
Exercise 9: Mesh parameterization 

The objective of the exercise is to implement a harmonic parameterization of a mesh with linear 

preservation property. Several steps have to be done in order to obtain a fully functional software. 

For simplicity, we assume that on the input, there is a mesh topologically equivalent to a disc, i.e. 

having a single continuous border. 

Determining the border of the mesh 
It is necessary to identify which vertices are located on the border of the mesh, so that their positions 

can be fixed in the linear system. In order to do that, the data structure has to be extended by a pair 

of functions isOnBorder(int v) and nextVertexOnBorder(int v). The 

isOnBorder() function determines for a given vertex whether or not it lies on the border of the 

mesh, while the nextVertexOnBorder(int v) provides a subsequent border vertex for a 

given border vertex. It is important to have the border vertices provided in the order in which they 

appear on the border, so that their positions can be correctly determined. The implementation of 

these functions can be easily derived from the VV routine that supports meshes with border. 

For the purposes of further processing, it is also necessary to build some helper data structures that 

allow distinguishing between known (fixed) and unknown vertices. For that purpose, two Lists are 

created, one containing the indices of known (i.e. border) vertices (knowns, K elements), the other 

containing indices of unknown (inner) vertices (unknowns, U elements). Additionally, a dictionary of 

indices unknownIndices is created where for each unknown vertex its location in the respective 

list is stored. 

Building a system of equations and righthandsides 
It is necessary to build a sparse matrix of size UxU. Each row represents the condition for one 

unknown vertex, in terms of “spring stiffness”. Simplest way to compute the stiffness is 

𝐷𝑖𝑗 =
1

𝑛
 

 In order to achieve linear preservation, the spring stiffness can be computed as 

𝐷𝑖𝑗 =
1

2
(cot(𝛼) + cot(𝛽)) 

Having the stiffness computed for each edge, it is possible to compute the coefficients lambda for 

the matrix as 

𝜆𝑖𝑗 =
𝐷𝑖𝑗

∑ 𝐷𝑖𝑘𝑘

 

The values on the diagonal of the matrix should be set to -1. 

Coefficients lambda of unknown vertices form the matrix of the system, while coefficients of known 

vertices form the righthandside vectors, together with the known UV coordinates. 



Solving the system (5 points) 
In order to solve the system, use the meta.numerics library. It provides classes for representing 

the sparse matrix (SparseSquareMatrix) and a vector (ColumnVector). The 

SparseSquareMatrix provides the method for solving the system Solve(ColumnVector). 

The system has to be solved twice, once for the U coordinates and once for the V coordinates. 

Finally, the U and V coordinates should be retrieved for all vertices using the helper data structures. 


