
CAN Bus Analyser with Utilisation of FPGAs
Radek Holota1

Abstract
This article deals with a design of CAN bus analyser. For this purpose the design with

utilisation of Field Programmable Gate Arrays (FPGAs) is used. A system structure consisted
of basic blocks is introduced and the blocks are described. For the structure description is
used VHDL (VHSIC Hardware Description Language).

Introduction
Present conception of control system is based on the principle of decentralised subsystems

with a communication channel. Thanks to this arrangement the systems can be easily
expanded or modified. There are many standardised ‘Fieldbus’ protocols based on ISO/OSI
model for the communication in open systems. One of them is a CAN bus.

CAN (Controller Area Network) [1], [2] is a serial communications protocol which
efficiently supports distributed realtime control with a very high level of security. The CAN
protocol was developed in Europe for the use in passenger cars. Through the successful use of
CAN in automotive and industrial applications, CAN found its way to the US and other parts
of the world. Internationally standardized under ISO 11898. The massive utilisation of this
bus is supported by mostly producers of microcomputers which incorporate the CAN bus
controllers to their chips.

The bus analysers, which makes possible to watch the signals and messages on bus, are
necessary for the effective design of new systems communicated by CAN bus. At present
mostly CAN bus analysers are based on CAN controllers [3]. This work engages in the design
of analyser based on programmable logic arrays. The main goals of this project were to create
program segments in VHDL [4], [5] which describe the structures in FPGA circuits, to design
a special CAN bus receiver by using the segments and finally to realise the CAN bus analyser
by the interconnection of the receiver and a personal computer.

Background
CAN bus is exactly specified in [1]. Only basic properties, which are necessary for

understanding of analyzer’s settings and the result interpretation, are outlined in next
paragraphs.

Communication protocol
Four types of messages (frames) are defined in CAN communication protocols – Data

frame, Remote frame, Error frame and Overflow frame.
A Data frame serves for data transfer from a transmitter to the other nodes. At present two

formats of data frames are mainly supported – CAN 2.0A and CAN2.0B. The differences
between these formats are mainly in the length of identifier. The formats of messages are
shown in Fig. 1.

1 Ing. Radek HOLOTA
University of West Bohemia
Department of Applied Electronics and Telecommunication
Sedláčkova 15, 306 14 Plzeň, Czech Republic
phone: +420 377 634 231
fax: +420 377 634 202
e-mail: radek.holota@centrum.cz

mailto:radek.holota@centrum.cz

ID1
11bits

ID2
18bitsSO

F

SR
R

ID
E

R
TR r1 r0 DLC

4bits
DF

0-8bytes
CRC
15bits

C
R

C
 d

el
.

AC
K

de
l.

AC
K

sl
ot

EOF
7bits

IFS
3bits

ID1
11bitsSO

F

R
TR r0

DLC
4bits

DF
0-8bytes

CRC
15bits

EOF
7bits

IFS
3bitsID

E

AC
K

sl
ot

AC
K

de
l.

C
R

C
 d

el
.

CAN 2.0A

CAN 2.0B

Fig. 1: Structure of data frames – 2.0A and 2.0B

SOF (Start Of Frame) – marks the beginning of data frames or remote frames.
ID1 (IDentifier 1) – is 11 bits message identifier.
SRR (Substitute Remote Request) – is a recesive bit because the standard frame (2.0A) has
higher priority than extended (2.0B).
IDE (IDentifier Extension) – identifies the format of data frame (standard or extended).
ID2 (IDentifier 2) – is 18 bits message identifier.
RTR (Remote Transmission Request) – identifies the type of message (data or remote frame).
r1, r0 – are reserved bits for future utilisation.
DLC (Data Length) – indicates the number of bytes in the data field (4 bits wide).
DF (Data Field) – consists of the data to be transferred within a data frame (0-8 bytes).
CRC (Cyclic Redundancy Code) – is 15 bits cyclic redundancy code for frame checking.
CRC del. –is a CRC delimiter.
ACK (ACKnowledge slot)– is an acknowledgement that data were received.
ACK del. – is an acknowledge delimiter.
EOF (End Of Frame) – is 7 bits field that completes the message.
IFS (Inter Frame Spacing) – is a field between two frames.

A Remote frame has the same structure as the data frame but it hasn’t DF (data field). This
frame is used for requesting the data from another station (node).

 An Error frame is transmitted by any unit on detecting a bus error. It is composed of two
fields (Error Flag and Error Delimiter). There are two forms of error flags – active (6
dominant bits) and passive (6 recessive bits). The error delimiter is consisted of 8 recessive
bits.

An Overload frame is used to provide for an extra delay between the preceding and the
succeeding data or remote frames.

Design
Partial blocks in VHDL

The first goal was to create program segments in VHDL which realises basic structures. In
this project following segments were designed: BRP (Baud Rate Prescaler), BTL (Bit Timing
Logic), STUFF (stuffing), CRC (CRC checking), ST_MACH (a state machine for message
decoding), STACK (a block for storing data to a FIFO memory) and COMM (a state machine
for communication with a personal computer).
BRP

A system frequency fsys is obtained from an oscillator frequency fosc by BRP. Their value is
programmable in the range <0,31>. A relation between the system frequency and the
oscillator frequency is given by equation (1).

)1(*2 +
=

BRP
ff OSC

SYS (1)

BTL
This block performs a bit synchronisation. The ranges of programmable values are:

PROP_SEG ∈ 〈1,8〉, PHASE_SEG1 ∈ 〈1,8〉, PHASE_SEG2 ∈ 〈1,8〉 a SJW ∈ 〈1,4〉. More
information about bit timing configuration is in [6].
STUFF

The bit synchronisation is used in CAN bus communication. For better synchronisation the
method of bit stuffing is utilised. This method is based on inserting inverse bit after five
consecutive same bits. The STUFF block ignores these inserted bits.
CRC

The message transfer is checked by the CRC block which implements CRC code. The
CRC code is generated by polynomial function x15+x14+x10+x8+x7+x4+x3+1.
ST_MACH

This block is the state machine which decodes received messages. The outputs are a
message code, a data length, the identifiers ID1, ID2 and data.
STACK

The block STACK performs storing of received and decoded messages to the FIFO
memory. For description in VHDL the LPM (Library of Parameterizable Modules) function is
used and the embedded memory blocks EAB or ESB create this memory.
COMM

The last block COMM ensures the communication between the receiver and PC (Personal
Computer). In this case a parallel port is used. The block is designed as a state machine and
makes possible to set the parameters of bit synchronisation in accordance with user
requirements. The main goal of COMM is reading of stored messages and sending to PC.

Special receiver
After successfully simulation and testing of all designed blocks the special CAN bus

receiver block was designed with the utilisation of described blocks. The block diagram is
shown in Fig. 2.

OSC

BRP_VALUE RESET

CLOCK

BRP

DATAIN

BUS_IDLE

RESET

CLOCK

PROP PH1 PH2 SJW

SAMPLE_POINT

SAMPLED_DATA

BTL

RX_BIT

RESET

TRIG

CRC_STOP

CRC_OK

CRC

CLK

READ

RD_RQT
RESET

WRITE

DATA_CNT

IDENT1

IDENT2

TYPE_MESSAGE

DATA_MSG

RD_EMPTY

DATA_OUT

STACK

CLK

DATAIN

STUFF_ERR

CRC_OK

RESET

SAMPLE_POINT

TYPE_MESSAGE

DATA_CNT

IDENT1

IDENT2

DATA

BUS_IDLE

WR_MESSAGE

STUFF_DISABLE

CRC_RESET

CRC_STOP

ST_MACH

RX_DATA

CLOCK

TRIG

DISABLE
RESET

STUFF_BIT

STUFF_ERROR

STUFF

CLK

IN_OUT

RESET

DATAIN

PORT_INOUT

RESET_CAN

RESET_STACK

READ_DATA

REG1

REG2

COMM

RD_RQT

OSC

RX

BUS_IDLE

IN_OUT
CLK

DATA_PORT

RESET

RD_EMPTY

Fig. 2: Special receiver – block diagram

Software - CAN analyser
Finally a program in

Microsoft Visual C++ was
written. This program
forms a powerful CAN bus
analyser in cooperation
with the special receiver. It
makes possible to set the
parameters of receiver.
During process the
decoded messages are read
from the receiver and
displayed in a program
window. A screenshot of
the program is shown in
Fig. 3.

Fig. 3: CAN Analyser – software screenshot

Hardware – CAN Analyser
A general structure of planned hardware system is shown in Fig. 4. The hardware is not fully
designed yet. The design of CAN Analyser hardware is a subject of future work.

FPGA

PC
CAN bus

Transceiver
PCA82C250

Optocouplers

Special receiver

L
P
T

CAN_H
CAN_L

Fig. 4: Structure of planned hardware system

Conclusion
In this project the universal blocks in VHDL were designed and successfully simulated.

These blocks can be easily used in next projects. Then the special CAN bus receiver was
created with the utilisation of these blocks. The receiver and PC form the CAN bus analyser
which can be used for watching and analysing the messages on the bus. This analyser was
designed for educational purposes but can be used in industry too.

Acknowledgement
This paper is based upon work sponsored by FRVŠ under project G1/1616/2002.

References
[1] CAN Specification Version 2.0, Robert Bosch GmbH, 1991.
[2] Bagschik P.: An Introduction to CAN, I+ME ACTIA, 1998.
[3] Kostrurik K.: Prostředky ke sledování činnosti sběrnice typu CAN bus, Pilsen,

University of West Bohemia, 2000.
[4] Cohen B.: VHDL Coding Styles and Methodologies, 2nd Edition, Kluwer Academic

Publishers, USA, 1999.
[5] Salcic Z., Smailagic A.: Digital Systems Design and Prototyping, Second Edition,

Kluwer Academic Publishers, USA, 2000.
[6] Hartwich F., Bassemir A.: The Configuration of the CAN Bit Timing, 6th International

CAN Conference, Turin.

