
29.02.2024

A Predictor for Triangle Mesh 
Compression Working in Tangent 

Space

Petr Vaněček, Filip Hácha, Libor Váša
Department of computer science and engineering, Faculty of applied sciences, University of West Bohemia,



Problem definition

Traversal-based methods in general

Weighted parallelogram

Encoding in a local coordinate system

Experiments

Conclusion

Presentation outline

2



Compression of triangle mesh ℳ geometry

Encode vertex positions V with the best possible ratio between 
bitrate and mesh distortion

Traversal, connectivity-first methods

Progressively increasing area of encoded mesh triagnles

Connectivity is available during the geometry prediction

ℳ = (V, F)

V = 𝒗𝑖 𝑖=1
𝑛 , 𝒗𝑖 ∈ ℝ3

Problem definition
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Based on using prediction schemes, such as:

Parallelogram [1], Dual parallelogram [2]

Valence-based encoding [3], Weighted parallelogram [4]

Idea: Use the already decoded part of the geometry and 
connectivity to predict the encoded vertex

Encoding correction vector instead of absolute vertex position

Traversal-based methods in general
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𝒗𝑝𝑟𝑒𝑑 = 𝒗𝐿 + 𝒗𝑅 − 𝒗𝐵

𝑐𝑜𝑟𝑟 = 𝒗𝑂 − 𝒗𝑝𝑟𝑒𝑑

vB

vR

vL

vpred

vO



Prediction based on

Connectivity

Valences of vertices

Known vertex positions (Base, Left, Right)

Known inner angles in decoded triangles

Weighted parallelogram [4]
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Inner angles are known in the base triangle

Can be estimated in the current triangle

Assuming zero Gaussian curvature

𝛼𝑖 =
2𝜋

𝑛 𝑖

Using known angles

𝛼𝑖 =
2𝜋−σ 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 𝑑𝑒𝑐𝑜𝑑𝑒𝑑 𝑎𝑛𝑔𝑙𝑒𝑠

𝑛 𝑖 −𝑛𝑑𝑒𝑐𝑜𝑑𝑒𝑑(𝑖)

Weighted parallelogram [4] – Inner angles
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Weighted predictor

𝒗𝑝𝑟𝑒𝑑 = 𝑤1𝒗𝐿 +𝑤2𝒗𝑅 + 1 − 𝑤1 −𝑤2 𝒗𝐵

𝑤1, 𝑤2 =
cot 𝛽′ +cot 𝛿′

cot 𝛿′ +cot 𝛾′
,
cot 𝛼′ +cot 𝛾′

cot 𝛿′ +cot 𝛾′

Correction vectors are quantized and encoded using arithmetic 
coder (in global coordinate system)

𝑐𝑜𝑟𝑟 = ∆𝑥 , ∆𝑦, ∆𝑧

Weighted parallelogram [4] – Inner angles
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Transform correction vectors into the local coordinate system

Two tangential and one normal basis vectors:

𝒏 =
𝒗𝐿−𝒗𝑅 × 𝒗𝐵−𝒗𝑅

𝒗𝐿−𝒗𝑅 × 𝒗𝐵−𝒗𝑅

𝒕1 =
𝒗𝐿−𝒗𝑅

𝒗𝐿−𝒗𝑅

𝒕2 = 𝒏 × 𝒕1

𝒏 =
𝒗𝐿−𝒗𝑅 × 𝒗𝐵−𝒗𝑅

𝒗𝐿−𝒗𝑅 × 𝒗𝐵−𝒗𝑅

𝒕1 =
𝒑𝑂−𝒗𝐵

𝒑𝑶−𝒗𝐵

𝒕2 = 𝒏 × 𝒕1

Local coordinate system
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Gumhold and Amjoun, 2003 [9]

Cylindrical system: (𝑥, 𝑦, 𝛼)

Two tangential components and bending angle

𝒗𝑝𝑟𝑒𝑑 =
(𝒗𝐿+𝒗𝑅)

2
+ 𝑥𝒙2 + sin 𝛼 𝑦𝒙1 + cos 𝛼 𝑦𝒙3

Problems with uniformity of quantization 

Local coordinate system

9



Correction vectors expressed in local coordinate system

𝒄𝒐𝒓𝒓 = 𝑡1𝒙1 + 𝑡2𝒙2 + 𝑛𝒙3

Uniform quantization

Correction vectors are encoded using adaptive arithmetic coder

Individual components coded into separate contexts

Local coordinate system

10

𝑐𝑜𝑟𝑟 =

∆𝑥
∆𝑦
∆𝑧

Global to 
local

𝑡1
𝑡2
𝑛

Arithmetic 
coder

Quantization
𝑡1
′

𝑡2
′

𝑛′

𝑡1
1
, 𝑡1

2
, 𝑡1

3
, 𝑡1

4
, 𝑡1

5
,…, 𝑡1

𝑛

𝑡2
1
, 𝑡2

2
, 𝑡2

3
, 𝑡2

4
, 𝑡2

5
,…, 𝑡2

𝑛

𝑛 1 , 𝑛 2 , 𝑛 3 , 𝑛 4 , 𝑛 5 ,…, 𝑛 𝑛



Transformation of the correction vector to the local coordinate 
system

Results in sequences with lower entropy

(Original delta coordinates were correlated)

Allows the use of different quantization constants for tangential and 
normal components coded into separate contexts

If the surface is sufficiently smooth and well-sampled, tangential 
distortion is less observable than normal distortion

Better results in terms of mechanistic and perceptual metrics (DAME)

Local coordinate system
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Experiments – Plane quantization
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Original mesh (wireframe) Original mesh (shaded) Compression in world space

Compression in local space Compression in local space
(finer quantization of normal)

Precise encoding of 
the 1st triangle (8.6 bpv)

Plane rotated 17,5° around the x-axis, compression rate of approx. 13 bpv



Mechanistic metrics

Vertex Mean Squared Error (MSE)

𝑀𝑆𝐸 = σ𝑖=1
𝑛 𝒗𝑖 − 𝒗𝑖

′ 2

Metro – AvgD [5]

Average distance between surfaces

Perceptual metrics

Dihedral Angle Mesh Arror (DAME) [6]

Reference methods

Original Weighted Parallelogram [4]

Draco [8]

Error Propagation Control (EPC) [7] - laplacian mesh compression

Experiments – Quality assessment metrics
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Experiments – Palmyra MSE
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Experiments – Palmyra Metro
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Experiments – Palmyra DAME
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Experiments – Thingi10k dataset
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Experiments – Time complexity - compression
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Experiments – Time complexity - decompression
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Using the Weighted Parallelogram with the local coordinates
encoding

requires only a slight change in the implementation

leads to better results than using the global coordinate system

does not have negative impact on compression and 
decompression time

has comparable or better results than WP, EPC, and Draco in 
terms of MSE and AvgD

has comparable or better results than WP, and Draco in terms of
DAME

Conclusion
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