Exercise 4: Estimation of Gaussian curvature

Task: estimate per-vertex Gaussian curvature and visualize it as vertex colors.

For each vertex, it is possible to compute the sum of inner angles α surrounding it. Having the expression
$g=2 \pi-\sum_{i} \alpha_{i}$
One can see that its sign has a similar behavior as the Gaussian curvature of the surface at vertex v. In particular, for elliptical points (hills, walleys), g is positive, for parabolic points (flat or developable) $g=0$, and for hyperbolic points (saddle points) g is negative.

Task (4 points)

Compute g for each vertex of the mesh, using a proper data structure from the last exercise. Transform the scalar values of g into colors, represented by the ColorRGBA structure. There are two constructors you may use:

```
new ColorRGBA(byte red, byte green, byte blue)
```

- In this case, arguments are expected in range 0-255
new ColorRGBA(float red, float green, float blue)
- In this case, arguments are expected in range 0.0-1.0

Ideally, you should use the full scale of the colors, i.e. for example map the largest negative value of g to full red color, zero g value to blue and largest positive g to green. Consider some mapping function

Having an array of vertex colors, assign it to the field Colors of the TriangleMesh instance. Finally, inform the rendering framework that it should use the color attribute by setting the ShowColorAttribute flag of the renderer instance to true.

To evaluate your results, please use 3D models located at https://home.zcu.cz/~hachaf/ZPOS/

- elliptical.obj
- hyperbolic.obj
- parabolic.obj

Optional (1 point)

Consider the difference between g and the real Gaussian curvature G. From the analysis above it seems that the sign of g matches the sign of G. Can you find an example that demonstrates that $\mathrm{g}!=\mathrm{G}$?

Hint: Consider bodies where determining G is easy.

Can you imagine how does one have to adjust g to match G better? Hint: use Gauss-Bonnet theorem.

