
Exercise 8: Mesh simplification 

The objective of the exercise is to implement the quadrics based edge collapsing, also known as 

QSlim algorithm. In order to simplify the implementation, there is a simplification framework 

available that handles the priority queue of edges that are considered for collapsing. You can use it 

by simply adding the Simplification project to your solution (after copying it to the appropriate 

location). You can invoke the simplification from the client program using following code: 

BasicSimplificator simp = new BasicSimplificator(mesh, double.MaxValue, 1000); 
mesh = simp.Simplify(); 

There are only two missing parts of the algorithm that must be implemented: the edge cost function, 

and the positioning of the new vertex. Both of these functions are already implemented in some 

trivial manner in the BasciSimplificator class. Your task is to change the implementation and observe 

the impact on the results. 

Positioning a new vertex (3 points) 
The new vertex is placed to the minimum point of a quadric related to an edge <i,j>. 

Generally, it is necessary to keep a list of quadrics that are relevant for each vertex. At the beginning 

of the algorithm, this list is initialized with quadrics of incident triangles for each vertex. After each 

edge collapse step, the corresponding lists of quadrics are to be merged as well (keep in mind that 

each quadric should appear in the union only once). 

Having a triangle 𝑡 =< 𝑣1, 𝑣2, 𝑣3 >, it is possible to compute its normal as 𝑛 =
(𝑣2−𝑣1)×(𝑣3−𝑣1)

‖(𝑣2−𝑣1)×(𝑣3−𝑣1)‖
. The 

quadric can be computed from a vector 𝑞 = [𝑛𝑥, 𝑛𝑦, 𝑛𝑧, −𝑛. 𝑣1] as 𝑄 = 𝑞𝑞𝑇. For an edge <i,j>, we 

have a set of quadrics 𝑄𝑘 , 𝑘 ∈ 𝑛(𝑖) ∪ 𝑛(𝑗) , where 𝑛(𝑖) is a set of quadrics relevant to a vertex 𝑖. We 

can compute the aggregate quadric 𝑄𝑎 = ∑ 𝑄𝑘𝑘 . The task is to find a point 𝑝, for which 𝑝𝑇𝑄𝑎𝑝 is 

smallest. This is done by solving following system of linear equations 

[

𝑞11 𝑞12

𝑞21 𝑞22

𝑞13 𝑞14

𝑞23 𝑞24
𝑞31 𝑞32

0 0
𝑞33 𝑞34

0 1

] 𝑝 = [

0
0
0
1

] 

Use either the meta.numerics library or the MathNet library to build the matrix and find the 
solution. 
 
The overall task is to modify the function SetNewVertexPosition(int srcVertex, int 

destVertex) of the BasicSimplificator class, so that the correct new position of the 

vertex is computed. In order to do that, it is necessary to initialize and the array of lists of relevant 

quadrics for each vertex. The HashSet<int>[] data structure is a good candidate for the 

representation. The lists should probably reference an array of quadrics, one for each triangle, which 

should be initialized before the simplification starts. 

Finally, the calling of the SetNewVertexPosition indicates that an edge has been collapsed. 

Therefore it is necessary to merge the relevant lists of quadrics, compute the optimum and update 

the lists. 



Cost function (2 points) 
The cost function is evaluated for each edge in the mesh and it determines the order in which the 

collapses are performed. Generally, there are many choices of cost functions, based on curvature, 

normal, volumes, etc. At the other hand, it seems natural to use the quadric residual, since the 

quadrics are also going to be used for placing the new vertex. The residual is computed as 𝑟 =

 𝑝𝑇𝑄𝑝, where p is the optimal point as computed in the previous section. It might be a good idea to 

save the solution for the case that the edge is later indeed selected for collapsing. 

The task should be implemented in a function that has the same header as the 
CostFunctionEuclid function in the BasicSimplificator class. The BasicSimplificator 
constructor should be adjusted accordingly. 
 


