Bone as a microcontinuum¹²

Josef Rosenberg & Robert Cimrman & Luděk Hynčík

University of West Bohemia in Plzeň Department of Mechanics & New Technology Research Centre Univerzitní 22, 301 14 Plzeň

How to treat the microstructure?

- homogenization
- theory of mixtures, of composites
- microcontinuum theories

Presentation for the conference Výpočtová Mechanika 2001, Nečtiny, 29.-31. October 2001.
 Typeset by ConT_EXt (http://www.pragma-ade.nl).

Basic kinematics

- Continuum "points" can translate, but also rotate and deform
 → micromorphic continuum.
- Position within a particle given by $\underline{x}' = \underline{x} + \underline{\xi}, \ \underline{y}' = \underline{y} + \underline{\eta}.$
- Special types:
 - microstretch continuum: rotation + volume change,
 - micropolar continuum: rotation only.

General balance equations

The balance of forces and balance of stress moments equations:

$$t^{kl}_{,k} + \rho f^l = 0$$
, $m^{klm}_{,k} + t^{ml} - s^{ml} + \rho l^{lm} = 0$. (1)

t'^{kl}		stress tensor in a particle, $t'^{kl} = t'^{lk}$,
s^{lm}	• • •	micro-stress average — stress tensor of
		the macrovolume averaged across
		the volume (symmetric),
t^{kl}		stress tensor of the macrovolume averaged across
		the surface (non-symmetric),
m^{klm}		the first stress moment — moment of the forces
		acting on the surface of the macrovolume
		with respect to its centre of gravity,
l^{lm}		the first body moment of the volume forces with
		respect to the centre of gravity of the macrovolume
f^l		averaged volume force.

Some defining relations: $\int_{dS} t'^{kl} n'_k \, ds' = t^{kl} n_k \, dS \,, \quad \int_{dS} \xi'^m t'^{kl} n'_k \, ds' = m^{klm} n_k \, dS \,.$

Special types

• **microstretch continuum** — 7 degrees of freedom

$$\begin{split} m^{klm} &= \frac{1}{3} m^k \delta^{lm} - \frac{1}{2} e^{lmr} m^k_{\ r} \ , \\ l^{kl} &= \frac{1}{3} l \delta^{lm} - \frac{1}{2} e^{klr} l_r \ . \end{split}$$

$$m^k = 0 , \quad l = 0 .$$

4

(4)

(2)

(3)

Micropolar continuum - the boundary value problem

• Basic equations:

$$t^{kl}_{,k} + \rho f^{l} = 0, \qquad m^{k}_{l,k} + e_{lmn}t^{mn} + \rho l_{l} = 0, \qquad (5)$$

$$t_{kl} = \rho \frac{\partial \Psi}{\partial \overline{\Psi}_{KL}} \frac{\partial y_{k}}{\partial x^{K}} \overline{\chi}_{lL}, \qquad m_{kl} = \rho_{0} \frac{\partial \Psi}{\partial \Gamma_{LK}} \frac{\partial y_{k}}{\partial x^{K}} \overline{\chi}_{lL},$$

$$\overline{\Psi}_{KL} = y^{k}_{,K} \overline{\chi}_{kL}, \qquad \Gamma_{KL} = \frac{1}{2} e_{K}^{MN} \overline{\chi}_{kM} \overline{\chi}_{kN}, \text{ where } \chi^{l}_{k} = \frac{\partial \eta^{l}}{\partial \xi^{k}}, \quad \overline{\chi}^{l}_{k} = \frac{\partial \xi^{l}}{\partial \eta^{k}}.$$

• For the isotropic continuum holds (denoting $\gamma_{ij} = \phi_{i,j}$, $\varepsilon^{kl} = \frac{\partial u^l}{\partial x^k} + e^{lkm}\phi_m$):

$$t_{kl} = \lambda \varepsilon_m^m \delta_{kl} + (\mu + \kappa) \varepsilon_{kl} + \mu \varepsilon_{lk} , \qquad m_{kl} = \alpha \gamma_m^m \delta_{kl} + \beta \gamma_{kl} + \gamma \gamma_{lk} .$$
 (6)

• The boundary conditions:
$$\begin{array}{c} u_k = \hat{u}_k \\ \phi_k = \hat{\phi}_k \end{array}$$
 on $\partial \Omega_1$, $\begin{array}{c} t_{kl} n^k = \hat{t}_l \\ m_{kl} n^k = \hat{m}_l \end{array}$ on $\partial \Omega_2$.

Variational formulation

The solution is the stationary point of the potential (see [8]) $\Pi(\underline{u}, \underline{\phi}) = \frac{1}{2} \int_{\Omega} \left[\lambda \delta^{kl} \varepsilon_m^m + (\mu + \kappa) \varepsilon^{kl} + \mu \varepsilon^{kl} \right] \varepsilon_{kl} dx$ $+ \frac{1}{2} \int_{\Omega} \left(\alpha \delta^{kl} \gamma_m^m + \beta \gamma^{kl} + \gamma \gamma^{lk} \right) \gamma_{lk} dx + \int_{\partial \Omega_2} (\hat{u}_i n_j + g_{ij}) \tau^{ij} dx$ $+ \int_{\partial \Omega_2} (\hat{\phi}_k n_l + \gamma_{kl}) m^{kl} dx - \int_{\Omega} \rho \hat{f}_i u_i dx - \int_{\Omega} \hat{\tau}_i u_i dx - \int_{\Omega} \rho \hat{l}^l \phi_l dx$

with the constraints

$$\varepsilon^{kl} = \frac{\partial u^l}{\partial x^k} + e^{lkm}\phi_m, \quad -u_i n_j = g_{ij} \text{ on } \partial\Omega_2, \quad \gamma^{kl} = \frac{\partial \phi_k}{\partial x^l}, \quad -\phi_i u^j = \gamma^{ij} \text{ on } \partial\Omega_2.$$

The weak solution of the problem at **page 5** satisfies (we omit loading terms here)

$$\Pi(\underline{u},\underline{\phi};\delta\underline{u}) = 0 \to \int_{\Omega} \tau_{kl} \delta_u \varepsilon_{kl} d\Omega = 0,$$
(7)

$$\Pi(\underline{u}, \underline{\phi}; \delta \underline{\phi}) = 0 \to \int_{\Omega} (\tau_{kl} \delta_{\phi} \varepsilon_{kl} + m_{kl} \delta_{\phi} \phi_{l,k}) \, \mathrm{d}\Omega = 0 \,. \tag{8}$$

FE discretization

Denote: $\mathbf{1} \equiv [1, 1, 1|0, 0, 0|0, 0, 0]^T$, $\mathbf{J} \dots$ a permutation matrix, \mathbf{G} , ν strain operators.

$$\mathbf{t}^{e} = \underbrace{(\lambda \mathbf{1}\mathbf{1}^{T} + (\mu + \kappa)\mathbf{I} + \mu\mathbf{J})}_{\mathbf{D}_{1}}[\mathbf{G}^{+}|\nu]\mathbf{d}^{e} = \mathbf{D}_{1}\mathbf{B}\mathbf{d}^{e}, \ \mathbf{m}^{e} = \underbrace{(\alpha \mathbf{1}\mathbf{1}^{T} + \beta\mathbf{J} + \gamma\mathbf{I})}_{\mathbf{D}_{2}}\mathbf{G}^{+}\phi^{e} = \mathbf{D}_{2}\mathbf{G}^{+}\phi^{e}.$$

Discrete balance equations for one element:

$$U_{e} \equiv \sum_{q} \left[\mathbf{G}^{+T} \mathbf{t}^{e} J_{0} W \right] |_{\xi^{q}} = \sum_{q} \left[\mathbf{G}^{+T} \mathbf{D}_{1} \mathbf{B} J_{0} W \right] |_{\xi^{q}} \cdot \mathbf{d}^{e} = \left[A_{e}, B_{e} \right] \mathbf{d}^{e} = 0 , \quad (\leftarrow \mathbf{Eq. 7})$$

$$\phi_{e} \equiv \sum_{q} \left[\left(\nu^{T} \mathbf{t}^{e} + \mathbf{G}^{+T} \mathbf{m}^{e} \right) J_{0} W \right] |_{\xi^{q}} = \sum_{q} \left[\nu^{T} \mathbf{D}_{1} \mathbf{B} J_{0} W \right] |_{\xi^{q}} \cdot \mathbf{d}^{e}$$

$$+ \sum_{q} \left[\mathbf{G}^{+T} \mathbf{D}_{2} \mathbf{G}^{+} J_{0} W \right] |_{\xi^{q}} \cdot \phi^{e} = \left[C_{e}, D_{e} \right] \mathbf{d}^{e} + E_{e} \phi^{e} = 0 . \quad (\leftarrow \mathbf{Eq. 8})$$

 \Rightarrow Linear system with indefinite matrix:

$$\begin{bmatrix} A_e & B_e \\ C_e & D_e + E_e \end{bmatrix} \begin{bmatrix} \mathbf{u}^e \\ \phi^e \end{bmatrix} = \begin{bmatrix} f^e \\ g^e \end{bmatrix} .$$
(9)

Analytical verification I

The analytical solution is known in some cases (cf. [3], results taken from [8]), e.g.:

- a plane with a hole loaded in tension,
- compute the stress concentration factor on the boundary of the hole.

Analytical verification II

- R = radius of the hole (macroscopic characteristic length) [m]
- c = characteristic length of the microstructure
- K = stress concentration factor

Figure 3 Stress concentration (R/c).

Theory:

• linear elasticity: red curve (K = 3)

[m]

micropolar elasticity: green curve

Numerical values:

- linear elasticity: magenta curve
- micropolar elasticity: blue curve
- adjusted (shifted by LE numeric LE theory): cyan curve

Femur bone with nail — motivation

Figure 4 Example of a fixation of a bone.

Femur bone with nail — material data

set	λ [Pa]	μ [Pa]	κ [Pa]	α [N]	β [N]	γ [N]
MP1	$1.8\cdot 10^{10}$	$-1.468 \cdot 10^{10}$	$3.837\cdot10^{10}$	-120	120	240
MP2	$1.8\cdot 10^{10}$	$-1.468\cdot 10^{10}$	$3.837\cdot10^{10}$	-12000	12000	24000
LE	$1.8\cdot 10^{10}$	$4.5 \cdot 10^9$				

Table 1Material data.

- Equivalent LE set was obtained using $\lambda_E = \lambda_M$, $\mu_E = \mu_M + \kappa/2$ ($\rightarrow E = 1.26 \cdot 10^{10}$ [Pa], $\nu = 0.4$).
- Material data of the steel nail: $E = 2.1 \cdot 10^{11}$ [Pa], $\nu = 0.3$.
- Characteristic lengths of the microstructure:
 - MP1: c = 0.1283 [mm]
 - MP2: c = 1.283 [mm]
- Characteristic length of the macrostructure = radius of the hole.
- LE set was used in PAM-Crash code for verification of our solver the results are denoted as "PC".

Femur bone with nail — loads

- Two kinds of loading: bending and torsion.
- Observed micropolar effect: decrease of stress on the femur-nail interface

Figure 5 Original (white) + deformed femur mesh (magnified displacements), LE set used for the bone.

Femur bone with nail — evaluation lines

Figure 6 t_{22} [kPa], torsion case.

The nail was considered to be fixed to the bone — no movement between the two materials was allowed. The stress was evaluated along these lines on the surface of the hole drilled into the bone:

Femur bone with nail — stress along the lines

- Bending load: different behaviour (tension-compression) of middle and "nonmiddle" rows of elements ⇒ separate plots.
- Torsion load: no such phenomenon.

Femur bone with nail — example Ia

- We plot "averaged" stress along the front and back lines of Figure at **page 13**.
- The "averaging" = the least squares fitting of stress in the elements of Figure 7).

Figure 8 t_{33} along the lines, bending.

Femur bone with nail — example Ib

- The bending case fitting with the second order polynomial.
- The torsion case fitting with the third order polynomial.

Bending, middle element row, MP1 set. t_{22} along the lines, torsion. **Figure 9** Averaging example + torsion case results.

Femur bone with nail — example IIa

- Dependence of stress on c: l_t varied in range (0.2, 2) [mm] while keeping the other parameters constant. This resulted in c variation in range (0.1283, 1.283) [mm].
- Stress was evaluated in 6 selected elements ("left" end of the hole (the lowest x coordinate), see Figure 7, Table 2.
- Note the difference between middle and non-middle elements in the bending case.

element	5786	4236	4351	6103	6050	6123
line	front	front	front	back	back	back
row	upper	middle	lower	upper	middle	lower

Table 2Selected elements.

Femur bone with nail — example IIb

Figure 10 Dependence on *c* in the selected elements.

Femur bone with nail — example IIc

Figure 11 Dependence on c in element 4236.

Conclusion

- Linear micropolar elasticity was introduced.
- Presented examples showed a strong influence of the microstructural parameters on the stress.
- Further work:
 - micropolar anisotropic continuum
 - micromorphic continuum
 - material parameter identification

References

[1] H. Bufler. Zur variationsformulierung nichtlinearer randwertprobleme. *Ingenieur-Archiv 45*, pp. 17–39, 1976.

[2] E. Cosserat. Theorie des Corps Deformables. Hermann, Paris, 1909.

[3] A.C. Eringen. *Microcontinuum Field Theories: Foundation and Solids*. Springer, New York, 1998.

[4] A.C. Eringen and E.S. Suhubi. Nonlinear theory of simple micro-elastic solids. *Int. J. Engng. Sci.*, 2:189–203, 1964.

[5] H.C. Park and R.S. Lakes. Cosserat micromechanics of human bone: Strain redistribution by a hydratation sensitive constituent. *J. Biomechanics*, 19:385–397, 1986.

[6] J. Rosenberg. Allgemeine variationsprinzipien in den evolutionsaufgaben der kontinuumsmechanik. ZAMM, 65:417–426, 1985.

[7] J. Rosenberg. Variational formulation of the problems of mechanics and its matrix analogy. *Journal of Computational and Applied Mathematics*, 53:307–311, 1995.
[8] J. Rosenberg and R. Cimrman. Microcontinuum Approach in Biomechanical Modelling. *Mathematics and Computers in Simulation*, 2001. Special volume: Proceedings of the conference Modelling 2001, Plzeň, submitted.