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How to treat the microstructure?

• homogenization

• theory of mixtures, of composites

• microcontinuum theories
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Basic kinematics

• Continuum "points" can translate, but alsorotateanddeform
→ micromorphic continuum.

• Position within a particle given byx′ = x + ξ, y′ = y + η.
• Special types:
− microstretch continuum: rotation + volume change,
− micropolar continuum: rotation only.

Figure 1 Coordinates within particles.
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General balance equations

The balance of forces and balance of stress moments equations:

tkl
,k + ρf l = 0 , mklm

,k + tml − sml + ρllm = 0 . (1)

t′kl . . . stress tensor in a particle,t′kl = t′lk,
slm . . . micro-stress average — stress tensor of

the macrovolume averaged across
the volume (symmetric),

tkl . . . stress tensor of the macrovolume averaged across
the surface (non-symmetric),

mklm . . . the first stress moment — moment of the forces
acting on the surface of the macrovolume
with respect to its centre of gravity,

llm . . . the first body moment of the volume forces with
respect to the centre of gravity of the macrovolume,

f l . . . averaged volume force.

Some defining relations:
∫
dS

t′kln′k ds′ = tklnk dS ,
∫
dS

ξ′mt′kln′k ds′ = mklmnk dS .
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Special types

• microstretch continuum — 7 degrees of freedom

mklm =
1
3
mkδlm − 1

2
elmrmk

r , (2)

lkl =
1
3
lδlm − 1

2
eklrlr . (3)

• micropolar continuum — 6 degrees of freedom

mk = 0 , l = 0 . (4)
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Micropolar continuum - the boundary value problem

• Basic equations:

tkl
,k + ρf l = 0 , mk

l,k + elmnt
mn + ρll = 0 , (5)

tkl = ρ
∂Ψ

∂ΨKL

∂yk

∂xK
χlL , mkl = ρ0

∂Ψ
∂ΓLK

∂yk

∂xK
χlL ,

ΨKL = yk
,K χkL , ΓKL =

1
2
e MN

K χkMχkN , whereχl
k =

∂ηl

∂ξk
, χl

k =
∂ξl

∂ηk
.

• For theisotropic continuumholds (denotingγij = φi,j , εkl = ∂ul

∂xk + elkmφm):

tkl = λεm
mδkl + (µ + κ)εkl + µεlk , mkl = αγm

mδkl + βγkl + γγlk . (6)

• The boundary conditions:
uk = ûk

φk = φ̂k

}
on∂Ω1 ,

tkln
k = t̂l

mkln
k = m̂l

}
on∂Ω2 .
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Variational formulation
The solution is thestationary pointof the potential (see[8])

Π(u, φ) = 1
2

∫
Ω

[
λδklεm

m + (µ + κ)εkl + µεkl
]
εkldx

+ 1
2

∫
Ω

(
αδklγm

m + βγkl + γγlk
)
γlkdx +

∫
∂Ω2

(ûinj + gij)τ ijdx

+
∫

∂Ω2

(φ̂knl + γkl)mkldx−
∫
Ω

ρf̂iuidx−
∫

∂Ω1

τ̂iuidx−
∫
Ω

ρl̂lφldx

with the constraints

εkl =
∂ul

∂xk
+elkmφm, −uinj = gij on∂Ω2, γkl =

∂φk

∂xl
, −φiu

j = γij on∂Ω2 .

The weak solution of the problem atpage 5satisfies (we omit loading terms here)

Π(u, φ; δu) = 0→
∫
Ω

τklδuεkldΩ = 0, (7)

Π(u, φ; δφ) = 0→
∫
Ω

(τklδφεkl + mklδφφl,k) dΩ = 0 . (8)
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FE discretization
Denote:1≡ [1, 1, 1|0, 0, 0|0, 0, 0]T , J . . . a permutation matrix,G, ν strain operators.

te = (λ11T + (µ + κ)I + µJ)︸ ︷︷ ︸
D1

[G+|ν]de = D1Bde , me = (α11T + βJ + γI )︸ ︷︷ ︸
D2

G+φe = D2G+φe .

Discrete balance equations for one element:

Ue ≡
∑

q

[
G+T teJ0W

]
|ξq =

∑
q

[
G+TD1BJ0W

]
|ξq · de = [Ae, Be]de = 0 , (← Eq. 7)

φe ≡
∑

q

[
(νT te + G+Tme)J0W

]
|ξq =

∑
q

[
νTD1BJ0W

]
|ξq · de

+
∑

q

[
G+TD2G+J0W

]
|ξq · φe = [Ce, De]de + Eeφ

e = 0 . (← Eq. 8)

⇒ Linear system withindefinitematrix:[
Ae Be

Ce De + Ee

] [
ue

φe

]
=

[
f e

ge

]
. (9)
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Analytical verification I

The analytical solution is known in some cases (cf.[3], results taken from[8]) , e.g.:

• a plane with a hole loaded in tension,

• compute the stress concentration factor on the boundary of the hole.

mesh microrotations

Figure 2 Plane with a hole.
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Analytical verification II

R = radius of the hole (macroscopic characteristic length)[m]
c = characteristic length of the microstructure [m]
K = stress concentration factor

Figure 3 Stress concentration(R/c ).

Theory:

• linear elasticity: red curve (K = 3)
• micropolar elasticity: green curve

Numerical values:

• linear elasticity: magenta curve
• micropolar elasticity: blue curve
• adjusted (shifted by LE numeric− LE

theory): cyan curve
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Femur bone with nail — motivation

Figure 4 Example of a fixation of a bone.
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Femur bone with nail — material data

set λ [Pa] µ [Pa] κ [Pa] α [N] β [N] γ [N]

MP1 1.8 · 1010 −1.468 · 1010 3.837 · 1010 −120 120 240
MP2 1.8 · 1010 −1.468 · 1010 3.837 · 1010 −12000 12000 24000
LE 1.8 · 1010 4.5 · 109 — — — —

Table 1 Material data.

• Equivalent LE set was obtained usingλE = λM , µE = µM + κ/2
(→ E = 1.26 · 1010 [Pa],ν = 0.4).

• Material data of the steel nail:E = 2.1 · 1011 [Pa],ν = 0.3.
• Characteristic lengths of the microstructure:
− MP1: c = 0.1283 [mm]
− MP2: c = 1.283 [mm]

• Characteristic length of the macrostructure = radius of the hole.
• LE set was used in PAM-Crash code for verification of our solver — the results

are denoted as "PC".



12

Femur bone with nail — loads

• Two kinds of loading: bending and torsion.
• Observed micropolar effect: decrease of stress on the femur–nail interface

bending torsion

Figure 5 Original (white) + deformed femur mesh (magnified displace-
ments), LE set used for the bone.
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Femur bone with nail — evaluation lines

Figure 6 t22 [kPa], torsion case.

The nail was considered to be fixed to the
bone — no movement between the two ma-
terials was allowed. The stress was evalu-
ated along these lines on the surface of the
hole drilled into the bone:
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Femur bone with nail — stress along the lines

• Bending load: different behaviour (tension-compression) of middle and "non-
middle" rows of elements⇒ separate plots.

• Torsion load: no such phenomenon.

t33 [kPa] (bending) t22 [kPa] (torsion)

Figure 7 Stress along the lines, MP2 set used for the bone.
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Femur bone with nail — example Ia

• We plot "averaged" stress along the front and back lines of Figure atpage 13.
• The "averaging" = the least squares fitting of stress in the elements ofFigure 7).

middle element row upper element row

Figure 8 t33 along the lines, bending.
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Femur bone with nail — example Ib

• The bending case — fitting with the second order polynomial.
• The torsion case — fitting with the third order polynomial.

Bending, middle element row, MP1 set. t22 along the lines, torsion.

Figure 9 Averaging example + torsion case results.
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Femur bone with nail — example IIa

• Dependence of stress onc: lt varied in range〈0.2, 2〉 [mm] while keeping the other
parameters constant. This resulted inc variation in range〈0.1283, 1.283〉 [mm].

• Stress was evaluated in6 selected elements (“left” end of the hole (the lowestx

coordinate), seeFigure 7, Table 2.

• Note the difference between middle and non-middle elements in the bending case.

element 5786 4236 4351 6103 6050 6123

line front front front back back back

row upper middle lower upper middle lower

Table 2 Selected elements.
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Femur bone with nail — example IIb

t33(c), bending t22(c), torsion

Figure 10 Dependence onc in the selected elements.
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Femur bone with nail — example IIc

t33(c), bending t22(c), torsion

Figure 11 Dependence onc in element 4236.
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Conclusion

• Linear micropolar elasticity was introduced.

• Presented examples showed a stronginfluence of the microstructural parameters
on the stress.

• Further work:

− micropolar anisotropic continuum

− micromorphic continuum

− material parameter identification
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