
Exercise 1: Framework

Task: get acquainted with the template we will be using throughout the semester. In particular, try

changing some vertex positions and triangle indices and test coloring of vertices and assigning

vectors and normals to vertices.

Mesh Processing framework
During the semester, we will be implementing various algorithms in a framework that allows you to

do basic interaction with a mesh, such as rendering, manipulating, displaying wireframe, displaying

vertex colors and more. The framework is implemented in C#, which is a simple object oriented

language that provides good performance for our purposes.

The framework consists of 4 projects:

- Client, represents your application. It has only one class called Program, which

represents the main procedure being performed. Usually, it loads a mesh from a file, creates

an instance of the renderer, assigns the mesh to it and starts the renderer. Other actions,

such as mesh processing, will be also called here, before starting the rendering to display the

result to the user.

- Framework, represents mainly the data structures. There are data staructures for vertices

(Point3D), triangles (Triangle) and meshes (TriangleMesh). There is also a class for

loading a mesh (ObjLoader) and some other supporting classes. When new functionality is

required, it will mostly be implemented as new methods of some of these classes

- SlimDXRenderer and SlimDXRenderSystem, these projects represent the renderer.

You will mostly not change anything in these projects, they just provide the functionality

needed in order to view the results of your work.

Controlling the renderer
Left mouse – rotate

Right mouse button – shift

Y key – render mode (fill, point, wire)

L key + mouse move – move light position

C key – toggle culling

Accessing vertex positions and triangle indices (1 point)
Have a look at the Program.cs source file in the Client project. A loader is instantiated and used to

load a triangle mesh from a file. This mesh is the in turn passed to an instance of renderer, which is

used to show it to the user. You can write your code between the two events, modifying the triangle

mesh, or just investigating its properties.

Vertex coordinates can be accessed using the TriangleMesh.points field. It is an array of

Point3D structures, each of which provides the double X, Y and Z fields. Similarly, triangle

indices can be accessed using the TriangleMesh.triangles field, which is in array of

Triangle structures. This structure in turn provides int V1, V2 and V3 fields, which

represent vertex indices that form a triangle. These indices can be used for indexing the points field.

For the exercise, try writing out the coordinates of the vertices that form triangle no. 100 to the

console. You can use the standard System.Console.WriteLine method.

Assigning colors to vertices (1 point)
You can assign any color to any vertex in the triangle mesh. For the exercise, choose some interesting

coloring. If you can’t think of any, try mapping the X, Y and Z span of vertex positions to R, G and B

values. Colors will be represented by the ColorRGBA structure. There are two constructors you

may use:

new ColorRGBA(byte red, byte green, byte blue)

- In this case, arguments are expected in range 0-255

new ColorRGBA(float red, float green, float blue)

- In this case, arguments are expected in range 0.0-1.0

Ideally, you should use the full scale of the colors, i.e. for example map the smallest X value to zero

and largest X value to 1.0 in red.

Having an array of vertex colors, assign it to the Colors field of the TriangleMesh instance.

Finally, inform the rendering framework that it should use the color attribute by setting the

ShowColorAttribute flag of the renderer instance to true. Disable lighting in the renderer to

better view the colors.

Visualising per-vertex vectors (1 point)
Similarly, you can create an array of per vertex instances of Point3D, which will be interpreted as

vectors originating from each vertex. Try visualizing some quantity, or simply build an array of

random vectors with length equal to the number of vertices.

Having the array of vectors computed, assign them to the Vectors field of the TriangleMesh

instance and notify the renderer that vectors should be displayed by setting the

ShowVectorAttribute of the renderer instance to true. You can then display the vectors by

pressing N in the renderer.

Computation of a triangle normal (1 point)
Having a triangle t, consisting of vertices v1, v2, v3, it is possible to compute its normal vector as

𝑛 = (𝑣3 − 𝑣1) × (𝑣2 − 𝑣1)

For the evaluation of crossproduct, you can use the CrossProduct(Point3D v2) method

implemented for Point3D structures. The normal should also be normalised. In order to do that,

you can evaluate the length of a vector using the Abs() method defined for a Point3D structure.

The implementation should be defined as a function Point3D TriangleNormal(int t) of

the TriangleMesh object, which has access to both triangles (Triangle[] triangles) and

vertex positions (Point3D[] points). The function should accept one argument, the index of

the triangle, and return its normal, represented by a Point3D structure.

Computation of a vertex normal (1 point)
Having a vertex v, its normal can be estimated as average normal of all triangles incident with that

vertex. The normal should be stored into the Point3D[] normals field of the TriangleMesh

structure in order for the framework to use them. Think of some way to evaluate the average.

Consider the complexity of your solution.

