Reconstruction from a Point Cloud in the
Context of Muscles Attachments Estimation∗

Josef Kohout a and Martin Cervenka b

Faculty of Applied Sciences, University of West Bohemia, Technická 8, Plzeň, Czech Republic

Keywords: Shape Reconstruction, Point Cloud, Multidimensional Scaling, Muscle Attachments Estimation, Fast March-
ing, Scalar Distance Field.

Abstract: Knowledge of muscle attachments on bones is essential for musculoskeletal modelling. A muscle attachment
is often represented by points (in 3D) obtained by a manual digitisation system during dissection. Although
this representation suffices for many purposes, sophisticated musculoskeletal models commonly require repre-
senting a muscle attachment by a surface patch or at least by a closed boundary curve. In this paper, therefore,
we propose an approach to automatic shape reconstruction from such point sets. It is based on iso-contour
extraction from a scalar field of distances to geodetics connecting the pairs of points (from the input set) as
identified by a state-of-the-art algorithm for 2D curve reconstruction running on the input points transformed
to 2D. We investigated the performance of 15 existing state-of-the-art algorithms with public implementations
on the TLEM 2.0 data set of muscle attachments. The best results were obtained for the lenz algorithm with
just one unacceptable reconstruction when standard projection onto a best-fit plane was used to transform the
input 3D points to 2D. The second algorithm was α-shape with three unacceptable reconstructions, whereas
in this case, the multidimensional scaling technique was exploited to transform the points.

1 INTRODUCTION

Shape reconstruction from a point cloud is an im-
portant computational geometry problem with vari-
ous applications in computer graphics, computer vi-
sion, medical image analysis, pattern recognition,
computer-aided design, cultural heritage, and others.
During the past decades of research, many algorithms
for shape reconstruction have been proposed. Some
work with points sampled on the boundary of an ob-
ject whose shape is to reconstruct, while others work
with the points sampled in its interior . Some algo-
rithms can deal (to some extent) with non-uniform or
sparse sampling, noise or outliers , while others as-
sume a dense uniform sampling Some focus on spe-
cific kinds of objects, e.g., CAD objects with sharp
edges or terrain data . Some require additional infor-
mation, such as normals in points . However, most
importantly, some work in 2D, processing 2D point

a https://orcid.org/0000-0002-3231-2573
b https://orcid.org/0000-0001-9625-1872
∗This Work Was Supported by the Meys of the Czech

Republic, Project SGS-2019-016.
†Corresponding author

clouds to reconstruct the outlining contour of the ob-
ject, while others work in 3D, processing 3D point
clouds to reconstruct the outlining surface of the ob-
ject. A good survey of algorithms of the former cate-
gory can be found in (Ohrhallinger et al., 2021). For
a survey of the algorithms of the latter category, we
refer the reader to (Berger et al., 2016).

In this paper, we propose a novel algorithm for re-
constructing a space curve from a set of 3D points. It
employs the multidimensional scaling technique (Cox
and Cox, 2008) to transform the points from 3D to 2D
and then uses a suitable algorithm for 2D curve recon-
struction to get the connectivity of the input points.

Motivation for our work lies in muscle attach-
ment estimation. Knowledge of muscle attachments
on bones is essential for musculoskeletal modelling.
A muscle attachment is often represented by points
obtained by a manual digitisation system during dis-
section. Due to the apparent effort associated with
this process, no wonder that the sampling is sparse.
Commonly, the points are unordered and exhibit a
non-uniform distribution because it is natural to sam-
ple the upper side of the attachment area from left to
right, then cut off the muscle-tendon unit and sample
the lower side from left to right. The points are sub-
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ject to various errors, introduced during the dissection
(e.g., movements of the limbs, the ambiguity in defin-
ing the attachment boundary) or during the registra-
tion process. Sometimes a few points are even sam-
pled in the interior of the attachment area. Figure 1
shows an example of such data.

Figure 1: TLEM 2.0 (Carbone et al., 2015) data set con-
taining point clouds defining various muscle attachments on
lower limbs.

It can be seen that the attachment areas are only
slightly curved. Therefore, a naive approach would
be to project the points onto the best-fitted plane (ob-
tained, e.g., by using the least-squares method) and
then proceed with some of the existing state-of-the-art
algorithms for reconstructing 2D curves. This paper
investigates if exploiting the multidimensional scal-
ing (MDS) technique would not improve the obtained
results when comparing them with the ground truth.
We experimented with 15 different algorithms.

Our other contribution is as follows. Since the
3D models of bones are available, we propose an ap-
proach to convert a non-manifold curve, which may
result from the process, into a closed manifold one. It
is based on iso-contour extraction from the scalar field
on the surface of the bones that encodes distances to
geodetics connecting the adjacent points of curves.

2 RELATED WORK

The problem of muscle attachments estimation was
addressed in (Fukuda et al., 2017). The authors dis-
sected individual muscles in the hip region of eight
cadaver specimens while tracing the boundary of the
muscle attachments using an optical tracker. The
recorded points were manually refined to remove out-
lier measurements due to tracking noise. In this paper,
we investigate if we could get the boundary of an at-

tachment automatically without the necessity of such
manual refinement.

In their work, (Kohout and Kukačka, 2014) de-
scribed a fully automatic algorithm for extraction of
a closed region from a triangular model of a muscle,
where region boundary is specified by a set of points
lying on the muscle surface or in its vicinity. The
points had to be specified in an order such that inter-
connecting every pair of adjacent points by a line seg-
ment would produce a closed non-intersecting poly-
line corresponding to the boundary of the region to
extract. However, typical data sets of attachment ar-
eas do not comply with this requirement, as shown
in Figure 1. In this paper, we investigate how to fil-
ter out the input points and order them to satisfy the
requirement of this algorithm.

Approximating or interpolating the input points by
an analytical function may be considered relevant to
this problem. Most suitable seems to be radial ba-
sis function (RBF) approximation since the points are
scattered and unordered. RBF was used for surface
reconstruction of watertight 3D objects by (Carr et al.,
2001). It is also commonly used for scattered data ap-
proximation in general (Cervenka et al., 2019). In this
paper, we address the idea of transforming the input
3D points to 2D, finding the curve there (by exploit-
ing RBF approximation) and returning to 3D space.
One option for the points dimension reduction is the
multidimensional scaling (MDS) technique (Cox and
Cox, 2008), which is widely used in many different
scientific fields.

Recently, (Ohrhallinger et al., 2021) designed a
benchmark for a comprehensive quantitative evalua-
tion of algorithms for 2D curves reconstruction. It
consists of 14 curve reconstruction algorithms, in-
cluding the recent ones, implemented in C++. Most
of these algorithms construct a graph from the points
and then filter the outline by some criteria. Most of
them are parameterless, but only some are robust to
noise and outliers.

3 OUR APPROACH

Given a set S = (Pi) of n points in 3D, sampled on
a smooth curve on a non-planar smooth surface, in-
cluding potentially noise or outliers, our task is to find
an ordered set S′ ⊆ S such that S′ represents a closed
non-intersecting space curve. The other points (S\S′)
which do not lie on the curve are considered as out-
liers. Figure 2 shows an example of the input data.

Our basic idea is to exploit the multidimensional
scaling (MDS) technique (Cox and Cox, 2008) to con-
struct n points Qi in 2D such that:
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Figure 2: Obturator internus origin data set. Left - the input
point set together with the order in which the points were
sampled, right - the ground truth closed curve we specified
manually according to anatomical atlases.

• every point Qi is uniquely associated with just one
point Pi so we are able to return back to 3D, and

• the distance between a pair of points Qi,Q j are as
close to the distance between a pair of associated
points Pi,Pj as possible.
Executing a 2D curve reconstruction algorithm on

the set of points Qi produces the sought connectivity
between the points Pi. If the output connectivity forms
a single closed curve, we are ready. Otherwise, the
output must be filtered: some edges might need to be
removed, some edges to close the curve might need to
be inserted. We assume that the surface from which
the data were sampled is available and is represented
by a triangular model, or can be reconstructed from
the input points, e.g., by using the RBF approach (see
Section 3.1). It allows us to solve the filtering step in
a rather unorthodox but straightforward approach.

Suppose the points Pi and Pj should be connected.
At first, we subdivide the triangles of the surface mesh
that contain these points in their vicinity, introduc-
ing thus these points as new vertices of the mesh.
Then, we trace the shortest path connecting newly in-
troduced vertices to a set of surface points Pi, j,k, as
illustrated in Figure 3. The Dijkstra algorithm can be
used for it, providing that the triangular model is fine
enough. Some of the fast marching methods, see, e.g.,
(Peyré, 2009), is an alternative suitable in all cases.

We construct a scalar field SDF(V ) on the surface
of the mesh such that it returns the geodetic distance
between the given surface point V and the nearest
Pi, j,k point – see Figure 4. This field can be con-
structed easily using a bread-first search algorithm
starting at Pi, j,k points. We adopt a fast marching
method described in (Peyré, 2009) for this purpose.

An algorithm for iso-contours extraction is ex-
ecuted with the iso-value about the average length
of edges Pi, j,k,Pi, j,k+1. In our experiments, we
specify this value to 0.5 · (min‖Pi, j,k,Pi, j,k+1‖ +
max‖Pi, j,k,Pi, j,k+1‖). Multiple contours are usually

P18,19,0
P18,19,1

P18,19,2

P18,19,3
P18,19,4 P18,19,5

P18,19,0

P27,18,0

P27,18,6P27,18,6

P27,18,7

P27,18,8

P17,27,0P17,27,0

P17,27,1

P17,27,2

P17,27,3

P17,27,4

P17,27,5

P17,27,6

P17,27,7

Figure 3: Refined edges P17,P27, P27,P18, and P18,P19 of
the obturator internus origin data set (see Figure 2) on the
surface of the pelvis bone.

Figure 4: Scalar field constructed on the surface of the
pelvis bone for the refined connectivity (obtained by (Lenz,
2006) algorithm) of the obturator internus origin data set.

extracted (e.g., one from the exterior of a closed
curve, the other from the interior). The one with the
largest perimeter is selected as a result – see Figure 5
for an example. We note that the final contour does
not go through the input points but providing that the
refinement of the primary edges is sufficient, this does
not stand for a problem in many applications (includ-
ing the muscle attachments estimation).

3.1 Radial Basis Functions (RBF)

Radial basis function interpolation and approximation
is defined as follows:

hi(x) =
N

∑
j=1

λ jϕ(|||xi− x j||), (1)

or also: h = Aλ, Ai, j = ϕ(||xi− x j||)

The λi variable is the weight of a single RBF, ϕ de-
notes radial basis function, xi and x j are the positions
of the input vertices (maybe attachment area vertices
in our case), and hi are values in the vertices.
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Figure 5: Obturator internus origin closed curve extracted
from the scalar field in Figure 4. Compare it with the ground
truth curve in Figure 2 right.

We experimented with a novel RBF described in
(Skala and Cervenka, 2020) defined as:

ϕ(r) = r2 (ra−1) (2)

Variable a is a shape parameter that has to be iden-
tified accurately to get good results. We also used
a = 1.8 as proposed by the original authors. Fig-
ure 6 shows the surface reconstructed by this ap-
proach from the input points. This surface can be used
as an alternative to the triangulated model of a bone.

Figure 6: The surface of the femur bone reconstructed by
the RBF method from the input points of biceps femoris
origin (top) and vastus intermedius origin (bottom).

4 EXPERIMENTS AND RESULTS

The approach described above was implemented in
C++ 14 using:

• the Visualization Toolkit (VTK)1 for loading the
data, curve reconstruction by the α-shape algo-
rithm (see (Edelsbrunner et al., 1983)), iso-lines
extraction , and visualization of results,

• the benchmarking by (Ohrhallinger et al., 2021)
for curve reconstruction by 14 different algo-

1https://vtk.org/

rithms – connect2d, hnncrust, fitconnect, stretch-
denoise, discur, vicur, crawl, peel, crust, nncrust,
ccrust, gathan1, gathang, and lenz,

• the code by Yuki Koyama2 for the multidimen-
sional scaling,

• the geodesic computation on surfaces by (Krish-
nan, 2013), based on the fast marching method,

• and the Muscle Decomposition by (Kohout and
Kukačka, 2014) for extracting the muscle attach-
ment area bounded by the reconstructed curve
from the surface mesh.

We note that the disk radius parameter of the α-shape
algorithm was set to 0.5625 times the maximal short-
est distance between pairs of points, i.e., just enough
to guarantee that the output will have one component
only. The implementations of the other reconstruction
algorithms were used with their default parameters.

We experimented with the point sets representing
muscle attachments of a comprehensive TLEM 2.0
data set of lower limbs (Carbone et al., 2015). Af-
ter performing initial analyses, we selected, more or
less randomly, a couple of representative point sets for
further experiments – see Figure 7. For each of the 27
point sets we ended with, we specified the ground-
truth connection of the points according to depictions
in anatomical atlases. We note that in some cases, the
task of finding a proper connection has proven to be
complicated even for a human expert.

We inserted the points into the surface mesh of the
appropriate bone and used the geodesic computation
to obtain the final closed ground-truth curve. An ex-
ample of such a curve is in Figure 2, right.

Using the code for the muscle decomposition by
(Kohout and Kukačka, 2014), we extracted the part of
the mesh belonging to the attachment area bounded
by the ground-truth closed curve. In three cases (ad-
ductor longus insertion, obturator internus origin and
gluteus maximus inferior origin), the implementation
failed to provide us with an acceptable result. This
was caused by the fact that the input data violated the
assumptions of the original method. Figure 8 shows
examples of extracted ground-truth attachments.

We then ran our implementation. It provided us
with 15 contours for each dataset, one for every curve
reconstruction algorithm. For each output contour,
the surface patch was extracted from the bone model
in the same way as described above. Dice similar-
ity coefficient (DSC) was computed to measure the
dissimilarity between the outcome and the ground
truth. DSC = 1 means a perfect match, while DSC = 0
means that the patches do not intersect. Naturally,
the value of DSC depends on the sampling frequency.

2https://github.com/yuki-koyama/multidimensional-
scaling/blob/master/mds.h
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Figure 7: Representative examples of TLEM 2.0 point sets
of muscle attachments. From top to bottom, left to right:
biceps femoris origin, biceps femoris insertion, soleus later-
alis origin, and gluteus maximus superior + inferior origin.

Our samples included all vertices of the bone mesh
triangles plus some points sampled randomly in ev-
ery triangle with an area larger than ε. The num-
ber of samples in such a triangle was determined as
its area divided by ε. In the experiments, we used
ε = π ·0.1 ·0.1, which means our sampling frequency
was about 0.2 mm.

Figure 9 shows the results we obtained. For closed
curves with almost uniform sampling without appar-
ent outliers and noise, represented, e.g., for biceps
femoris insertion, the differences between 2D curve
reconstruction algorithms are negligible. It is also
apparent that only the α-shape algorithm was robust
enough to process every data set. Connect2d, fitcon-
nect, discur, and vicur algorithms could process only
about 70.8% of data sets, stretchdenoise only about
58.3%. The rest failed to process the gluteus medius
posterior insertion, which is not surprising consider-
ing that this data set contains many outliers (see Fig-
ure 10). The poor performance, generally, showed
discur and vicur algorithms.

Further inspection reveals that none of the algo-
rithms could provide acceptable results for the gluteus
maximus inferior insertion and vastus intermedius
origin data sets. In the former case, the reason is
simply that the data contains three outliers outside the
attachment region (probably introduced during an er-

Figure 8: Ground-truth closed curves (purple) for vastus
intermedius origin, obturator externus lateral origin, glu-
teus maximus inferior origin, and gluteus maximus infe-
rior insertion. Surface patches representing the attachment
areas, extracted using the implementation by (Kohout and
Kukačka, 2014) are shaded in blue.

roneous registration process) – see Figure 10. In the
latter case, the explanation is more complicated. Al-
though the data of vastus intermedius origin seems
quite OK for a human observer (see Figure 8), the
algorithms yield multiple connections between the
points on the left side with those on the right one.
It might be because the sampling frequency on the
boundary is insufficient, and thus the influence of the
single apparent outlier is not negligible. As the fe-
mur bone resembles a cylinder, the geodetics com-
puted for these incorrect edges are not on the same
side, but some lie in the front, others in the back. As a
result, the bone is effectively cut into several parts, as
shown in Figure 10 and, therefore, only a part of the
attachment area is extracted.

On average, the best performance reached α-
shape (72.00%), followed by connect2d (69.35%),
and lenz (67.04%). However, it is needed to point
out that the dice similarity coefficient is not a re-
liable indicator for very narrow attachments repre-
sented by slightly curved lines, for which values as
low as 30% are often visually acceptable. This is
the case of adductor longus insertion, adductor mag-
nus mid insertion, adductor magnus proximal inser-
tion, biceps femoris CB origin, iliopsoas superior in-
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adductor magnus distal insertion 94.64% 87.58% 28.79% 92.49% 92.49% 0.48% 14.31% 34.14% 28.37% 24.80% 93.70% 14.57% 26.01% 26.01% 93.38%

adductor magnus mid insertion 78.88% 51.98% 28.83% 28.83% 28.83% 28.83% 28.83% 25.86% 28.83% 28.83% 28.83% 52.22% 28.83% 72.11%

adductor magnus proximal insertion 85.06% 81.97% 24.83% 24.83% 24.83% 24.83% 24.83% 22.88% 24.72% 21.36% 21.36% 21.36% 81.83% 21.36% 86.38%

biceps femoris origin 84.72% 54.63% 19.09% 19.09% 19.09% 19.09% 19.09% 20.48% 19.58% 20.48% 20.48% 20.48% 54.84% 20.48% 26.02%

biceps femoris insertion 98.44% 97.23% 97.23% 97.23% 97.23% 97.23% 97.23% 97.23% 97.23% 97.23% 97.23% 97.23% 97.23% 97.23% 97.95%

gluteus maximus inferior insertion 16.46% 31.96% 28.91% 28.68% 30.09% 27.92% 27.92% 31.64% 35.42% 17.31%

gluteus maximus superior insertion 89.67% 21.92% 33.59% 25.10% 29.46% 91.06% 14.44% 15.27% 18.40% 83.66%

gluteus maximus superior origin 79.92% 87.56% 5.78% 76.52% 76.52% 3.88% 3.55% 94.14% 8.10% 6.89% 81.34% 3.19% 4.26% 7.18% 77.98%

gluteus medius anterior insertion 91.48% 83.15% 7.05% 89.35% 89.35% 16.23% 11.39% 20.65% 12.97% 10.01% 65.61% 14.41% 8.62% 15.88% 84.84%

gluteus medius anterior origin 96.84% 7.22% 13.09% 10.72% 5.59% 93.02% 2.91% 4.24% 5.21% 97.47%

gluteus medius posterior insertion 79.40%

gluteus medius posterior origin 97.31% 98.11% 98.11% 97.98% 97.98% 3.73% 98.08% 98.11% 98.11% 98.11% 98.11% 4.00% 98.11% 98.11% 98.36%

iliopsoas inferior insertion 96.17% 77.17% 8.82% 54.97% 54.97% 0.91% 16.68% 25.79% 17.46% 18.71% 47.84% 11.75% 9.54% 17.81% 95.59%

iliopsoas superior insertion 71.98% 65.20% 49.47% 49.47% 49.47% 49.47% 49.47% 32.39% 32.39% 49.47% 49.47% 49.47% 49.47% 49.47% 66.23%

obturator externus lateral origin 89.09% 62.48% 9.62% 11.78% 5.23% 12.28% 17.84% 10.30% 17.15% 65.52% 7.38% 45.24% 6.08% 78.82%

obturator externus medial origin 97.89% 78.36% 6.40% 80.84% 80.84% 6.48% 4.82% 10.11% 6.14% 6.62% 89.87% 5.68% 1.50% 7.51% 96.77%

sartorius insertion 48.95% 20.88% 61.61% 34.42% 35.86% 74.81% 40.69% 35.02% 48.11% 59.02%

semimembranosus insertion 78.91% 72.93% 34.34% 34.34% 34.34% 34.34% 34.34% 24.14% 34.85% 24.14% 24.14% 24.14% 72.80% 24.14% 78.88%

semimembranosus origin 70.16% 87.90% 12.20% 8.95% 8.95% 1.89% 9.28% 19.69% 12.62% 23.40% 56.29% 8.91% 13.53% 79.03% 73.13%

soleus lateralis origin 71.05% 45.73% 15.31% 15.52% 15.52% 3.64% 7.07% 15.55% 14.89% 11.36% 15.56% 10.60% 51.43% 11.66% 16.24%

soleus medialis origin 15.38% 12.28% 48.25% 46.16% 46.16% 15.54% 47.63% 48.43% 44.07% 45.44% 19.33% 51.41% 12.27% 12.27% 14.24%

vastus intermedius origin 0.06% 6.73% 11.19% 6.42% 10.56% 36.09% 4.49% 22.82% 4.00% 39.64%

vastus medialis inferior origin 36.76% 31.47% 41.63% 42.55% 40.60% 41.45% 41.45% 38.42% 41.45% 33.87%

vastus medialis superior origin 58.85% 34.74% 14.56% 25.18% 20.83% 8.65% 23.99% 13.34% 13.32% 44.78% 12.14% 13.00% 15.50% 53.97%

Figure 9: Dice similarity coefficients of various muscle attachments, obtained for the MDS with different curve reconstruction
algorithms. Missing values mean that the reconstruction algorithm failed. The best performances are marked in bold.

Figure 10: The data sets causing troubles during the pro-
cessing (see the text): gluteus medius posterior insertion
with a lot of internal points (top left), gluteus maximus infe-
rior insertion with three outer points (top right), and vastus
intermedius origin with an insufficient sampling frequency
(bottom). The ground-truth curve is purple, the final con-
tour obtained from α-shape curve is light blue, and geodet-
ics computed from the connectivity found by the lenz algo-
rithm are yellow.

sertion, semimembranosus insertion, soleus medialis
origin, and vastus medialis inferior origin. If we ex-
clude the results of these data sets, we get four al-
gorithms whose performance exceeds 70% on aver-
age: α-shape (78.74%), lenz (76.45%), connect2d
(76.36%), and nncrust (70.05%). Considering that
connect2d failed repeatedly, we can recommend only
α-shape or lenz algorithms for the curve reconstruc-
tion in our context.

For the data sets mentioned above, a better indi-
cator might be the difference in the perimeter of the
reconstructed and ground-truth curves. Table 1 shows
that according to this indicator, the best performing

algorithm is connect2d, with the error of 1.25% on
average but one failure, followed by gathan1 (2.60%
on average), α-shape (3.03%), and lenz (3.43%). All
other algorithms exhibited a worse performance with
multiple failures or average errors exceeding 4% (in
absolute values). We note that median errors were
below 4% in all cases. The order of the five best-
performing algorithms remains the same even when
median errors are considered.

Therefore, it can be concluded that α-shape or
lenz algorithms are universal algorithms suitable for
all cases. This result is also confirmed by a subjec-
tive test, in which a human volunteer assessed all the
reconstructed contours visually, classifying them into
three categories:

• A = no issue or a minor one only without any con-
siderable impact on musculoskeletal modelling,

• B = acceptable but with some issues that might
have some undesirable impacts on musculoskele-
tal modelling, and

• C = unacceptable.

The α-shape and lenz algorithms have almost half
of their contours (48.1% precisely in both cases) in
category A. While hncrust, discur, vicur, peel, crust,
ccrust, gathan1, and gathang algorithms have more
than half of the contours they produced in category
C, α-shape and lenz have there only 4 and 5 contours,
which corresponds to 11.1% and 18.5%, respectively.
Two of these contours belong to gluteus maximus
inferior insertion, and vastus intermedius origin, al-
ready discussed above (see also Figure 10).α-shape
further failed to provide acceptable results for vastus
medialis superior origin, lenz for obturator externus
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Table 1: Differences between the perimeters of the reconstructed and ground-truth contours for selected 2D curve reconstruc-
tion algorithms. The best results are bold.

Name α-shape connect2d fitconnect nncrust gathan1 lenz
adductor longus insertion 7.73% 5.82% 7.85% 7.84% 5.82% 8.26%
adductor magnus mid insertion 1.54% 0.00% 1.07% 1.07% 0.00% 0.92%
adductor magnus proximal insertion 2.31% -0.20% 3.79% 3.71% -0.20% 3.11%
biceps femoris origin 1.25% -0.28% 1.37% 0.73% -0.28% 1.41%
iliopsoas superior insertion 6.69% 0.70% 8.35% 8.35% 8.35% 7.05%
semimembranosus insertion 1.85% -0.04% 2.48% 2.68% -0.04% 1.97%
soleus medialis origin -1.31% -2.98% -5.75% -0.22% -2.99% -0.84%
vastus medialis inferior origo 1.59% 7.63% 3.09% 3.86%
Avg(abs(error)) 3.03% 1.25% 3.83% 4.03% 2.60% 3.43%

lateral origin, soleus lateralis origin, and soleus medi-
alis origin. In all four cases, the attachments are much
more stretched in one dimension than in the other.
Due to sparse sampling, the MDS increased further
this ratio, producing points visually lying almost on
a one-dimensional object (see Figure 11). All algo-
rithms then struggled with such data.

Figure 11: Soleus lateralis origin after being transformed
into 2D using projection onto the best fit plane (left) and
using the multidimensional scaling technique (right).

We, therefore, compared the results with those ob-
tained when the input points were projected onto the
plane fitted to the data by the least-squares method
instead of using the multidimensional scaling tech-
nique. Table 2 show that although some algorithms
benefit from the MDS technique (e.g., fitconnect,
stretchdenoise, or peel), others, without any doubt,
perform better without it (e.g., lenz or nncrust). As
for the subjective tests, lenz algorithm came in first
with 15 (i.e., 55.6%) muscle attachments in category
A, 11 (i.e., 40.7%) in category B and only vastus
intermedius origin in category C. The second place
was taken by α-shape with 10 (i.e., 37%) muscle at-
tachments in category A, 13 (i.e., 48.1%) in category
B, and 4 (i.e., 14.8%) in category C. Clearly, while
α-shape achieved more acceptable results with the
MDS, lenz demonstrated different behaviour.

However, we must point out that a projection of
points onto a common plane is not suitable when the
curve to be reconstructed bends several times, e.g.,
like in the case of a narrow saddle. Although such
cases are pretty rare in the context of muscle attach-
ments, they seem to be frequent in the aneurysm neck
identification problem.

Table 2: Difference of the average performance when using
the MDS and when using the projection onto a common
plane. Positive values mean that the MDS outperforms the
projection. Dice similarity coefficients (DSC) are used as
a performance indicator for the data for which DSC is a
reliable indicator (see the text for explanation). For the rest,
errors in the muscle attachments perimeters (PER) are used.

Algorithm DSC PER
α-shape -0.37% -0.31%
connect2d -8.80% 0.23%
hnncrust 8.83% 0.00%
fitconnect 11.54% 0.25%
stretchdenoise 17.10% -0.26%
discur -8.46% 6.38%
vicur -5.70% -0.01%
crawl -6.69% -0.03%
peel 9.61% 0.05%
crust 4.31% -0.08%
nncrust -6.63% -0.57%
ccrust -0.17% -6.31%
gathan1 3.87% -2.11%
gathang -12.59% -11.09%
lenz -12.66% -0.72%

We also did some preliminary testing of the RBF
approach for ordering the vertices and smoothing the
curve. The primary purpose of this test is to check
whether the RBF approach will be capable of creating
a closed and non-self-intersecting curve in 2D.

If the outliers or apparent nonuniformity are
present, the resulting curve is far from expectations
(e.g. vastus intermedius origin on the left of Fig-
ure 12). Luckily, this approach gives better results
for many other attachment areas (e.g. gluteus medius
posterior on the right of the Figure 12). The polar
coordinate system for the dimension reduction causes
problems in some cases, mainly if there is a wide an-
gle without any vertex (left image of the Figure 12,
bottom part), causing a single or even multiple self-
intersectional loops. Approximating the curve instead
of interpolating may solve these issues.
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Figure 12: Two radial basis function approximation results.
Vastus intermedius origin is on the left. The connection be-
tween both ends of the attachment area does not turned out
well due to looping the curve. Gluteus medius posterior
origin is on the right. The shape is approximated by expec-
tations.

5 CONCLUSION AND FUTURE
WORK

This paper investigated the options of reconstructing
a closed space curve from the points sampled on that
curve, supporting sparse sampling and noisy data with
multiple outliers. Our extensive experiments, per-
formed on the TLEM 2.0 data sets (Carbone et al.,
2015) in the context of muscle attachments estima-
tion, lead us to the following recommendations. If
the curve to be reconstructed is not expected to have
a shape of a narrow saddle or be otherwise strangely
bent, the points should be projected onto the plane
that best fit the input data. The lenz algorithm (Lenz,
2006) should be used on the projected points to find
the primary connectivity between the input points.
Suppose this algorithm is unavailable or the expec-
tations on the curve shape do not hold. In that case,
the input data should be transformed onto the plane
using the multidimensional scaling (MDS) technique
(Cox and Cox, 2008). The α-shape algorithm (Edels-
brunner et al., 1983) should be then used on the trans-
formed points (instead of the lenz algorithm), with the
disc radius being slightly above half of the maximal
shortest distance between pairs of transformed points.
If neither algorithm is available, connect2d or nncrust
(see (Ohrhallinger et al., 2021)) are a decent choice.

Providing that the surface on which the space
curve lies is available, the reconstructed curve can
be refined by tracing the shortest paths between each
pair of points connected by an edge. A non-manifold
curve, i.e., a curve containing vertices of valence
larger than 2, can be converted into a manifold one
using the algorithm proposed in the paper, based on
iso-contour extraction from a scalar field describing
for each point on the surface its distance to the curve.
If the object bounded by the curve covers only a tiny
portion of the surface in any direction or the surface
is open, this conversion is reliable.
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9. Author’s contribution

9.12 Computerised muscle modelling and
simulation for interactive applications

In our subsequent study [98], we conducted com-

prehensive evaluations of our previously devel-

oped muscle modelling technique, addressing

a future challenge and introducing a method

enabling muscles to "slide" over bones using a

position-based dynamics (PBD) virtual edges.

A problem identified during our tests occurs

when two bones move close to each other with a

muscle sandwiched in between, akin to a muscle

caught in shears. This seemingly rare scenario

occurs on a microscale in joint areas. Another

problem arises when bone movement is so rapid between iterations that the muscle might

penetrate the bone, complicating shape restoration. This issue, while appearing unlikely, is

common in long bones like the femur, where a small angular change can result in substantial

displacement at the bone’s opposite end. Finally, some further directions are outlined:

1. Expanding on the PBD concept to include advancements like XPBD, an enhanced

version of PBD. This area is currently under exploration, though it has become a

smaller focus of my research.

2. Integrating another algorithm with PBD to refine outcomes. The ARAP algorithm

tested in this paper is a candidate for this integration. However, we decided to diverge

from this research path due to unresolved issues.

3. Adopting a different geometric model than triangular meshes could mitigate cer-

tain problems, particularly surface roughness. Each alternative geometry, however,

presents its own set of challenges.

This final examination of the triangular mesh model prompted me to shift my focus to a

different geometric approach (according to the third point), employing radial basis functions

rather than the triangular mesh.

Publication [98]:

CERVENKA, M.; HAVLICEK, O.; KOHOUT, J.; VASA, L. Computer muscle

modelling. Computerised muscle modelling and simulation for interactive ap-
plications, Proceedings of the 18th International Joint Conference on Computer
Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP
2023, Volume 1: GRAPP. 2023, pp. 214–221. isbn 978-989-758-634-7. Avail-
able from doi: https://doi.org/10.5220/0011688000003417. UT WoS:

001066254400019, OBD: 43940148
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Abstract: The main challenges of collision detection and handling in muscle modelling are demonstrated. Then, a colli-
sion handling technique is tested, exploiting the issue of muscle penetrating the bone in some circumstances,
mainly when the movement is too rapid or the displacement of the bone is too high. Our approach also de-
tects the problem, using Discregrid to see the immediate direction change towards the penetrated bone. Some
alternatives to the described PBD (Position-Based dynamics) technique are presented: PBD with As-Rigid-
As-Possible modification and radial basis function approach.

1 INTRODUCTION

Osteoporosis [Wade et al., 2014], osteoarthritis
[Oatis, 2017], patellar dislocation [Barzan et al.,
2017], or hemiplegic diseases [Zhang et al., 2021] are
leading researchers to develop a satisfactory model of
the musculoskeletal system. Creating such a model is
a complex procedure with many issues. The problem
of collision detection (CD) between muscle and bone
models and its response (CR) is critical.

In this paper, we follow our previous work and
newly present the parameter upper bound, where the
simulation still works as expected. Another contribu-
tion of this paper is exploring novel modelling meth-
ods to overcome the current limitations. This paper
also briefly describes some techniques of CD and CR.

The paper is structured as follows. The next sec-
tion gives an idea of the whole muscle modelling
overview and the steps to obtain a usable comput-
erised muscle model. The state-of-the-art approaches
to modelling and simulation of the muscles, based on

aThis work was supported by the Ministry of Education,
Youth and Sports of the Czech Republic, project SGS-2022-
015.

b https://orcid.org/0000-0001-9625-1872
c https://orcid.org/0000-0002-6944-7084
d https://orcid.org/0000-0002-3231-2573
e https://orcid.org/0000-0002-0213-3769

1 Corresponding author

the position-based dynamics, are described in Sec-
tion 3. The description of existing CD and CR tech-
niques employed during these simulations follows.
Sections 5 and 6 present the current approach’s lim-
itations and propose several improvements to over-
come them. Discussion of future work and conclud-
ing remarks follow.

2 MUSCLE MODELLING
PIPELINE

The muscle modelling procedure involves many
steps, including acquiring relevant raw data and its
subsequent transformation into a useful form. The
last step is formulating the mathematical model,
where the main concern is (among others) the defi-
nition of the muscle-bone interaction.

An example of a complex pipeline (consisting of
data acquisition, model building and inverse kinemat-
ics) includes the following steps:

1. obtaining raw data of the patient at rest (such as
medical images) representing anatomical objects
(bones, muscles, muscle attachment areas, etc.),
and movement data,

2. extraction and transformation of the raw data into
a useful form, using:

(a) segmentation – separation of different types of
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tissues present in medical images (if they are
distinguishable). Segmentation can be manual,
semi-automatic or automatic (depending on the
complexity of the segmentation),

(b) extraction – the conversion of segmented data
into geometrical models,

(c) registration – mapping of data and models from
different measurements and modalities into the
common reference space

(d) approximation and interpolation – reconstruc-
tion of missing parts or partially corrupted data.

3. acquiring some general apriori knowledge, deter-
mined by human anatomies, such as

(a) how the attachment areas will be determined
(whether based on apriori knowledge only or
the measured muscle attachment areas),

(b) defining how a bone is connected by a joint to
another bone or how a muscle is connected to a
set of bones (attachment areas), etc.,

(c) defining physiological parameters of studied
muscles, such as internal muscle architecture
(e.g. figure arrangement: parallel, pennate,
etc.), optimal (resting) length and others.

4. creating a mathematical model that requires:

(a) defining the space (discretised or continuous),
(b) defining the shape of the data (triangular sur-

face mesh, tetrahedral volumetric mesh, scat-
tered data... / surface defined by Fourier series,
implicit RBF,...)

(c) defining the interaction between muscle and
bone models and thus determining whether or
not a transformation of the measured data is
necessary.

5. transformation of the simulation output from its
model representation into the final form, e.g.,
from a triangular surface mesh into a set of in-
ternal fibres.

We recommend the following papers for a more
detailed view: the foremost step is well described
by [Fukuda et al., 2017] for the attachment area ac-
quisition strategy, [Lee et al., 2014] to determine the
pennate angle from the source data. There are also
data from invasive measurements, e.g. Visible Hu-
man Project (the National Library of Medicine) or
The Chinese Visible Human [Zhang et al., 2004].
The second step (registration) is also well described
in [Zhao et al., 2013]. There is also an approach
from [Li et al., 2008], with promising results. The
other steps are highly dependent on the considered
application, whether the purpose is a plausible visu-
alisation of muscles in movement (see. e.g. [Romeo
et al., 2018]) or to calculate some physical phenom-
ena of the muscle (see. e.g. [Modenese and Kohout,
2020]), and whether the user should be able to change

the modelling or simulation parameters interactively
or not.

We focus on interactive applications which do
not require specialised hardware. Consequently, any
model developed in the fourth step needs to trade off
some accuracy for the speed of simulation. In this pa-
per, we consider position-based dynamics (PBD) suit-
able for generating models of such a kind.

3 POSITION BASED DYNAMICS

Position-based dynamics (PBD) [Müller et al., 2007]
is a fast approach used mainly in the animation indus-
try to model elastic object (and cloth) deformations.
Nowadays, the PBD is making its way into physical
simulations as well. The original algorithm does not
consider the possibility of object anisotropy as far as
the algorithm has been developed for general objects.
The method accepts a manifold surface mesh and pro-
duces its deformed variant as the output.

The PBD also exists in the xPBD (eXtended ver-
sion of PBD, which respects the concept of elastic
potential energy) form. The xPBD incorporates elas-
tic potential energy and eliminates the necessity to
know the time step and iteration count [Macklin et al.,
2016].

Romeo et al. [Romeo et al., 2018] are the first who
proposed using the xPBD algorithm for muscle mod-
elling problems. Their fundamental idea is to build an
internal structure above the surface mesh to respect
the anisotropy of the muscle (the internal structure
respects the general direction of the muscle fibres).
They can form a volumetric model better suitable for
the PBD algorithm with an intelligent edge-creation
process. However, the paper needs to describe their
collision detection and handle thoroughly. According
to their video of the technique outcome, many col-
lisions occur, suggesting their approach did not ad-
dress the apparent requirement of avoiding muscle-
bone penetrations.

Angles et al. [Angles et al., 2019] developed a
PBD-based approach for muscle modelling in 2019.
Their approach virtually decomposes the muscle into
”rods” (which may approximate the muscle fibres).
These rods can adjust their diameter wherever they
want to preserve their volume. Their main con-
tribution is the ability to provide real-time simula-
tion, which Romeo’s approach cannot because ”its
≈ 40s/frame of processing time causes it unfitting
to interactive applications” [Angles et al., 2019].
They adopt ”Particle simulation using CUDA” from
[Green, 2010] for collision detection between rods
and response. Again, the problem of muscle-bone
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penetration is not addressed, though in this case, the
extension is relatively straightforward.

The position-based dynamics for muscle mod-
elling is also described in the paper ”Fast and Real-
istic Approach to Virtual Muscle Deformation.” [Cer-
venka. and Kohout., 2020] where the PBD approach
has been proposed (finished the same year as Romeo’s
article [Romeo et al., 2018], working concurrently on
the same). The paper ”Muscle Deformation using
Position Based Dynamics” [Kohout and Červenka,
2021] follows, which tests the approach and compares
the results to an existing FEM technique. The primary
benefit of our suggested system is that no interior is
needed. The anisotropy is computed on the surface
of the mesh only, utilising muscle fibres on the mesh
surface, representing the fibre direction. The voxeli-
sation technique has been used for collision detection
and response purposes.

4 COLLISION DETECTION AND
RESPONSE

Various approaches to detect and respond to an oc-
curring collision have been proposed. The most com-
mon algorithms exploit the D&C (divide & conquer)
paradigm. The bounding volume hierarchy is one of
them [Teschner et al., 2005], using a primitive (of-
ten an axis-aligned bounding box AABB or a sphere)
hierarchy to enclose the model and its parts. The spa-
tial hashing [Turk, 1990] is its generalisation over the
whole model space.

If there is a necessity to know not only if the col-
lision occurs but how far from the collision the model
is, the (signed) distance field approach is an excel-
lent way to go. Numerous techniques can be used
to construct such a field. The vast majority use vox-
elisation to obtain a cell array and then use an inter-
polation method to determine the value between the
cells. Some of these techniques are well described in
an older work by [Bærentzen and Aanæs, 2002].

In our research of the PBD approach, the first de-
cision was to use a simple voxelisation method to
simplify the collision detection problem. This sim-
ple idea, however, leads to some things that could be
improved. Luckily, some ideas have emerged to en-
tirely improve or even fix some problems, using more
complex collision detection algorithms. Havlicek
[Havlicek et al., 2022] changed the collision detec-
tion to Discregrid (using a signed distance field) and
FLC (using a binary search tree), beating the voxeli-
sation approach in terms of accuracy. However, there
is still some work because even those methods only
work correctly in extreme conditions, mainly if the

movement is rapid.
The collision response is a complicated task

as well. Assume that two bones move towards
each other and narrowly miss each other (like shear
blades). If a muscle is attached to both of the bones
and appears to be in between the bones, there is no
such room for the bones to move into. This problem
often happens on a smaller scale, near joints, espe-
cially where two bones move close. Our former so-
lution [Cervenka and Skala, 2020] was to assume, in
this particular case, only one of the bones and move
a muscle in the direction opposite of it, but it proved
insufficient. Havlicek [Havlicek et al., 2022] targets
this problem primarily, and he proposed a better ap-
proach of considering all adjacent bones and moving
opposite to the sum of all collision vectors. Even this
approach, however, does not always guarantee colli-
sion resolution.

Our current contribution, proposed in this paper,
follows our recent articles, mainly [Cervenka. and
Kohout., 2020, Kohout and Červenka, 2021] and also
[Havlicek et al., 2022].In the first article, we devel-
oped a PBD-based approach for muscle modelling.
The issue with a muscle stuck inside a joint was
shown in that article. We believed that ”better col-
lision detection can fix the issue” [Cervenka. and Ko-
hout., 2020]. In the second article, the voxelisation
collision detection approach was proven inaccurate in
some cases, mainly in the case of more ”complicated”
(e.g. concave) bone surfaces, which are located near
the joint areas more frequently. The last article ex-
plores two existing collision detection algorithms for
the PBD approach: Discregrid and Flexible Collision
Library. The Discregrid was shown to be more suit-
able for the problem.

4.1 Discregrid

Discregrid library can be considered a Signed Dis-
tance Field generator written in C++. The algorithm
computes for each point in 3D space the shortest dis-
tance and direction towards a given nearby surface
represented by a triangular mesh. Also, assuming
that the input mesh is at least watertight, the method
can make the inside/outside decision because the al-
gorithm provides the sign. A finite bounded subspace
is required for the approach to work.

The bounded surface is firstly divided (like in the
voxelisation method) into a rectangular grid with a
user-defined resolution, where each voxel is a 32-
node Serendipity type [Koschier and Bender, 2017].
For each node, the distance and the direction to-
wards the nearest bounded surface are computed, see
[Bærentzen and Aanæs, 2002]. The article describes
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the problem of discontinuity of the mesh (where the
normal vectors have to be estimated differently).

The field creation process is time-consuming
(about half a minute for bone meshes consisting of
up to 45 000 vertices with the grid resolution of
64 × 64 × 64 on standard hardware) and unfeasible
for deformable objects like muscles, where recalcu-
lation is often needed. There is no such problem with
the bone models because their movement is only rigid
(allowing for Discregrid results to be transformed us-
ing a global transformation).

In the case of muscle modelling, a situation may
happen when the muscle collides with a bone or an-
other muscle, even at the start of the simulation. This
situation is caused by the different modalities used for
the data measurements (see section 2). To fix the is-
sue, the colliding surface vertices are pushed accord-
ing to the Discregrid result directional vectors so no
collision would occur at the start of the simulation.

5 MUSCLE SIMULATION

In this paper, we experimented with more types of
motion of the hip joint, not just flexion but also ro-
tation and adduction. We also tested a hip extension
scenario in the described PBD approach to find the
maximum amount of problematic cases possible. The
tests will be done on muscles and bones depicted in
Fig. 1.

Figure 1: One view from the side and one from the front
of a muscle group surrounding the hip joint in rest pose.
The vertices of the muscles are coloured by their distance
to the femur bone (pointing down) in millimetres given by
Discregrid.

5.1 Test of motion types

For the test of different motion types, we tested the
original hip flexion (from 0◦ to +90◦ with the step of
2◦), hip rotation (from 0◦ to +45◦ and also to -45◦

with the approximate degree of 1◦) and hip adduction
(from 0◦ to +60◦ with the approximate step of 2◦).

The results of hip flexion are shown in Fig. 3.
Near the joint area, the muscle nearly touches the fe-
mur bone; however, no collision occurs. Fig. 4 shows
the results for the rotational motion. As before, the
muscle nearly touches the femur’s upper extremity
without collisions. The adduction is demonstrated in
Fig. 5. In this case, the muscle is further from the hip
joint, lowering the possibility of collisions. The col-
lision detection and response approach solved all the
apriori collisions, so no collisions happened.

5.2 Test of motion speeds

To test for bone movement speed impact, we chose
the extension movement. The initial step of 2◦ was
increased to 4◦, 5◦ and finally 10◦. We also increased
the target angle to +80◦ for rapid movement to have
time and space to show up fully.

In this case, when the angle finally reaches 72◦

with the angle step of 4◦, first bone penetration occurs
(see Fig. 6). The muscle is not as fast as needed to
keep up with the bone movement, causing the distal
part of the muscle to enter the bone volume and go
through the whole cross-section. The muscle is also
being unnaturally pushed into itself by the bone.

Figure 2: Simplified 2D illustration of the sliding mecha-
nism. Points XA, XB and XC are being evaluated for the dis-
tance from the other muscle M. Consider the same thresh-
old distance for each of them (yellow margin). Point XA is
pushed to the position PA by previous PBD constraints but
returned towards the other muscle to the position P′

A. Point
XB is pushed away by the PBD so much it makes sense to
leave it to go ( L2 > L1). Point XC is free to roam inside
the strip.

Figure 3: The result of the hip flexion progressing from
right to left.

9. Author’s contribution

210



Figure 4: The result of the hip rotation progressing from the
centre to the sides.

Figure 5: The result of the hip adduction progressing right
to the left during the simulation.

5.3 Tunnelling detection

The tunnelling problem (muscle ”jumps” in a single
iteration through the whole bone to the opposite side)
appears at places where the displacement of the bone
between two consecutive simulation frames exceeds
half the size of a muscle with which the bone collides.
According to [Havlicek et al., 2022], ”when [the fe-
mur] rotates about just 2◦ (a typical step in simula-
tions), the displacement of the distal part of this bone
is nearly 3 cm”. In our experiments with the muscles
of the hip, i.e., no part of the muscle is near the dis-
tal portion of the bone, this problem arises when the
angle step is higher than 4◦.

This problem is relatively standard and does not
arise only with this particular approach. For exam-
ple, [Janák, 2012] notes that ”if the movement of the
object is too fast in relation to the discrete time step,
the collision may not be detected”.

The scenario of the muscle movement is so rapid
that the whole muscle volume could go through the
entire bone model, which is possible (due to the al-
ready described displacement issue concerning the
change of the angle of the bone). Our solution would
be moving a muscle to the bone (rotate around the ex-
act centre of rotation and about the same angle), so
the muscle is closer to where it should lie. However,
before applying this correction, such an event must be
detected.

Generally, a continuous collision detection
method could be employed instead of the currently
used discrete one. However, such methods are
expensive. We, therefore, propose a simple (and fast)
test based on a comparison of the directional vectors

to the nearest bone surface, provided automatically
by the Discregrid.

If the direction of one muscle vertex suddenly
changes “too much”, we may expect that the penetra-
tion through the whole bone has happened. The “too
much” is defined as when the angle between the direc-
tional vector from the previous step and the new one
is greater than 135◦, as described in Equ. 1, where
di is the direction to the bone in this computational
step and d′

i is the direction to the bone in the previous
computational step, |a|2 is the euclidean norm of the
vector a. A tunnelling case can be seen in Fig. 6.

arccos
∣∣di ·d′

i
∣∣
2 > 135◦ (1)

∣∣di ·d′
i
∣∣
2 >−0.75

Figure 6: Due to the lack of contraction modelling, the mus-
cles are being dragged during the hip extension (left and
centre images). Finally, under the degree of 72◦, first tun-
nelling occurs (right) and is detected successfully by the
proposed algorithm.

5.4 Problem of multiple muscles

When multiple muscles are simulated in the scene,
they may also intersect each other. As noted in sec-
tion 4.1, building the Discregrid structure for the mus-
cle meshes is unusable for the interactive application
due to time requirements. An appropriate collision
handling system could be, e.g. a BVH structure (see
section 4), which would have to be updated each time
any muscle moves. As the nearby muscles often touch
each other - see Figure 1, this solution would proba-
bly be inefficient. Therefore, we propose the ”sliding”
technique using the so-called ”virtual edges” to keep
the muscles at a certain distance from each other to
prevent collisions and unrealistic detachments.

5.4.1 Sliding over surfaces

The main idea is to allow the muscles to slide over
each other using the virtual edges between the mus-
cles. We may keep chosen vertices up to a certain
distance away from the other muscles, i.e. a thresh-
old. The vertices to keep close to the other muscles

9.12. Computerised muscle modelling and simulation for interactive applications
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can be selected by their initial distance and kept in a
list. This list could also be updated if the PBD dis-
placement of a particular vertex away from the other
muscle would be greater than its initial distance, let-
ting the point go. Similarly, collecting more vertices
into this list could be achieved via checking, for ex-
ample, the neighbourhood vertices, which would be
the likely candidates.

In case the PBD forces are less in magnitude than
this attraction force but still point away from the mus-
cle, the vertex would be pushed in the closest direc-
tion to the other muscle surface, effectively making
the point slide along the other muscle surface and
hopefully preventing it from colliding or unrealisti-
cally spanning out, as illustrated in Fig. 2.

This functionality is implemented preliminarily,
using the Discregrid library to preserve the distances
between a bone and a muscle. The resulting vir-
tual edges can be seen in Figure 7. The reason for
this measure is that the original idea implementation
would be beyond the scope of this paper.

Figure 7: An example of virtual edges between a muscle
and a bone with the participating vertices in blue and red,
respectively. The points in blue are muscle vertices, which
are close enough to the bone at the start of the simulation.
For each of them, the closest bone vertex (red) is found. The
pairs of vertices are connected with a straight line segment,
symbolizing a virtual edge.

6 FUTURE WORK

The PBD approach on its own brings some problems
to muscle modelling. The shape is not well preserved
(see Fig. 5, on the middle image, the bottom central
part of the gluteus maximus muscle is unrealistically
deformed), and bone penetration happens. Any prob-
lems stem from low solver iteration count, essential
for real-time model interaction. The options to solve
these are to:

• increases the number of PBD iterations, ef-
fectively slowing down the simulation, which
would become no longer interactive [Kohout and
Červenka, 2021];

• uses the eXtended PBD, which converges more
consistently (the iteration count is not as signifi-
cant) but does not solve the penetration issues;

• uses a different muscle model.

6.1 RBF representation

The radial basis function model opens a new possi-
bility to develop a new approach to the deformation
of this model, which would allow smooth and rapid
muscle simulation. Collision detection and response,
volume preservation, and muscle anisotropy are the
challenges for future work.

The critical decision for the suitable model is to
select the suitable radial basis function and shape pa-
rameters (if any). A comprehensive study of some
well-known RBFs has already been made (see, e.g.
[Majdisova and Skala, 2017]), and the shape param-
eters were explored (e.g. in [Skala and Cervenka,
2019] or [Afiatdoust and Esmaeilbeigi, 2015]).

6.2 ARAP & PBD

Because of the deformed and unrealistic shape of
the model during the simulation, the As-Rigid-As-
Possible (ARAP) approach from computer graphics is
proposed for merge with PBD to deform an object re-
specting its original shape [Sorkine and Alexa, 2007]
to obtain ”the best of both worlds”.

As the preliminary experiment, we tried to use a
single PBD iteration to preserve the muscle’s original
volume, followed by a single iteration from ARAP,
which should restore the initial shape of the muscle.
The problem is that these two restrictions force most
vertices to go in the opposite direction, resulting in a
rough surface. (see results in Fig. 8). The volume
preservation constraint is not solvable by introducing
a new condition into the system since the interleaving
approach does not work.

Dvorak et al. [Dvořák et al., 2022] show how to
apply the ARAP approach to volume preservation.
However, their approach is not used directly for mus-
cle modelling problems. Our goal is to avoid the
introduction of an internal muscle structure to reach
lower computational complexity, meaning that their
approach would have to be altered drastically.

We see two options for fixing the mentioned is-
sues. The first is to start with PBD and replace the
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Figure 8: ARAP approach with a simple volume preserva-
tion constraint. The initial model is in white, the user de-
formation is in yellow. The volume preserving model with
user defined constraint is in lime blue, the green model is
the simple interweaving approach of the ARAP and PBD.

shape preservation constraint with the shape preser-
vation constraint from the ARAP approach. A math-
ematical reformulation of the shape constraint and
finding a gradient expression would be required for
the ARAP shape preservation constraint. The other
option is to start with ARAP and replace the interleav-
ing approach with gradient descent from PBD. Then,
a volume constraint can be added. Either way, both
methods should end up with the same result.

7 CONCLUSION

All of the described techniques for muscle mod-
elling provide good outcomes; however, each has
some drawbacks. Some are inaccurate (Hill-type
model [Hill, 1938], incorrect according to [Burzyński
et al., 2021], Via-points too approximate according
to [Modenese and Kohout, 2020]), some are accu-
rate but difficult to set up or simply too slow to be
useful (Finite element methods used by, e.g. [Delp
and Blemker, 2005], proved difficult to set up by
[Romeo et al., 2018]). Other methods are ”com-
promise solutions” in terms of accuracy and com-
putational complexity (Mass-Spring system, [Georgii
and Westermann, 2005, Aubel and Thalmann, 2001,

Janák, 2012], PBD, As-Rigid-As-Possible [Sorkine
and Alexa, 2007, Fasser et al., 2021, Wang et al.,
2021]). As the reader can probably imagine, many
open problems still exist.
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9.13. A mathematical model for smooth RBF implicit surface model for muscle modelling

9.13 A mathematical model for smooth
Radial Basis Function implicit surface
model for muscle modelling

The research paper titled "A mathematical

model for smooth Radial Basis Function

implicit surface model for the purpose of

muscle modelling" [95] presents an innova-

tive method for modelling muscle geom-

etry. This approach is heavily theoretical

and builds upon insights gleaned from our

prior research. This theoretical model (but

slightly improved) already had its dedicated

Chapter 7.4, so I direct the dear reader to

that chapter for more information.

The journal paper further develops knowledge acquired from earlier studies.

Here’s a summary of each publication and its key contribution to this paper:

• "A New Strategy for Scattered Data Approximation Using Radial Basis Func-

tions Respecting Points of Inflection" [3]: Highlights the utilization of Halton

point distribution and the incorporation of central points at domain bound-

aries.

• "Novel RBF Approximation Method Based on Geometrical Properties for

Signal Processing with a New RBF Function: Experimental Comparison" [93]:

Demonstrates limitations of local RBFs in certain approximations, suggesting

three global RBF alternatives: Gaussian, TPS, and a newly developed one.

• "Modified Radial Basis Functions Approximation Respecting Data Local Fea-

tures" [94]: Reveals how edge detection and curvature can enhance RBF ap-

proximation, with the concept of curvature preservation being adopted from

this study.

• "Fast and Realistic Approach to Virtual Muscle Deformation" [65]: This foun-

dational paper on muscle modelling principles greatly influenced the journal

article by outlining the requirements of the muscle model.

• "Behavioural Study of Various Radial Basis Functions for Approximation and

Interpolation Purposes" [89]: Concludes that while a novel RBF might be

preferable for approximation, caution is needed in shape parameter selection

due to potential instabilities in RBFmatrix conditionality. The paper suggests

Gaussian RBF is a potentially better choice.
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• "Finding Points of Importance for Radial Basis Function Approximation of

Large Scattered Data" [88]: Summarizes and tests previous research [3, 93, 94],

contributing the insight that high compression ratios can maintain accuracy.

• "Conditionality Analysis of the Radial Basis Function Matrix" [91]: Provides

valuable insights into shape parameter selection for Gaussian RBF through

analytical study.

• "Muscle Deformation Using Position Based Dynamics" [71]: Examines PBD

methods on a triangular mesh muscle model, highlighting the need to address

muscle tissue entering the joint.

• "Geometry Algebra and Gauss Eliminationmethod for solving a linear system

of equations without division" [97]: Delves into solving the RBF equation

system, focusing on the methodological intricacies.

• "Collision detection and response approaches for computer muscle mod-

elling" [72]: Enhances understanding of collision handling approaches, rel-

evant for future work with RBF geometric models.

• "Non-planar Surface Shape Reconstruction from a Point Cloud in the Con-

text of Muscles Attachments Estimation" [13]: Discusses applying RBF to real

musculoskeletal data and its unique challenges.

• "Computerised muscle modelling and simulation for interactive applications"

[98]: Summarizes, tests, and expands the existing approach, mainly focusing

on future research opportunities, which the journal paper explores. The paper

is at the time of writing in the stage of submission.

Publication [95]:

CERVENKA, Martin; KOHOUT, Josef; LIPUS, Bogdan. A mathematical model

for smooth Radial Basis Function implicit surface model for the purpose of

muscle modelling. INFORMATICA. 2024, submitted

216



INFORMATICA, 2022, Vol. 0, No. 0, 0–0 1
© 2022 Vilnius University
DOI: https://doi.org/0000

A novel radial basis function description of a
smooth implicit surface for musculoskeletal
modelling
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Abstract. As musculoskeletal illnesses continue to increase, practical computerised muscle mod-
elling is crucial. This paper addresses this concern by proposing a mathematical model for a dynamic
3D geometrical surface representation of muscles using a Radial Basis Function (RBF) approxima-
tion technique. The objective is to obtain a smoother surface while minimising data use, contrasting
it from classical polygonal (e.g., triangular) surface mesh models or volumetric (e.g., tetrahedral)
mesh models. The paper uses RBF implicit surface description to describe static surface generation
and dynamic surface deformations based on its spatial curvature preservation during the deforma-
tion. The novel method is tested on multiple data sets, and the experiments show promising results
according to the introduced metrics.
Key words: radial basis function, muscle model, gradient descent, curvature, mean curvature,
Gaussian RBF.

1. Introduction

Computerised muscle modelling garners increasing attention with the rising prevalence
of musculoskeletal illnesses (Cieza et al. (2020)). As of the latest Scopus index, 31 papers
on "musculoskeletal illnesses" out of 102 were published after 2020. On the term "muscu-
loskeletal modelling", there are over one-third of papers published after 2020 compared
to the total. This fast development in the field signifies that musculoskeletal modelling
approaches play a significant role in musculoskeletal illness treatment. This paper aims to
contribute significantly to the field by proposing a new mathematical muscle description.
To provide context, we begin with a brief overview of the evolution of critical contribu-
tions.

Muscle modelling has a rich history, with Hill (1938) presenting the first formal mathe-
matical representation, a three-element model for muscle fibre. As technology advanced,
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the need for precision led to the development of more intricate models. Initially, fibres
were individually represented, as seen, e.g. in the alpine skiing context (Heinrich et al.
(2023)). Subsequently, a "Via-points approach" emerged, linking multiple fibres in series,
e.g., in shoulder muscle modelling (Abderrazak and Benabid (2023)).

While these methods often operate in one dimension, moving to higher dimensions,
especially in 2D space, evolved crucial because the 1D model cannot accurately define the
original shape, producing errors up to 75% (Valente et al. (2012)). Employing 2D space
allows the description of muscles using surfaces, a more intuitive technique for reflecting
external structures. This paper focuses mainly on 2D models, as detailed in Section 2.

The open, ultimate problem is developing an accurate, simple, fast, and smooth mus-
culoskeletal model using the least possible parameters. All of the state-of-the-art methods
lack one or another or give some compromises.

The paper primarily emphasises a detailed description of two-dimensional techniques,
allowing faster calculations while keeping the ability to infer internal muscle composition.
Two main objectives include achieving more immediate model deformation with fewer
updated parameters and data reduction. The goal is achieved using a mathematically de-
scribed RBF implicit surface geometric model, providing infinitely differentiable smooth
surfaces and using fewer parameters than the "traditional" triangular mesh approaches.

The contribution of this paper lies not just in the overall RBF model but also in a
novel metric to determine the approximation accuracy presented. This metric can also be
used in different research fields where two surfaces must be compared. The RBF solver
is another contribution, and its usage can also be extended to applications where some
smooth objects (without sharp edges) need to be approximated, such as fluid dynamics,
aerodynamics, computer graphics and more.

Section 2 describes various models already used for muscle modelling, followed by
Section 3, including the description of RBF in general and muscle modelling. Section 4
then describes the paper’s contribution to static and dynamic models. Finally, in Section
5, experiments prove the model works as expected in theory.

2. Related methods

Having established the theoretical background, we now advance to a detailed investigation
of some techniques relative to muscle modelling.

The origin of a musculoskeletal model is deeply rooted in empirical data. The primary
raw materials for these models are medical scans, such as Magnetic Resonance Imaging
and Computed Tomography screenings, originating from living subjects and cadavers.
Recently, the processing has evolved, transitioning from semi-automatic to fully automatic
techniques. This progression involves the segmentation of images, a critical step where the
relevant structures, such as bones, joints and muscles, are isolated and extracted from the
rest of the image.

9. Author’s contribution

218



RBF for musculoskeletal modelling 3

2.1. Bones and joints

Following segmentation, surface models of bones are created. This process is not just
about assembling a skeletal structure; it involves the intricate specification of joints, set-
ting constraints on the degrees of freedom within these joints. Here, e.g., the STAPLE
algorithm by Modenese and Renault (2021) can significantly automate and streamline the
process.

Triangular meshes are the most common way to approximate bone surfaces by con-
necting triangles to define the object’s overall shape. The methodology for obtaining a
triangular muscle model from a person entails a comprehensive process that begins with
acquiring high-resolution, segmented medical images, commonly from MRI or CT scans.
These images provide a detailed view of the bones (and surrounding tissues). The next step
involves the extraction of a triangular mesh from these segmented images, a task typically
accomplished using algorithms such as Marching Cubes (Lorensen and Cline (1987)) or
Marching Triangles (Hilton et al. (1996)). These algorithms traverse the voxel grid of the
images, forming vertices, edges, and faces that approximate the bone surface, effectively
converting the 2D segmented images into a 3D surface representation.

Following the initial mesh extraction, the mesh undergoes a series of refinement pro-
cedures to enhance its quality and anatomical accuracy. These procedures include the
removal of non-manifold vertices and edges to eliminate anomalies that do not adhere
to the criteria of a well-defined surface. Concurrently, any gaps or holes in the mesh are
meticulously filled to ensure continuity of the bone surface, a critical step for maintaining
anatomical fidelity. The mesh is further refined by optimising the shapes of the triangles
to more accurately align with the bone’s contours and by reducing the mesh to lower its
complexity while keeping the model’s overall shape and intricate details.

Additionally, Laplacian smoothing is applied to the mesh. This process adjusts the po-
sition of each vertex based on the average of its neighbouring vertices, effectively smooth-
ing out irregularities and noise, resulting in a uniform and more realistic representation of
the bone. The refined mesh is then rigorously reviewed and compared against the original
segmented images by medical professionals to validate its accuracy, ensuring the model
precisely mirrors the anatomical structure.

While the forces used on bones during the movement can induce deformations, these
deformations are generally so minute that, for practical purposes, they can be disregarded.
This assumption yields the bones as rigid bodies in motion. This assumption is in contrast
to the muscle-tendon units.

2.2. Muscles and tendons

Joint data about the muscles and tendons (together form muscle-tendon units - MTU) is
acquired because it is difficult to distinguish the muscle and the tendon apart from the
imaging; otherwise, the data can be obtained in the same fashion as in the case of bones.
However, the problem is that these tissues are less visible in the imaging. Fortunately,
the segmentation can also be automated, but more complex strategies are required, with
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machine learning methods emerging as promising approaches (Goyanes et al. (2024)).
Despite their potential, these techniques have yet to become a staple in routine practice,
and semi-automatic approaches are used instead.

If the deformation is discussed, muscles behave differently than bone structures; they
exhibit elastic deformations, presenting a significant challenge in modelling their be-
haviour accurately to the known movement of bones. Various models attempt to address
this, often employing many oversimplifications.

Also, in the real-world scenario, muscle deformation results from the contraction or
relaxation of muscle fibres, driven by the sliding of actin and myosin filaments within
muscle fibres. This contraction leads to changes in muscle shape, causing deformation.
In inverse kinematics, muscle deformation is pretended to be caused by adjacent bone
movement, posing the challenge of figuring out the shape of unknown parts of the muscle
model. If we do not consider measurements of the physiological signals (e.g. electromyo-
graphy), it is required to perform the inverse kinematics because the bone displacements
are known; however, the shape of the muscles during the movement is not (due to the
problematic data acquisition).

The first models created were one-dimensional and were formed by a straight line,
polyline, or curve and their multiples.

2.2.1. 1D models
The simplest models might represent a muscle as a straight line connecting two points
on different bones, blatantly ignoring any potential intersection with the bone itself. This
approach relies heavily on the assumption that the attachment points are accurately cho-
sen (Kohout. and Cervenka. (2022)). A slight improvement to this model is to replace the
straight line with a polyline or a curve that either passes through predetermined points
relative to a bone or traces the surface of a parametric body, aiming to minimise the curve
length. However, fine-tuning these models to mirror reality is arduous (Hájková and Ko-
hout (2014)).

It’s also imperative to represent muscles not just as mere lines or curves but as sub-
stantial higher-dimensional models (Kedadria et al. (2023)) to enhance the realism of
musculoskeletal models, i.

2.2.2. 3D models
Geometrical 3D models have been explored, utilising the fact that a large set of muscle fi-
bres creates the muscle. Modelling approaches using mass-spring systems (Janák. and Ko-
hout. (2014)) and the finite element (FE) method are currently gaining prominence (Delp
and Blemker (2005)). The FE method, utilising a template of internal structure projected
onto the surface shape, proves superior accuracy. The main issue of those methods is their
large number of parameters, which need to be figured out, and their computational com-
plexity. Therefore, this paper concentrates more on the two-dimensional (surface) models
instead, which is a reasonable compromise between a simple but inaccurate 1D modelling
and 3D accurate but too complex 3D modelling Macklin et al. (2016).
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2.2.3. Discrete 2D models
Despite muscles lying in the 3D space, modelling them in lower dimensions is viable.
Straight lines or polylines can be employed in one dimension but inaccurately. In two di-
mensions, already obtained triangular surfaces are limited in the original object descrip-
tion but can be accurate enough. Each "well-behaved" 3D surface model constructed by a
single component manifold can be parameterised in two dimensions or described utilising
a 2D representation.

In the case of model dynamics, numerous approaches have been developed, primar-
ily working directly on the triangular meshes that have already been obtained. Here, we
provide a brief overview of the most significant ones.

Position-based dynamics. Position-based dynamics, introduced by Müller et al. (2007),
is a rapid technique widely utilised in the animation industry for simulating deformations
of elastic objects. Initially created for generic shapes, the method inputs a smooth manifold
surface mesh and generates its deformed counterpart.

An extended version, XPBD (Macklin et al. (2016)), introduces the concept of elastic
potential energy, removing the need to determine time steps and iteration counts. XPBD
has been applied to muscle modelling challenges by Romeo et al. (2018), who addressed
limitations regarding convergence speed, setup simplicity, intuitive controls, and artistic
control. They constructed an internal structure inside the surface mesh, accounting for
muscle anisotropy. However, the approach lacked attention to collision detection and res-
olution, later addressed by Cervenka. et al. (2023).

In 2019, Angles et al. (2019) introduced an XPBD-based method for muscle mod-
elling, virtually decomposing the muscle into flexible "rods" approximating muscle fi-
bres. These rods adjust their diameter to maintain volume, enabling real-time simulation.
The main issue is the same: the problem of muscle-bone penetration is not adequately
addressed or apparent in the paper or its supplementary material.

As-rigid-as-possible surface modelling. The as-rigid-as-possible approach (ARAP), de-
veloped bySorkine and Alexa (2007), is a technique for determining minimal non-rigid
transformations in a surface mesh. Unlike the method by Kellnhofer and Kohout (2012),
which involves volume constraints and an internal skeleton, " it distinguishes itself by not
requiring an internal structure.". Fasser et al. (2021) applied ARAP in a medical context to
morph the template of a pelvic bone onto subject-specific landmarks, though overlooking
certain critical features like volume preservation. Wang et al. (2021) investigated ARAP
but chose not to use it due to non-smooth shapes and spikes in results. ARAP has also
found application in time-varying meshes by Dvořák et al. (2021).

ARAP minimises shape deformation by discouraging non-rigid transformation via a
cost function. Mathematically, this is characterised as the search for a solution to a non-
homogeneous system of linear equations. The matrix corresponds to the discrete Laplace
operator of the mesh, while the right-hand side vector encompasses the second differences
of each vertex concerning its neighbours.

The main drawback of ARAP and similar approaches lies in recalculating each mesh
parameter in every iteration, proving time-consuming for fine triangular meshes. Also, the
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triangular mesh has the smoothness issue mentioned before. Therefore, a continuous 2D
model better approximates smoothness and is better suited for the deformation approaches.

2.2.4. Continuous 2D models
The Non-uniform Rational Basis Spline (NURBS) is an interpolation and approximation
method (Nie et al. (2022)), describing a surface via a set of B-spline curves. NURBS is
useful for interactive applications, offering higher smoothness than triangular meshes, al-
lowing intuitive deformation of specific parts of the geometrical model (see, e.g. Clapés
et al. (2008) or Sánchez-Reyes and Chacón (2020)). For muscle modelling, the NURBS is
not required to form a structure as triangular meshes when creating the data and then ap-
proximate those data, meaning that after applying the Marching Cubes or Triangles step,
the vertices will not be connected by triangles but rather by individual NURBS patches
and the smoothness is accomplished automatically. Also, if a part of the segmentation is
missing, the NURBS techniques can restore those parts more precisely than in the trian-
gular mesh case.

D-NURBS (Terzopoulos and Qin (1994)) (Dynamic-NURBS) can be used for dynam-
ics. It extends the NURBS approach by incorporating physical phenomena for more in-
tuitive interactive shape deformation relevant to various purposes such as high-resolution
digital terrain (Ye et al. (2020)), virtual reality (Lavoie et al. (2006)), or CAD applications
(Zhang and Qin (2001)).

Na et al. (2023) used D-NURBS for muscle shape parametrisation and deformation.
They achieved satisfactory results by defining muscle shape with a set of neighbouring
2D NURBS plates, reaching a mean square difference of approximately 1.5mm and a
maximum volume error of 0.75%.

While these approaches offer valuable insights, a common challenge is recalculating
every parameter in each iteration, which can be time-consuming. Also, the neighbourhood
of vertices needs to be defined for all the techniques mentioned.

3. Radial basis functions

Even the previously described NURBS techniques require some relations between the
vertices (neighbourhood), but Radial Basis Function (RBF) techniques do not require that
knowledge. The task of estimating and fitting scattered data is widespread across vari-
ous fields of engineering and scientific research. To list only a limited subset of the RBF
usage possibilities, Zhang et al. (2022) shows its usability for better predicting the sub-
cellular location of long non-coding RNA. Oliver and Webster (1990) demonstrates this
by applying the kriging method for interpolating geographical data, while Kaymaz (2005)
demonstrate its effectiveness in solving issues related to structural reliability. The process
has further applications in simulation, e.g., in Sakata et al. (2004) study on wing struc-
tures or Joseph et al. (2008) development of metamodels. RBF techniques address partial
differential equations, especially in engineering.

The RBF method was presented by Hardy (1971) and improved by him (Hardy (1990))
later. Majdisova and Skala (2017a) have offered different strategies for RBF position-
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ing. Significant studies have been conducted in terms of ’shape parameters’ in RBF ap-
proaches, including, e.g. search for optimal settings by Wang et al. (2021), investigations
by Afiatdoust and Esmaeilbeigi (2015), and research into varying local shape parameters
methods by Cohen et al., Sarra et al., and Skala et al. (2020).

The radial basis function approach uses "centre points" instead of surface vertices,
serving as descriptors for spatial function locations. Unlike NURBS, modifying a single
RBF centre location can affect the entire surface because of its "blending" behaviour with
other RBFs nearby, propagating recursively throughout the volume. To address the RBF
placement possibilities, Majdisova and Skala (2017b) conducted a comparative study of
various RBF placement strategies, showing that uniformly sampled input functions tend
to lead to ill-conditioned RBF equation systems. They seek the solution by proposing a
quasi-random sampling, such as the Halton distribution. Alternative methods have also
been suggested, such as regularisation by Orr (1995) and enhancements close to function
boundaries by Wright (2003).

The RBF approach offers advantages over triangular mesh representations of muscle
surfaces, including:

• There is no need to define the connectivity between control points.
• RBFs can generate Cn-smooth surfaces, with the user-defined required degree of

smoothness denoted by n.
• RBF may use fewer parameters compared to triangular meshes in general.
• Deforming a muscle may involve changing only a portion of the parametric space while

maintaining smoothness.

For each application, the correct RBF must be chosen first to reach desirable prop-
erties and satisfactory results. Two global RBFs are commonly considered: the Gaus-
sian RBF or thin-plate spline (TPS). The Gaussian RBF is defined as e−αr, and TPS
as r2 log r = 1

2r
2 log r2. The decision of which one to use cannot be made by the differ-

entiability criterion (because both are infinitely differentiable). The Gaussian can also be
adjusted using the shape parameter; however, TPS (in its original form) cannot. There are
also other options for global RBFs (such as in Skala and Cervenka (2019)) to consider;
however, Gaussian RBF and TPS provide stability and a good understanding of their be-
haviour and are already the most analysed by others.

3.1. Mathematical description

A single RBF is a mathematical function defined solely by the distance from a designated
point, denoted as the centre. Mathematically, it can be expressed as φ(||xi − ξj ||), where
ξj represents the center point’s coordinates, and xi is an arbitrary independent point.

The expression of RBF approximation, defining the function value at any specific input
points, is as follows:

h (xi) =

N∑

j=1

λjφ
(
rij
)

(1)

9.13. A mathematical model for smooth RBF implicit surface model for muscle modelling

223



8

Here, the approximation h at the location of xi is described by rij = ||xi − ξj || the
distance between the input point xi and the centre point ξj ; and λj is the weight of a
single RBF φ, which can be e.g. already discussed Gaussian RBF or TPS. The equation
(1) can be formulated in a matrix form, resulting in a square matrix A within the system
of linear equations. A simple example of RBF approximating a function can be seen in
Zhao and San (2011).

The idea can be extended using polynomial conditions, which can improve accuracy.
The extended system of equations, considering these conditions, is expressed as:

[
A P

PT 0

] [
λ

a

]
=

[
h

0

]
(2)

Here, P are the polynomial conditions, λ represents RBF weights, Big A is the RBF
matrix without the polynomial constraints, small a contains resulting coefficients of the
polynomial, and h encompasses values at the input points.

Suppose we disregard the polynomial conditions for a while. In that case, RBF ap-
proximation involves solving the equation (1). The equation can also be described as an
overdetermined system of linear equations Ax = b, where A is a rectangular matrix, b
and x are vectors, and the number of rows N is greater than the number of columns M .

The Ordinary Least Squares (OLS) method can choose weights λj , minimising mean
square error (MSE). This involves computing weights utilising the inverse or pseudoin-
verse: λ =

(
ATA

)−1
ATh. Although typically satisfactory, OLS can encounter stabil-

ity problems, as noted by Skala (2017), which needs to be kept in mind while solving.
It is often beneficial to even choose another solver instead. Furthermore, an issue when
combining values of different units in the OLS method to solve the equation system with
polynomial conditions emerges, which needs to be properly addressed (Skala (2017)). The
different units can be found in matrices A and P, see equation (2).

3.2. RBF for muscle modelling

Due to the often intricate shape of muscles/bones (e.g., with many triangles, quadrilat-
erals, etc.), approximating the muscle/bone rather than interpolating is advantageous for
subsequent calculations. When approximating, spatial placement of individual RBF is
critical. A naive approach involves uniformly sampling the input shape (scalar distance
field of the volumetric data or triangular mesh in the case of muscle modelling), but this
may not adequately capture the muscle/bone underlying properties.

Even though utilising the polynomial conditions improves the outcomes and enhances
the matrix conditionality in some cases, the presumption is that the input data behaves
like the selected polynomial. However, this is not the case in muscle modelling, where
the data’s overall shape resembles somewhat an ellipsoidal shape rather than a polyno-
mial form, further diminishes the relevance of polynomial constraints, which will not be
discussed further.
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4. Novel RBF Mathematical model

The number of parameters of the triangular mesh is often large. To address the issue of
reducing parameters during deformation, a new mathematical model is proposed, encom-
passing both static muscle shape and its dynamic configuration during bone movement.

4.1. Geometrical static model

Even though the number of parameters will be reduced, many will still be present. There-
fore, the extensive emerging RBF linear equation system would be ill-conditioned. The
static model is constructed using a greedy approach, adding one RBF after another to
solve the issue. In each iteration, the algorithm identifies the position and shape of a sin-
gle RBF to minimise the approximation error effectively.

The objective is to minimise the squared error of the approximation to the original
triangle mesh across all vertices throughout the bounded space Ω ⊆ Rd:

∫

x∈Ω

k∑

j=1

∣∣∣∣∣

∣∣∣∣∣
N∑

i=1

λiϕ (||x− ξi||)− vj

∣∣∣∣∣

∣∣∣∣∣

2

2

dx (3)

Here, N denotes the current number of employed RBFs, k is the number of vertices
in the triangular meshes, d is the number of dimensions, and vj is the respective vertex.
The notation ||x||2 represents the L2 norm of a vector x.

Creating the geometrical static model initiates the generation of a scalar distance field
(SDF) on the triangular mesh. This field is later sampled using a (quasi-)random sam-
pling method. Throughout the research, various distributions, including uniform, random
uniform, Gaussian, and Halton, were tested. The findings indicated that the Halton distri-
bution emerged as the most effective option, which is following other research (see, e.g.
Majdisova and Skala (2017b), Cervenka et al. (2019)).

Fig. 1. The geometrical static model depicts a gluteus maximus muscle. The red represents the original triangular
mesh, while the blue represents its RBF approximation.
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4.1.1. RBF placement
In this study, we followed the placement of each RBF by Carr et al. (2001), placing centres
at the three level-sets of the isosurface. However, in the case of muscle modelling, only a
subset of the proposed set is required. This subset is determined through a straightforward
trial-and-error method. It involves evaluating an objective function and dynamically min-
imising it. Therefore, this placement approach can be described as greedy. The process
involves checking the objective function of each RBF for every vertex across all samples
within the input space (the bounding box of a mesh), as well as for each predefined shape
parameter (refer to section 4.1.2 for more details).

Greedy placement is a sub-optimal approach because two independently and subse-
quently placed centres independently select a shape parameter for each RBFn compared
to two "cooperating" centres, which are not required to be optimal at the time of their
selection. However, this approach avoids the stability issue by using an extensive system
of linear equations as a solution.

The optimal position is for each centre selected, and the RBF function is subtracted
from the volume bounded by, e.g., the AABB box and the process is iterated until either
the allotted number of RBFs is utilised or the predetermined level of accuracy is achieved.
This centre point distribution approach was designed to avoid the OLS stability issue al-
together.

4.1.2. Shape parameter selection
Choosing the radius of action, also called a shape parameter, is pivotal in achieving pre-
cise interpolation or approximation. While one option is to select a shape parameter for
each RBF independently, this can lead to many stored parameters. On the other hand, de-
termining an optimal global shape parameter for all RBFs leads to inaccuracies and using
it as a compromise remains an open question. Different approaches have been suggested,
such as those by Wang et al. (2021), Afiatdoust and Esmaeilbeigi (2015), and Sarra and
Sturgill (2009). Still, they may not always identify the optimal shape parameter for each
RBF. During testing, we discovered that the single global shape parameter is not exhaus-
tive. Search from a limited list of possible shape parameters is suitable because the number
of parameters is low. The condensed set of parameters reduces the storage capacity and
computational complexity while searching for the most suitable one.

4.1.3. Objective functions
The task at hand for evaluating the placement of individual RBFs is to assess how accu-
rately the placement represents the original shape. One possible metric for this assessment
is the Jaccard index; the second is the mean square error.

Jaccard index. The Jaccard index quantifies the disparity in volume∗ between two ob-
jects: the original mesh and the surface formed by RBF. It is mathematically defined as
follows:

∗Strictly speaking, it is a disparity between the area inside and outside both objects and the areas inside one
object but outside the other.
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Ji =
i

u
=

i

i+ d
(4)

In this context, i represents the intersection volume, u symbolises the union of both
meshes, and d represents the difference between both meshes. Calculating the exact vol-
ume of intersections can be complex, so a rough approximation might be a more practical
choice. Rather than using volumes, the number of samples (using the already described
Halton distribution) in each group can be used. A higher number of samples leads to more
significant computational accuracy. It is worth noting that while the Jaccard index helps
specify the difference between two shapes, it does not provide an understanding of how
much is "inside" or "outside" something, which is a feature to consider.

Mean square error. The Mean Square Error (MSE) provides a more detailed insight
into both muscles’ interior and exterior rather than a binary assessment. Calculating MSE
requires knowledge of interior information. Interestingly, no additional information is nec-
essary for the RBF representation, as it can be evaluated at any point within the volume.
For the original surface mesh, interior information can be acquired using a scalar distance
field (SDF) already obtained for its creation, allowing us to determine the distance of each
vertex from the surface mesh.

The computation of the MSE objective function entails integrating the squared L2
norm across the subset Ω of the original space Rd and can be expressed as:

Mse =

∫

Ω
||s (x)− h (xi) ||22dx (5)

Here, the function s represents the Scalar Distance Field (SDF) constructed over the
mesh, while h represents the sum of all currently utilised RBFs. When computed, a more
efficient approach is subtracting each RBF from the function s and then calculating the
updated s norm.

It’s important to note that these objective functions may encounter challenges when
dealing with the translational motion of the shape. This paper assumes that the muscle
movement occurs only in part of the muscle while the rest remains static (for instance, the
muscle is attached to two bones, but only one moves). This assumption holds as long as
the deformation of a muscle is done in the local scope, with one static and one moving
bone (meaning both bones cannot translate together during deformation).

Delving further into the challenge of selecting the appropriate objective function, opt-
ing for the MSE tends to yield a smoother surface. At the same time, the Jaccard index
aligns more closely with the original model at the expense of introducing a less smooth
surface. Hence, a combination of both proves to be a favourable approach.
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4.2. Metrics

The metric used to compare the original surface with a new one is a weighted sum between
the Jaccard index and MSE. This metric is proposed because the smooth surface provided
by MSE and the surface location accuracy provided by the Jaccard index are required. The
weight σ is called as a smoothness factor:

Cm = (1− σ) (1− Ji) + σ
Mse

maxMse
(6)

The equation calculates the final metric Cm using the smoothness factor σ, Jaccard
index Ji, and MSE value denoted as Mse. The Jaccard index is expressed as 1 − Ji to
penalise the lower Jaccard index more than the higher one. The MSE variable Mse must
also be normalised into zero to one interval, which is accomplished by dividing the MSE
total value by the maximum one possible.

4.2.1. Regularisation
Regularisation optimises how the RBFs are placed, increasing the likelihood of placing
RBF centres in a predefined position or formation. When forming the RBF surface, it may
be advantageous to position RBFs within the muscle volume and less outside, resulting in
a more accurate curvature field, including fewer local extrema near the surface. The central
concept involves penalising the RBFs placed significantly outside the desired region more
heavily than the others.

When utilising the Signed Distance Field (SDF), the sign indicates whether the target
vertex is inside or outside. Let’s denote the signed distance as dvi . To obtain relative values
rather than absolute distances, we can divide dv by the maximum possible distance dmax.
This yields rd =

dvi
dmax

, which falls within the interval (−∞, 1).
Additionally, to enable the use of wider RBFs (avoiding the potential replacement by

less advantageous numerous RBFs with minimal overall influence), a similar penalisation
for the RBF shape parameters can be implemented: rs = αi

αmax
. Since ∀i, αi > 0, the

rs value will fall within the interval of (0, 1). The wider RBFs are then useful in forcing
fewer parameters to move to deform the overall shape.

To summarise, the parameters for the following need to be determined. The regulari-
sation factor γ represents the ratio of how much of the original cost function is employed.

Cr = γCm + (1− γ)
dvi

dmax

αi

αmax
(7)

4.3. Mathematical dynamic model

The bones undergo a rigid transformation in inverse kinematics in our studied scenario,
typically following the desired real-world movement. Subsequently, in an inverse manner,
the shape of all the muscles related to the bone needs to be reconstructed. The portions of
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the muscle attached to the bones are mandated to move in conjunction with these bones,
while the remaining parts of all muscles require reconstruction. In the following text,
the muscle is meant to be the whole muscle-tendon unit to ensure that the "muscle" is
correctly attached to a set of bones. Also, for the simplicity of the following text, just a
singular muscle involved in deformation is considered.

The main idea of the novel dynamic model is to find a new shape according to the
curvature of the original one, preserving its initial shape as much as possible. The math-
ematical description to maintain the initial shape as much as possible can be described in
many ways. In the case of muscle modelling, the muscle’s initial curvature throughout the
whole volume is a suitable shape descriptor. Mathematically speaking, we define the cost
function as the total difference of the original (κµfi ) and current curvature (κµf ) over the
bounded space Ω ⊆ Rd, and we are looking to obtain its gradient:

Cf =

∫
. . .

∫ ∣∣∣∣κµf − κµfi

∣∣∣∣2
2
dx1 . . . dxd =

∫

Ω

∣∣∣∣κµf − κµfi

∣∣∣∣2
2
dx (8)

Then we use the definition of the 3D RBF approximation (and for the sake of simplicity,
use gi as the individual weighted RBF):

f (x) =

N∑

i=1

λiϕ (||x− ξi||) =
N∑

i=1

gi (x) (9)

Because to calculate the curvature, the eigenvalues of the Hessian matrix of f are
required to find, the calculation of second partial derivatives of f is needed. From the
Hessian matrix, all of the eigenvalues can be obtained.

For this paper, only global RBFs were considered at first due to their influence over
the entire space, allowing the change of the whole model by altering fewer parameters.
Moreover, for that purpose, the global Gaussian RBF is chosen for this paper due to its
simplicity if differentiation is considered, which is beneficial when creating this dynamical
model. If the Gaussian RBF is considered, then the mean of all of the eigenvalues can be
calculated as:

κµf = κµ (H (f (x))) =
2

d

N∑

i=1

αigi (x)
(
2αi||x− ξi||22 − d

)
(10)

Combining (10) and the gradient of (8), the complete cost function can be expressed
as:

∇Cfkj =
8

d

∫

Rd

(
κµf − κµfi

)
α2
kgk (x)

(
xj − ξkj

) (
2αk||x− ξk||22 − 2− d

)
dx

(11)
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The calculation, including all the computational steps, can be found in Appendix C.
The result implies that the direction of the gradient depends on the following factors:

1.
(
κµf − κµfi

)
– the direction of the gradient is influenced by the disparity between

the original and new curvature across the entire interval. The more significant this
difference, the larger the magnitude of the gradient.

2. α2
i – the shape parameter plays a crucial role. A broader function exerts a more signif-

icant influence on the gradient of the respective centre point ξkj .
3. gi (x) – naturally, the RBF itself plays a significant role.
4.
(
xj − ξkj

)
– as we integrate further from the centre point, its impact diminishes.

5.
(
2αi||x− ξi||22 − 2− d

)
– the distance of the current RBF to the integration variable

is not just significant exponentially in gi (expressed in third point) but also linearly
(subject to specific constant manipulations).

The new mathematical model for the RBF shape deformation defines where all centre
points should be translated (in the direction specified by its gradient). At this point, we
can, according to the broader shape parameters and larger weights, decide which RBFs
are more significant and calculate the deformation more often. In contrast, the less critical
parameters can be recalculated only a few times, which may reduce the computational
complexity significantly.

It’s crucial to re-emphasise the centrality of our mathematical model in this study. Even
though this paper does not adequately address any collision detection and response (CD/R)
issues, similar techniques to Cani-Gascuel and Desbrun (1997) hierarchical CD/R can be
used in the future. This section has encapsulated the theoretical and practical applications
of radial basis functions in muscle modelling and illuminated the robustness and versa-
tility of our mathematical approach. Through rigid exploration of complex mathematical
concepts and their biomechanical applications, this research emphasises the potential for
advanced modelling techniques in future studies, paving the way for groundbreaking in-
novations in biomechanics and beyond.

5. Experiments

The proposed approach has been tested to ensure its usefulness for musculoskeletal mod-
elling. Here, we detail the critical experiments conducted to test the relevance and efficacy
of the radial basis function approach in muscle modelling, concentrating on processes and
their implications for our theoretical description.

The mathematical model of the curvatures can be evaluated using actual data from the
gluteus maximus, gluteus medius, iliacus and adductor brevis muscles. The initial exper-
iment will be conducted without regularisation, solely relying on the greedy placement
approach.

5.1. Geometrical static model

Before we dive deeper into the muscle dynamics experiments, the first experiment shows
the results of the static model. These experiments prove the correct centre placements.
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Fig. 2. The original gluteus maximus muscle in red and its RBF counterpart in blue.

Fig. 3. The original gluteus medius muscle in red and its RBF counterpart in blue.

Fig. 4. The original iliacus muscle in red and its RBF counterpart in blue.

5.1.1. Greedy centre placement
Using a greedy approach, we employ a naive RBF placement strategy in the initial experi-
ment. The results of such placement can be seen in Fig. 2, 3, 4 and 5. While this approach
is straightforward to implement and relatively fast in execution, as depicted in Fig. 11, it
exhibits issues with numerous small (but still different in size) RBFs distributed across
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Fig. 5. The original adductor brevis muscle in red and its RBF counterpart in blue.
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Fig. 6. The metrics evaluation on gluteus maximus muscle up to 100 RBF centres, with different sampling
density and smoothness weight.

the entire space. The approach forms a complex curvature field with numerous potential
local extrema. Additionally, the curvature outside the muscle boundaries (though barely
visible in the image) is cluttered with unneeded curvature differences, further exacerbat-
ing the proliferation of local extrema. The problem is solved with regularisation, and the
next section describes the experiment.

5.1.2. Regularisation
By including the regularisation term, higher curvatures will be concentrated at the borders
of the original triangular mesh. The regularisation creates more promising conditions for
the gradient descent method to achieve a superior approximation of the muscle in motion,
mitigating the problem of numerous local minima in the field. Three examples are pre-
sented here: one with a regularisation factor of 0.7, another with a factor of 0.3, and the
last with a regularisation factor of 0.05. The outcomes can be observed in the appendix A
in Figures 12, 13, and 14, respectively.
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Fig. 7. The metrics evaluation on gluteus maximus muscle, with different sampling density and smoothness
weight.

5.1.3. Metrics
The weighted metrics (between the MSE and JI) have been tested with two weights (0.15
and 0.85) and on two different sample resolutions (10k and 100k vertices). The evaluation
for the first hundred RBF centres is shown in Fig. 6, which describes the initial part of the
metrics convergence.

One may tell from the results that both metrics converge similarly, and in the end,
they tend to go to a fixed value. However, if you continue further, it will be evident that
this is not the case because the penalisation of the Jaccard index holds near a fixed value.
Still, after a while, it goes faster towards zero (on a non-logarithmic scale). The results
for more (7000) centres are visualised in Fig. 7. The other takeaway is that the finer the
sampling (green and black dotted curves), the longer it takes to lower the penalisation of
the Jaccard index (red and blue). Also, the lower the smoothing factor (red and green), the
higher the MSE (dashed lines), confirming that both metrics describe the shape difference
significantly differently.

5.1.4. Limitation
A well-known problem with the static surface RBF approximation is its ineffectiveness in
accurately approximating sharp edges. This drawback is less critical in muscle modelling,
as most soft tissues are relatively smooth and do not possess sharp edges, often resembling
spherical shapes. However, this issue can be demonstrated using a simple 3D volumetric
shape like a tetrahedron. A tetrahedron has six sharp edges (each with a dihedral angle
exceeding 70 degrees) and four corners, which present significant challenges for RBF
approximation.

The fundamental issue with RBFs is that each RBF inherently forms a spherical iso-
surface at a given value. To create a sharp corner would theoretically require an infinite
number of infinitesimal RBFs. An example of attempting to develop an RBF static surface
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for a tetrahedron is shown in Fig. 8. Let’s also note that in the case of the tetrahedron and
similar shapes, often no data reduction is achieved, but rather the opposite.

Fig. 8. An attempt to create an RBF surface for a tetrahedron demonstrates the unsuitability of RBF for approxi-
mating sharp edges. RBF is ineffective for shapes like a tetrahedron due to its inability to model the sharp edges
accurately.

5.2. Deformation

Both options involving and neglecting the regularisation factor were tested. For testing,
the centre points were shifted randomly, with a magnitude of 5% of the AABB box diag-
onal, and the expectation is that the centre points return to/near their initial positions. The
successful experiment with regularisation is shown in Fig. 9 and 10 and the full results
are visualised in the appendix B in the respective figures. The experiments supported the
idea of using regularisation to lower the number of local extrema for the gradient descent
because it converges much closer to the original shape. The first experiment without the
regularisation factor was only about 0.7% faster on the standard PC than the second one,
which cannot be considered a statistical difference.

Fig. 9. The initialisation, where the randomly deformed green muscle should return to its initial shape in blue.
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Fig. 10. The restoration copies the original blue shape with the green one, despite minor differences on the right
side.

6. Conclusion & Future work

This paper shows a novel approach for modelling a surface with the radial basis func-
tion approach. The proposed method offers a way to model a static and dynamic muscle
surface, altogether avoiding recalculating the geometrical model’s parameters to deform
it. Even though there are some examples where the approach is not applicable (e.g. the
tetrahedron), the suitability for the muscle reconstruction is apparent. Regularisation helps
reduce the number of local extrema. However, it also reduces the resulting precision; luck-
ily, a compromise can be reached using a suitable regularisation term selection.

A deformation methodology respecting muscle properties (muscle volume, shape
preservation, and bone avoidance) is the most obvious candidate for future work. A good
starting point seems to be the work from Cani-Gascuel and Desbrun (1997) describing the
geometrical model deformation in general. However, their method uses the model gener-
ated by a skeleton, which is not reasonable for modelling a muscle shape, which would
need an overcomplicated skeleton to be able to work. The following work and a great re-
view from Lee et al. (2012) describe the possibilities of modelling muscle deformation
using skeleton-generated implicit surfaces.

It is not just the novelty but also the oversight of the approach that is apparent; the
metric discussed in the article extends beyond its use in muscle modelling or general
modelling applications. It is versatile enough to be applied in any situation that requires
the comparison of two surfaces. Similarly, the concept of regularisation, with its math-
ematical underpinnings suitable for RBF surface modelling, can be adapted for broader
applications. Its fundamental principle of constraining centres to remain inside applies to
more general contexts, such as clustering methodologies.
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A. Curvature visualisations

Fig. 11. The curvature of the RBF surface of the gluteus maximus muscle is depicted in the image. The prominent
centres of the RBFs are represented by green spheres in the space. The curvature values are displayed in a
logarithmic scale, as the differences in curvature are not linear but rather exponential. This result stems from the
same experiment shown in Figure 1; it has been included here for easy comparison.
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Fig. 12. On the left, we have the curvature field, while on the right, we see the approximation result with a
regularisation factor of 0.7. Although there is a preference for curvature fluctuation within the muscle, there
is also substantial fluctuation outside. Decreasing the local minima outside the muscle volume results in a less
precise approximation of the original red muscle to the blue one.
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Fig. 13. On the left, we have the curvature field, while on the right, we see the approximation result with a
regularisation factor of 0.3. The fluctuation in the curvature field has been further reduced, but as a consequence,
the resulting geometrical surface model has become more rough in texture.
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Fig. 14. The curvature field (on the left) and approximation result (on the right) with the regularisation factor of
0.05. While the fluctuation in the curvature field has been nearly eliminated, the roughness of the muscle surface
has become quite pronounced.
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B. Dynamic restoration visualisations

Fig. 15. The initialisation of the simulation without the regularisation factor, where the randomly deformed green
muscle should return to its initial shape in blue.

Fig. 16. The progress of the shape restoration. The green surface seems to diverge from the blue one due to
omitting the regularisation factor.

9. Author’s contribution

244



RBF for musculoskeletal modelling 29

Fig. 17. The final part of the shape restoration. The green shape found other local minima than the muscle’s blue
(original) shape.

Fig. 18. The initialisation of the simulation with the regularisation factor, where the randomly deformed green
muscle should return to its initial shape in blue.
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Fig. 19. The green shape seems to converge to the blue shape. The main difference is the restored top part of the
green shape.

Fig. 20. The final restoration. Excluding the minor differences in the right part of the muscle, the green shape
quite accurately approximates the original blue one.
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C. Mathematical dynamic model

Let us assume the function f to be a 3D radial basis function approximation:

f (x) =

N∑

i=1

λiϕ (||x− ξi||) (12)

Let’s assume that Gaussian Radial Basis Functions (RBFs) are utilised exclusively. Ad-
ditionally, we can define gi (x) as a replacement for the ith RBF to streamline subsequent
derivations.

f (x) =

N∑

i=1

λie
−α||x−ξi||22 =

N∑

i=1

gi (x) (13)

The shape of the geometrical model can be well described using its curvature. To
compute the curvature, we need to determine the Hessian matrix, consisting of the second
partial derivatives with respect to the function f . Therefore, the initial step involves finding
the gradient of the function f in an n-dimensional space:

∇f (x) =

[
∂f

∂x1
,
∂f

∂x2
,
∂f

∂x3
, . . .

]
(14)

By employing the chain rule, where the expression
(
xj − ξij

)
originates from the

exponent of the exponential function f , along with the shape parameter α and the constant
value of −2, the resultant gradient takes the following form:

∇f (x) = −2

N∑

i=1

αigi (x) [x1 − ξi1, x2 − ξi2, x3 − ξi3, . . .] (15)

We will now construct the Hessian matrix, which will be used to calculate the cur-
vature. As previously mentioned, its computation relies on knowing the second partial
derivatives. In an nD space, it is defined as follows:

H (f (x)) =




∂2f
∂x2

1

∂2f
∂x1∂x2

∂2f
∂x1∂x3

. . .

∂2f
∂x2∂x1

∂2f
∂x2

2

∂2f
∂x2∂x3

. . .

∂2f
∂x3∂x1

∂2f
∂x3∂x2

∂2f
∂x2

3
. . .

...
...

...
. . .




(16)
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To compute the second partial derivatives, we rely on the gradient of a function f . For
instance, the second partial derivatives with respect to x2 can be expressed as follows:

∂2f

∂x2j
=

∂f

∂xj

(
−2

N∑

i=1

αigi (x)
(
xj − ξij

)
)

(17)

Applying the product and chain rules, the second partial derivative with respect to x2

takes the form of the following expression. The derivation is performed similarly to the
first derivative, which has already been carried out above in (15).

∂2f

∂x2j
= 2

N∑

i=1

αi

[
2αi

(
xj − ξij

)2 − 1
]
gi (x) (18)

The calculation of the mixed second partial derivatives is performed similarly to be-
fore. Upon examining the outcome in 19, it becomes apparent that there is a resemblance
between the mixed partial derivatives and those involving the same variables. The mixed
ones are not scaled by 2αi and do not undergo a subtraction of 1 from them; otherwise,
the remaining operations are identical for both cases.

∂2f

∂xj∂xk
= 2

N∑

i=1

2α2
i

(
xj − ξij

)
(xk − ξik) gi (x) (19)

The Hessian matrix can be populated with the second partial derivatives. Both sets of
second partial derivatives involve multiplication by the distances from the centre point in
their respective directions. This process can be encapsulated using an outer product. The
value of −1 from the pure partial derivatives will transform into the identity matrix with
dimensions d×d, where d denotes the problem’s dimensionality (which is 3 in our case).

H (f (x)) = 2

N∑

i=1

αigi (x)
(
2αi (x− ξi) (x− ξi)

T − Id

)
(20)

C.1. Mean curvature

For curvature calculation, one option is to employ the mean curvature, which is defined
as the average of all the eigenvalues λi of a Hessian matrix:

κµ (H) =
1

d

d∑

i=1

λi (21)
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There are zero eigenvalues with the multiplicity of d − 1 and one with a value of
||x− ξi||2. The result aligns with the intuition, as zero eigenvalues correspond to eigen-
vectors perpendicular to the hypersphere isosurface at each point. In contrast, the sole
non-zero eigenvalue pertains to the eigenvector tangent to them, pointing from the RBF
centre outward. When calculated over the outer product of a vector with itself, the coef-
ficient 2α and identity matrix Id transform the eigenvalues to −1, with a multiplicity of
d− 1, and the final eigenvalue becomes 2α||x− ξi||2 − 1.

κµ (H (f (x))) = κµf =
2

d

N∑

i=1

αigi (x)
(
2αi||x− ξi||22 − d

)
(22)

The subsequent step involves specifying the cost function, which is essentially the
squared L2 norm between the new and original curvatures across the subspace Ω ⊆ Rd:

Cf =

∫
. . .

∫ ∣∣∣∣κµf − κµfi

∣∣∣∣2
2
dx1 . . . dxd =

∫

Ω

∣∣∣∣κµf − κµfi

∣∣∣∣2
2
dx (23)

One may employ the gradient descent method to discover the optimal values of ξi.
Initially, we must compute the gradient of the curvature with respect to ξi:

∇κµf =
[
∂κµf

∂ξi1

∂κµf

∂ξi2

∂κµf

∂ξi3
. . .
]

(24)

The resulting gradient takes the following form:

∂κµf
∂ξkj

=
4

d
α2
kgk (x)

(
xj − ξkj

) (
2αk||x− ξk||22 − 2− d

)
(25)

Now, we need to compute the gradient of the cost function C, which is expressed as
follows:

∇Cf = ∇
(∫

Rd
||κµf − κµfi ||22dx

)
(26)

Given the definition of the partial derivatives of κ, the complete cost function can be
expressed as:

∇Cfkj =
8

d

∫

Rd

(
κµf − κµfi

)
α2
kgk (x)

(
xj − ξkj

) (
2αk||x− ξk||22 − 2− d

)
dx

(27)
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10

This dissertation provides a comprehensive overview of the evolution and current

methodologies in muscle modelling. It traces the journey from the earliest Hill-

type muscle models, which were rudimentary yet foundational, through various

stages of evolution, including simplistic straight-line approximations, polyline con-

structs, and models incorporating lines wrapped around obstacles or bones. This

progression culminates inmore sophisticated, higher-dimensional frameworks such

as mass-spring systems, position-based dynamics, and finite element methods. A

recurring theme in this evolution is the balance between model accuracy and com-

putational efficiency. A notable trend is observed: models demand more parameters

to be accurately determined and configured as they become more complex.

A pivotal contribution of this dissertation is the detailed exploration of existing

muscle modelling techniques and the introduction of a novel mathematical model

utilizing radial basis function implicit surfaces. This innovative approach marks a

significant step forward, offering a memory-efficient model to generate infinitely

smooth surface representations. Such a model can potentially revolutionize the field

of muscle modelling by providing a more refined and scalable tool for simulating

muscle morphology and dynamics.

However, the proposed model is not without limitations. It does not address

certain practical aspects crucial in real-world applications, such as collision handling

and preserving volume in themodelled entities. These areas are identified as avenues

for future research and development. The insights and methodologies presented

in this dissertation lay a solid groundwork for tackling these challenges. Building

upon the foundation laid by this research, future work is anticipated to advance the

field further, enhancing the realism and applicability of muscle models in various

scientific and medical applications.

This dissertation, covering a broad range of topics in muscle modelling, opens

up several avenues for future research and development. One of the critical areas for
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expansion is the proposed Radial Basis Function (RBF) mathematical model. Cur-

rently, the model primarily focuses on maintaining the initial shape of the muscle

during deformation, akin to the Position-Based Dynamics (PBD) approach. How-

ever, it does not yet incorporate other crucial aspects of muscle behaviour. Notably,

the interaction betweenmuscles modelled with RBF and bones, especially regarding

collision handling, remains unaddressed. Drawing inspiration from existing litera-

ture, such as the work by Cani [99] on the collision handling between two implicit

surfaces, could be beneficial. Although Cani’s method is based on implicit surfaces

generated by skeletons rather than RBF sets, the underlying principles could provide

valuable insights for developing a similar mechanism for RBF muscles. Addition-

ally, formulating a volume constraint for the RBF model is another crucial aspect

that requires attention, ensuring that the muscle volume remains consistent during

deformations.

The dissertation also delves into the complexities of the PBD approach. Despite

significant advancements, challenges like muscle penetration through bones and

muscle tissue getting forced into tight spaces persist. Addressing these issues in-

volves solving intricate problems like determining the side of the bone where most

muscle is located post-deformation and devising strategies for muscle tissue to es-

cape from increasingly tight spaces. These challenges highlight the need for more

sophisticated algorithms and problem-solving techniques in muscle modelling.

Furthermore, integrating the As-Rigid-As-Possible (ARAP) approach with the

existing PBD framework has proven more challenging than initially anticipated.

The attempt to intertwine these two methodologies resulted in a rough surface

texture, as the algorithms worked at cross purposes, pushing vertices in different

directions. This outcome suggests that amore intricate and harmonized cooperation

between ARAP and PBD algorithms is essential to achieve the desired smoothness

and accuracy in muscle modelling.

In summary, while this dissertation lays a strong foundation in muscle mod-

elling, it also clearly outlines the need for further research in several key areas. These

include developing collision handling mechanisms for RBF muscles, volume preser-

vation techniques, resolving issues related to muscle-bone interactions in the PBD

approach, and refining the integration of ARAP with PBD for smoother and more

accurate muscle deformations. These challenges present exciting opportunities for

future research, promising significant advancements in muscle modelling.
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