On Constrained Open Mapping Theorems

Radek Cibulka

XLIM, University of Limoges

On leave from Department of Mathematics, University of West Bohemia in Pilsen

Metric Regularity Days
25.10.2011
Contents

1. An analogue of Robinson-Ursescu theorem

2. Lyusternik-Graves theorem with convex constraint

3. A particular case - Strict differentiability
Theorem

Let \((X, \| \cdot \|_X), (Y, \| \cdot \|_Y)\) be Banach spaces, let \(T : X \rightrightarrows Y\), and let \((x_0, y_0) \in \text{gph } T\). Suppose that \(\text{dom } T\) is bounded, that \(\text{gph } T\) is locally star-shaped at \((x_0, y_0)\) and that \(\text{rge } T\) is locally conic at \(y_0\). Then \(T\) is relatively open (on its domain) at \((x_0, y_0)\) with a linear rate.

There are \(\varepsilon_0 > 0\) and \(c > 0\) such that
\[
T(B_X(x_0, \varepsilon)) \supset \text{rge } T \cap B_Y(y_0, c\varepsilon)
\]
whenever \(\varepsilon \in (0, \varepsilon_0]\).
Theorem

Let $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y)$ be Banach spaces, let $T : X \ni Y$, and let $(x_0, y_0) \in \text{gph } T$. Suppose that $\text{dom } T$ is bounded, that $\text{gph } T$ is locally star-shaped at (x_0, y_0) and that $\text{rge } T$ is locally conic at y_0. Then T is relatively open (on its domain) at (x_0, y_0) with a linear rate.

There is $\lambda_0 > 0$ such that for each $(x, y) \in \text{gph } T$ and each $\lambda \in [0, \lambda_0]$ one has

$$(1 - \lambda)(x_0, y_0) + \lambda(x, y) \in \text{gph } T.$$
Theorem

Let \((X, \|\cdot\|_X), (Y, \|\cdot\|_Y)\) be Banach spaces, let \(T : X \rightrightarrows Y\), and let \((x_0, y_0) \in \text{gph } T\). Suppose that \(\text{dom } T\) is bounded, that \(\text{gph } T\) is locally star-shaped at \((x_0, y_0)\) and that \(\text{rge } T\) is locally conic at \(y_0\). Then \(T\) is relatively open (on its domain) at \((x_0, y_0)\) with a linear rate.

There is a neighborhood \(W\) of \(y_0\) in \(Y\) along with a shifted cone \(C\) with vertex \(y_0\) such that

\[
\text{rge } T \cap W = C \cap W.
\]
Nice statement which is FALSE in general:

Let $(X, \| \cdot \|_X), (Y, \| \cdot \|_Y)$ be Banach spaces, let $T : X \rightrightarrows Y$, and let $(x_0, y_0) \in \text{gph } T$. Suppose that $\text{dom } T$ is bounded, that $\text{gph } T$ is locally star-shaped at (x_0, y_0) and that $\text{rge } T$ is locally conic at y_0. Then T is relatively open (on its domain) at (x_0, y_0) with a linear rate.

$$K := \{(x, y, z) \in \mathbb{R}^3 : (x - z)^2 + y^2 \leq z^2, z \geq 0\}, \quad T := P|_K,$$

$x_0 := (0, 0, 0)$, and $y_0 := (0, 0)$.

\[\begin{array}{c}
\text{K} \\
\text{P} \\
\text{X} \\
\text{Y} \\
\text{Z}
\end{array}\]
Nice statement which is **FALSE** in general:

Let \((X, \|\cdot\|_X), (Y, \|\cdot\|_Y)\) be Banach spaces, let \(T : X \rightrightarrows Y\), and let \((x_0, y_0) \in \text{gph} \ T\). Suppose that \(\text{dom} \ T\) is bounded, that \(\text{gph} \ T\) is locally star-shaped at \((x_0, y_0)\) and that \(\text{rge} \ T\) is locally conic at \(y_0\). Then \(T\) is relatively open (on its domain) at \((x_0, y_0)\) with a linear rate.

\[T(x) := \{x, 1\} \text{ if } x \in [0, 1] \text{ and } T(x) := \emptyset \text{ otherwise}, \quad x_0 := 0, \text{ and } y_0 := 1.\]
An analogue of Robinson-Ursescu theorem
Lyusternik-Graves theorem with convex constraint
A particular case - Strict differentiability

Nice statement which is **FALSE** in general:

Let \((X, \| \cdot \|_x), (Y, \| \cdot \|_y)\) be Banach spaces, let \(T : X \rightrightarrows Y\), and let \((x_0, y_0) \in \text{gph} \ T\). Suppose that \(\text{dom } T\) is bounded and that \(\text{gph } T\) is locally star-shaped at \((x_0, y_0)\). Then \(T\) is relatively open (on its domain) at \((x_0, y_0)\) with a linear rate.

\[
T(r) := \{(x, y) \in \mathbb{R}^2 : (x - r)^2 + y^2 \leq r^2\} \quad \text{if} \quad r \in [0, 1] \quad \text{and} \quad T(r) := \emptyset \quad \text{otherwise.}
\]
An analogue of Robinson-Urscu theorem
Lyusternik-Graves theorem with convex constraint
A particular case - Strict differentiability

\[x_0 = (0,0) \]
Theorem

Let \((X, \|\cdot\|_X), (Y, \|\cdot\|_Y)\) be Banach spaces, \(K \subset X\) and \(D \subset Y\) be closed, bounded and convex sets containing \(x_0 \in X\) and \(0 \in Y\), respectively. Suppose that \(F : K \to Y\) is continuous and \(T : K - x_0 \rightrightarrows Y\) is a "good approximation of \(F\) at \(x_0\) on \(K\) with respect to \(D\)". Then there are \(c > 0\) and \(\varepsilon_1 > 0\) such that

\[
F(K \cap B_X(x_0, \varepsilon)) + R^{-1}\varepsilon D \supset B_Y(y_0, c\varepsilon) \quad \text{whenever} \quad \varepsilon \in (0, \varepsilon_1).
\]
Theorem

Let \((X, \|\cdot\|_X), (Y, \|\cdot\|_Y)\) be Banach spaces, \(K \subset X\) and \(D \subset Y\) be closed, bounded and convex sets containing \(x_0 \in X\) and \(0 \in Y\), respectively. Suppose that \(F : K \to Y\) is continuous and \(T : K - x_0 \rightrightarrows Y\) is a "good approximation of \(F\) at \(x_0\) on \(K\) with respect to \(D\)". Then there are \(c > 0\) and \(\varepsilon_1 > 0\) such that

\[
F(K \cap B_X(x_0, \varepsilon)) + R^{-1} \varepsilon D \supset B_Y(y_0, c\varepsilon) \quad \text{whenever} \quad \varepsilon \in (0, \varepsilon_1).
\]
To be a good approximation at the reference point means:

- The graph of T is star-shaped at $(0,0)$;
- $\beta : (0, +\infty) \rightarrow [0, +\infty]$ is a non-decreasing function such that $\forall \varepsilon > 0 \ \forall k_1, k_2 \in K \cap B_x(x_0, \varepsilon) : k_1 - k_2 \in K - x_0$ and $\forall z \in T(k_1 - k_2)$ we have
 \[\|F(k_1) - F(k_2) - z\|_Y \leq \beta(\varepsilon)\|k_1 - k_2\|_X; \]
- There is $r > 0$ such that $T(K - x_0) + D \supset B_Y(0, r)$;
- There is $R > 0$ such that $K \subset B_x(x_0, R)$;
- There is $\varepsilon_0 > 0$ such that $\rho := r^{-1}R\beta(\varepsilon_0) < 1$.
To be a good approximation at the reference point means:

- The graph of T is star-shaped at $(0, 0)$;
- $\beta : (0, +\infty) \to [0, +\infty]$ is a non-decreasing function such that $\forall \varepsilon > 0 \ \forall k_1, k_2 \in K \cap B_x(x_0, \varepsilon): k_1 - k_2 \in K - x_0$ and $\forall z \in T(k_1 - k_2)$ we have
 \[\|F(k_1) - F(k_2) - z\|_Y \leq \beta(\varepsilon)\|k_1 - k_2\|_X; \]

- There is $r > 0$ such that $T(K - x_0) + D \supset B_Y(0, r)$;
- There is $R > 0$ such that $K \subset B_x(x_0, R)$;
- There is $\varepsilon_0 > 0$ such that $\varrho := r^{-1}R\beta(\varepsilon_0) < 1$.

\[c := (1 - \varrho)rR^{-1} \] and $\varepsilon_1 := \min\{\varepsilon_0, R\}$.

Radek Cibulka

On Constrained Open Mapping Theorems
To be a good approximation at the reference point means:

- The graph of T is star-shaped at $(0, 0)$;
- $\beta : (0, +\infty) \to [0, +\infty]$ is a non-decreasing function such that $\forall \epsilon > 0 \ \forall k_1, k_2 \in K \cap B_x(x_0, \epsilon) : k_1 - k_2 \in K - x_0$ and $\forall z \in T(k_1 - k_2)$ we have
 $$\|F(k_1) - F(k_2) - z\|_Y \leq \beta(\epsilon)\|k_1 - k_2\|_X;$$

- There is $r > 0$ such that $T(K - x_0) + D \supset B_Y(0, r)$;
- There is $R > 0$ such that $K \subset B_x(x_0, R)$;
- There is $\epsilon_0 > 0$ such that $\rho := r^{-1} R \beta(\epsilon_0) < 1$.
To be a good approximation at the reference point means:

- The graph of T is star-shaped at $(0, 0)$;
- $\beta : (0, +\infty) \to [0, +\infty]$ is a non-decreasing function such that $\forall \varepsilon > 0 \ \forall k_1, k_2 \in K \cap B_x(x_0, \varepsilon) : k_1 - k_2 \in K - x_0$ and $\forall z \in T(k_1 - k_2)$ we have

 $$\|F(k_1) - F(k_2) - z\|_Y \leq \beta(\varepsilon)\|k_1 - k_2\|_X;$$

- There is $r > 0$ such that $T(K - x_0) + D \supset B_Y(0, r)$;
- There is $R > 0$ such that $K \subset B_x(x_0, R)$;
- There is $\varepsilon_0 > 0$ such that $\varrho := r^{-1}R\beta(\varepsilon_0) < 1$.
To be a good approximation at the reference point means:

- The graph of T is star-shaped at $(0, 0)$;
- $\beta : (0, +\infty) \to [0, +\infty]$ is a non-decreasing function such that $\forall \varepsilon > 0 \ \forall k_1, k_2 \in K \cap B_x(x_0, \varepsilon) : k_1 - k_2 \in K - x_0$ and $\forall z \in T(k_1 - k_2)$ we have
 \[\|F(k_1) - F(k_2) - z\|_Y \leq \beta(\varepsilon)\|k_1 - k_2\|_X; \]
- There is $r > 0$ such that $T(K - x_0) + D \supset B_Y(0, r)$;
- There is $R > 0$ such that $K \subset B_x(x_0, R)$;
- There is $\varepsilon_0 > 0$ such that $\varrho := r^{-1}R\beta(\varepsilon_0) < 1$.
To be a good approximation at the reference point means:

- The graph of T is star-shaped at $(0, 0)$;
- $\beta : (0, +\infty) \rightarrow [0, +\infty]$ is a non-decreasing function such that $\forall \varepsilon > 0 \ \forall k_1, k_2 \in K \cap B_x(x_0, \varepsilon) : k_1 - k_2 \in K - x_0$ and $\forall z \in T(k_1 - k_2)$ we have
 \[\|F(k_1) - F(k_2) - z\|_Y \leq \beta(\varepsilon)\|k_1 - k_2\|_X; \]
- There is $r > 0$ such that $T(K - x_0) + D \supset B_Y(0, r)$;
- There is $R > 0$ such that $K \subset B_x(x_0, R)$;
- There is $\varepsilon_0 > 0$ such that $\varrho := r^{-1}R\beta(\varepsilon_0) < 1$.

$c := (1 - \varrho)rR^{-1}$ and $\varepsilon_1 := \min \{\varepsilon_0, R\}$
Suppose that $\alpha > \beta > 0$ and put

$$F(x) = \begin{cases}
\alpha x & \text{for } x \geq 0; \\
\beta x & \text{for } x < 0.
\end{cases}$$
Suppose that $\alpha > \beta > 0$ and put

$$F(x) = \begin{cases}
\alpha x & \text{for } x \geq 0; \\
\beta x & \text{for } x < 0.
\end{cases}$$
Suppose that $\alpha > \beta > 0$ and put

$$F(x) = \begin{cases}
\alpha x & \text{for } x \geq 0; \\
\beta x & \text{for } x < 0.
\end{cases}$$
Suppose that $\alpha > \beta > 0$ and put

$$F(x) = \begin{cases}
\alpha x & \text{for } x \geq 0; \\
\beta x & \text{for } x < 0.
\end{cases}$$
Suppose that $\alpha > \beta > 0$ and put

$$F(x) = \begin{cases}
\alpha x & \text{for } x \geq 0; \\
\beta x & \text{for } x < 0.
\end{cases}$$
Corollary

Let \((X, \|\cdot\|_X), (Y, \|\cdot\|_Y)\) be Banach spaces, let \(K \subset X\) be closed convex with \(x_0 \in K\), let \(F : K \to Y\) be continuous. Suppose that \(T : (K - x_0) \to Y\) is positively homogenous such that for each \(\delta > 0\) there is \(\alpha > 0\) such that

\[
\|F(k_1) - F(k_2) - T(k_1 - k_2)\|_Y \leq \delta \|k_1 - k_2\|_X
\]

whenever \(k_1, k_2 \in K \cap B_X(x_0, \alpha)\) with \(k_1 - k_2 \in K - x_0\).

If \(\overline{T(K - x_0)} \supset B_Y(0, r)\) for some \(r > 0\) then there are \(c > 0\) and \(\varepsilon_1 > 0\) such that

\[
F(K \cap B_X(x_0, \varepsilon)) \supset B_Y(F(x_0), c\varepsilon) \quad \text{whenever} \quad \varepsilon \in (0, \varepsilon_1].
\]
An analogue of Robinson-Ursescu theorem
Lyusternik-Graves theorem with convex constraint
A particular case - Strict differentiability

Theorem

Let \((X, \|\cdot\|_X), (Y, \|\cdot\|_Y)\) be Banach spaces, \(K \subset X\) and \(D \subset Y\) be closed, bounded and convex sets containing \(x_0 \in X\) and \(0 \in Y\), respectively. Suppose that \(F : K \to Y\) is continuous and \(T : X \rightrightarrows Y\) is a "good approximation of \(F\) around \(x_0\) on \(K\) with respect to \(D\)". Then

\[(A1)\] For each \(\overline{c} \in (0, (1 - \varrho)r/R)\) there is a neighborhood \(U_1\) of \(x_0\) in \(K\) and \(\varepsilon_1 > 0\) such that for each \(x \in U_1\) and each \(\varepsilon \in (0, \varepsilon_1]\) one has

\[F(K \cap B_X(x, \varepsilon)) + R^{-1}\varepsilon D \supset B_Y(F(x), \overline{c}\varepsilon);\]
Theorem

Let \((X, \| \cdot \|_X), (Y, \| \cdot \|_Y)\) be Banach spaces, \(K \subset X\) and \(D \subset Y\) be closed, bounded and convex sets containing \(x_0 \in X\) and \(0 \in Y\), respectively. Suppose that \(F : K \to Y\) is continuous and \(T : X \rightrightarrows Y\) is a "good approximation of \(F\) around \(x_0\) on \(K\) with respect to \(D\)." Then

\[(A2)\] There are neighborhoods \(U_2\) of \(x_0\) in \(K\) and \(V_2\) of \(F(x_0)\) in \(Y\), \(c_2 > 0\), and a continuous \(G : U_2 \times V_2 \to K\) such that for each \((x, y) \in U_2 \times V_2\) it holds

\[y \in F(G(x, y)) + c_2\|y - F(x)\|_Y D\quad \text{and}\]

\[G(x, y) \in x + c_2\|y - F(x)\|_Y (K - x).\]
To be a good approximation around the reference point means

- The graph of T is closed and convex and there are $L > 0$ and a neighborhood W of x_0 in the affine hull of K with $T(K - v) \cap B_Y(0, L) \neq \emptyset$ for all $w \in W$.

- $\beta : (0, +\infty) \to [0, +\infty]$ is a non-decreasing function such that $\forall \varepsilon > 0 \ \forall k_1, k_2 \in K \cap B_X(x_0, \varepsilon)$ and $\forall z \in T(k_1 - k_2)$ we have $\|F(k_1) - F(k_2) - z\|_Y \leq \beta(\varepsilon)\|k_1 - k_2\|_X$;

- There is $r > 0$ such that $T(K - x_0) + D \supset B_Y(0, r)$;

- There is $R > 0$ such that $K \subset B_X(x_0, R)$;

- There is $\varepsilon_0 > 0$ such that $\rho := r^{-1}R\beta(\varepsilon_0) < 1$.
To be a good approximation around the reference point means

- The graph of T is closed and convex and there are $L > 0$ and a neighborhood W of x_0 in the affine hull of K with $T(K - v) \cap B_Y(0, L) \neq \emptyset$ for all $w \in W$.

- $\beta : (0, +\infty) \to [0, +\infty]$ is a non-decreasing function such that $\forall \varepsilon > 0 \ \forall k_1, k_2 \in K \cap B_X(x_0, \varepsilon)$ and $\forall z \in T(k_1 - k_2)$ we have $\|F(k_1) - F(k_2) - z\|_Y \leq \beta(\varepsilon)\|k_1 - k_2\|_X$.

- There is $r > 0$ such that $T(K - x_0) + D \supseteq B_Y(0, r)$.

- There is $R > 0$ such that $K \subset B_X(x_0, R)$.

- There is $\varepsilon_0 > 0$ such that $\rho := r^{-1}R\beta(\varepsilon_0) < 1$.
To be a good approximation around the reference point means

- The graph of T is closed and convex and there are $L > 0$ and a neighborhood W of x_0 in the affine hull of K with $T(K - v) \cap B_Y(0, L) \neq \emptyset$ for all $w \in W$.
- $\beta : (0, +\infty) \rightarrow [0, +\infty]$ is a non-decreasing function such that $\forall \varepsilon > 0 \ \forall k_1, k_2 \in K \cap B_x(x_0, \varepsilon)$ and $\forall z \in T(k_1 - k_2)$ we have $\|F(k_1) - F(k_2) - z\|_Y \leq \beta(\varepsilon)\|k_1 - k_2\|_X$;
- There is $r > 0$ such that $T(K - x_0) + D \supset B_Y(0, r)$;
- There is $R > 0$ such that $K \subset B_x(x_0, R)$;
- There is $\varepsilon_0 > 0$ such that $\varrho := r^{-1}R\beta(\varepsilon_0) < 1$.

Radek Cibulka

On Constrained Open Mapping Theorems
To be a good approximation around the reference point means

- The graph of T is closed and convex and there are $L > 0$ and a neighborhood W of x_0 in the affine hull of K with $T(K - v) \cap B_Y(0, L) \neq \emptyset$ for all $w \in W$.
- $\beta : (0, +\infty) \to [0, +\infty]$ is a non-decreasing function such that $\forall \varepsilon > 0 \ \forall k_1, k_2 \in K \cap B_x(x_0, \varepsilon)$ and $\forall z \in T(k_1 - k_2)$ we have $\|F(k_1) - F(k_2) - z\|_Y \leq \beta(\varepsilon)\|k_1 - k_2\|_X$;
- There is $r > 0$ such that $T(K - x_0) + D \supset B_Y(0, r)$;
- There is $R > 0$ such that $K \subset B_x(x_0, R)$;
- There is $\varepsilon_0 > 0$ such that $\rho := r^{-1}R\beta(\varepsilon_0) < 1$.
To be a good approximation around the reference point means

- The graph of T is closed and convex and there are $L > 0$ and a neighborhood W of x_0 in the affine hull of K with $T(K - v) \cap B_Y(0, L) \neq \emptyset$ for all $w \in W$.

- $\beta : (0, +\infty) \to [0, +\infty]$ is a non-decreasing function such that $\forall \varepsilon > 0 \ \forall k_1, k_2 \in K \cap B_X(x_0, \varepsilon)$ and $\forall z \in T(k_1 - k_2)$ we have $\|F(k_1) - F(k_2) - z\|_Y \leq \beta(\varepsilon)\|k_1 - k_2\|_X$.

- There is $r > 0$ such that $T(K - x_0) + D \supset B_Y(0, r)$.

- There is $R > 0$ such that $K \subset B_X(x_0, R)$.

- There is $\varepsilon_0 > 0$ such that $\rho := r^{-1}R\beta(\varepsilon_0) < 1$.

Radek Cibulka

On Constrained Open Mapping Theorems
Theorem

Let \((X, \| \cdot \|_X), (Y, \| \cdot \|_Y)\) be Banach spaces, let \(R > 0\), and let \(K \subset B_X(x_0, R)\) be closed convex set with \(x_0 \in K\). Let \(F : K \to Y\) be continuous such that there is a compact convex \(T \subset \mathcal{L}(X, Y)\) along with \(\delta > 0\) such that for each distinct \(k_1, k_2 \in K\) one has

\[
\|F(k_1) - F(k_2) - T(k_1 - k_2)\|_Y < \delta \|k_1 - k_2\|_X \quad \text{for some } T \in T,
\]

and that there is \(r > \delta R\) such that \(T(K - x_0) \supset B_Y(0, r)\) for each \(T \in T\). Then for each \(c \in (0, r/R - \delta)\) there is a neighborhood \(U\) of \(x_0\) in \(K\) such that

\[
F(K \cap B_X(x, \varepsilon)) \supset B_Y(F(x), c \varepsilon) \quad \text{whenever } x \in U, \varepsilon \in (0, R].
\]
Theorem

Let \((X, \| \cdot \|_X), (Y, \| \cdot \|_Y)\) be Banach spaces, let \(R > 0\), and let \(K \subset B_X(x_0, R)\) be closed convex set with \(x_0 \in K\). Let \(F : K \to Y\) be continuous such that there is a compact convex \(T \subset \mathcal{L}(X, Y)\) along with \(\delta > 0\) such that for each distinct \(k_1, k_2 \in K\) one has

\[
\| F(k_1) - F(k_2) - T(k_1 - k_2) \|_Y < \delta \| k_1 - k_2 \|_X
\]

for some \(T \in T\), and that there is \(r > \delta R\) such that \(T(K - x_0) \supset B_Y(0, r)\) for each \(T \in T\). Then for each \(c \in (0, r/R - \delta)\) there is a neighborhood \(U\) of \(x_0\) in \(K\) such that

\[
F(K \cap B_X(x, \epsilon)) \supset B_Y(F(x), c \epsilon)
\]

whenever \(x \in U, \epsilon \in (0, R]\).
Corollary

Let \((X, \| \cdot \|_X), (Y, \| \cdot \|_Y)\) be Banach spaces, let \(K\) be a closed convex subset of \(X\) which contains \(x_0 \in X\), and let \(F : K \to Y\) be a continuous mapping. Suppose that \(F\) possesses the strict pre-derivative at \(x_0\) relative to \(K\) generated by a subset \(T_0\) of \(L(X, Y)\) such that \(\chi(T_0) < \sigma(T_0, K, x_0)\). Then \(F\) is open around \(x_0\) with a linear rate.
Corollary

Let \((X, \| \cdot \|_X), (Y, \| \cdot \|_Y)\) be Banach spaces, let \(K\) be a closed convex subset of \(X\) which contains \(x_0 \in X\), and let \(F : K \rightarrow Y\) be a continuous mapping. Suppose that \(F\) possesses the strict pre-derivative at \(x_0\) relative to \(K\) generated by a subset \(T_0\) of \(\mathcal{L}(X, Y)\) such that \(\chi(T_0) < \sigma(T_0, K, x_0)\). Then \(F\) is open around \(x_0\) with a linear rate.

There is \(A : X \Rightarrow Y\) such that for each \(c > 0\) there exists \(\Delta > 0\) such that for each \(x_1, x_2 \in K \cap B_X(x_0, \Delta)\) one has

\[
F(x_1) \in F(x_2) + A(x_1 - x_2) + c\|x_1 - x_2\|_X B_Y(0, 1),
\]

with \(A(x) := \{ T(x) : T \in T_0 \}, \ x \in X\).
Corollary

Let \((X, \| \cdot \|_X), (Y, \| \cdot \|_Y)\) be Banach spaces, let \(K\) be a closed convex subset of \(X\) which contains \(x_0 \in X\), and let \(F : K \to Y\) be a continuous mapping. Suppose that \(F\) possesses the strict pre-derivative at \(x_0\) relative to \(K\) generated by a subset \(T_0\) of \(L(X, Y)\) such that \(\chi(T_0) < \sigma(T_0, K, x_0)\). Then \(F\) is open around \(x_0\) with a linear rate.

\[
\chi(T_0) := \inf \left\{ r > 0 : T_0 \subset \bigcup \left\{ B_{L(X, Y)}(L, r) : L \in \mathcal{F} \right\}, \mathcal{F} \subset T_0 \text{ finite} \right\}.
\]
Corollary

Let \((X, \| \cdot \|_X), (Y, \| \cdot \|_Y)\) be Banach spaces, let \(K\) be a closed convex subset of \(X\) which contains \(x_0 \in X\), and let \(F : K \to Y\) be a continuous mapping. Suppose that \(F\) possesses the strict pre-derivative at \(x_0\) relative to \(K\) generated by a subset \(T_0\) of \(\mathcal{L}(X, Y)\) such that \(\chi(T_0) < \sigma(T_0, K, x_0)\). Then \(F\) is open around \(x_0\) with a linear rate.

\[
\sigma(T_0, K, x_0) = \inf \{ \sigma(T, K, x_0) : T \in T_0 \}, \text{ where}
\]

\[
\sigma(T, K, x_0) := \sup \{ r > 0 : B_Y(T(x_0), r) \subset T(K \cap B_X(x_0, 1)) \}.
\]
An analogue of Robinson-Ursescu theorem
Lyusternik-Graves theorem with convex constraint
A particular case - Strict differentiability
Theorem

Suppose that \((X, \|\cdot\|_X), (Y, \|\cdot\|_Y)\) are Banach spaces, \(K \subset X\) is closed convex with \(x_0 \in K\), and \(F : K \to Y\) has a strict derivative \(T \in L(X, Y)\) at \(x_0\) with respect to \(K\), \(D \subset Y\) is closed convex with \(0 \in D\) and \(T(x_0) \in \text{core}[T(K) + D]\).

(S1) There is a neighborhood \(U_1\) of \(x_0\) in \(K\), constants \(c_2 > 0\) and \(\varepsilon_1 > 0\) such that for each \(x \in U_1\) and each \(\varepsilon \in (0, \varepsilon_1]\) we have

\[
F(K \cap B_X(x, \varepsilon)) + \varepsilon D \supset B_Y(F(x), c_2 \varepsilon);
\]

\[
\forall \delta > 0 \exists \alpha > 0 \forall x_1, x_2 \in K \cap B_X(x_0, \alpha) : \|F(x_1) - F(x_2) - T(x_1 - x_2)\|_Y \leq \delta \|x_1 - x_2\|_X.
\]
Theorem

Suppose that $(X, \| \cdot \|_X), (Y, \| \cdot \|_Y)$ are Banach spaces, $K \subset X$ is closed convex with $x_0 \in K$, and $F : K \rightarrow Y$ has a strict derivative $T \in L(X, Y)$ at x_0 with respect to K, $D \subset Y$ is closed convex with $0 \in D$ and $T(x_0) \in \text{core}[T(K) + D]$.

(S1) There is a neighborhood U_1 of x_0 in K, constants $c_2 > 0$ and $\varepsilon_1 > 0$ such that for each $x \in U_1$ and each $\varepsilon \in (0, \varepsilon_1]$ we have

$$F(K \cap B_X(x, \varepsilon)) + \varepsilon D \supset B_Y(F(x), c_2 \varepsilon);$$
Theorem

Suppose that \((X, \|\cdot\|_X), (Y, \|\cdot\|_Y)\) are Banach spaces, \(K \subset X\) is closed convex with \(x_0 \in K\), and \(F : K \rightarrow Y\) has a strict derivative \(T \in L(X, Y)\) at \(x_0\) with respect to \(K\), \(D \subset Y\) is closed convex with \(0 \in D\) and \(T(x_0) \in \text{core}[T(K) + D]\).

(S2) There are neighborhoods \(U_2\) of \(x_0\) in \(K\) and \(V_2\) of \(F(x_0)\) in \(Y\), \(c_3 > 0\), and a continuous mapping \(G : U_2 \times V_2 \rightarrow K\) such that for each \(x \in U_2\) and each \(y \in V_2\) one has

\[
y \in F(G(x, y)) + c_3\|y - F(x)\|_Y D \quad \text{and} \quad G(x, y) \in x + c_3\|y - F(x)\|_Y (K - x);
\]
Suppose that \((X, \|\cdot\|_X), (Y, \|\cdot\|_Y)\) are Banach spaces, \(K \subset X\) is closed convex with \(x_0 \in K\), and \(F : K \to Y\) has a strict derivative \(T \in L(X, Y)\) at \(x_0\) with respect to \(K\), \(D \subset Y\) is closed convex with \(0 \in D\) and \(T(x_0) \in \text{core}[T(K) + D]\).

(S3) If \(T\) is injective, then there are neighborhoods \(U_3\) of \(x_0\) in \(K\) and \(V_3\) of \(F(x_0)\) in \(Y\) such that the equation \(F(x) = y\) has exactly one solution \(x \in U_3\) whenever \(y \in V_3\);
Theorem

Suppose that \((X, \|\cdot\|_X), (Y, \|\cdot\|_Y)\) are Banach spaces, \(K \subset X\) is closed convex with \(x_0 \in K\), and \(F : K \to Y\) has a strict derivative \(T \in L(X, Y)\) at \(x_0\) with respect to \(K\), \(D \subset Y\) is closed convex with \(0 \in D\) and \(T(x_0) \in \text{core}[T(K) + D]\).

(S4) If there is \(u \in K\) different from \(x_0\) such that \(T(u) = T(x_0)\), then for each neighborhood \(U_4\) of \(x_0\) in \(K\) there is a neighborhood \(V_4\) of \(F(x_0)\) in \(Y\) such that for each \(y \in V_4\) there is a continuous non-constant mapping \(g_y : [0, 1] \to U_4\) such that

\[F(g_y([0, 1])) = \{y\};\]
Theorem

Suppose that \((X, \| \cdot \|_X), (Y, \| \cdot \|_Y)\) are Banach spaces, \(K \subset X\) is closed convex with \(x_0 \in K\), and \(F : K \to Y\) has a strict derivative \(T \in L(X, Y)\) at \(x_0\) with respect to \(K\). \(D \subset Y\) is closed convex with \(0 \in D\) and \(T(x_0) \in \operatorname{core}[T(K) + D]\).

(S5) The following conditions are equivalent:

(i) \(F\) is open on \(K\) around \(x_0\) with a linear rate;

(ii) \(F\) is open on \(K\) at \(x_0\) with a linear rate;

(iii) \(F\) is almost open on \(K\) at \(x_0\) with a linear rate;

(iv) \(T(x_0)\) is a core point of \(T(K)\).
Theorem

Suppose that \((X, \| \cdot \|_X), (Y, \| \cdot \|_Y)\) are Banach spaces, \(K \subset X\) is closed convex with \(x_0 \in K\), and \(F : K \to Y\) has a strict derivative \(T \in L(X, Y)\) at \(x_0\) with respect to \(K\), \(D \subset Y\) is closed convex with \(0 \in D\) and \(T(x_0) \in \text{core}[T(K) + D]\).

(S6) If \(K\) is a neighborhood of \(x_0\) (i.e., \(T(X) = Y\)), then the following assertions are equivalent:

(i) There is a continuous linear selection \(S\) for \(T^{-1}\);

(ii) \(T^{-1}(0)\) is complemented in \(X\);

(iii) There is a selection \(G\) for \(F^{-1}\) such that \(G(F(x_0)) = x_0\). Moreover, \(G\) is continuous on a neighborhood of \(F(x_0)\) and Fréchet differentiable at \(F(x_0)\).
An analogue of Robinson-Ursescu theorem
Lyusternik-Graves theorem with convex constraint
A particular case - Strict differentiability

References

