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Liming Xiong
Shipeng Wang (Beijing Institute of Technology) Characterizing forbidden disjoint pairs for 2-factor of 2-connected graphs



Terminology

All graphs are finite, simple and undirected.

α(G): the independence number of G,

κ(G): the connectivity of G,

G[X]: the subgraph of G induced by X,

NG(x): the neighborhood of x in G,

NC(S): the neighborhood of S in the subgraph C of G.
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Terminology

A graph G is hamiltonian: G has a spanning cycle.

A 2-factor of a graph is a spanning subgraph whose components are

cycles.

The Ramsey number r(k, l) is defined as the smallest integer such that

every graph on r(k, l) vertices contains either a clique of k vertices

or an independent set of l vertices.
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Terminology

Let H be a set of graphs. A graph G is said to be H-free if G does

not contain F as an induced subgraph for all F in H, and we call

each graph F of H a forbidden subgraph.

Let H be a set of two graphs. Then we call H a forbidden disjoint

pair. Specially, if each of H is connected, then we call H a forbidden

pair.
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Terminology

We use H1 ∪ H2 to denote the disjoint union of two vertex-disjoint

graphs H1 and H2.

We use H1 ∪H2-free instead of (H1 ∪H2)-free.

So, H1 ∪H2-free means we forb H1 ∪H2 as an induced subgraph; it

does not mean forbidding H1 and/or H2.
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Motivation

Theorem 1.1 (Bedrossian, 1991)

Let {R,S} be a forbidden pair such that neither R nor S is an induced

subgraph of P3. Then every 2-connected graph H-free graph G is hamil-

tonian if and only if (up to symmetry) R = K1,3 and S is an induced

subgraph of P6, N1,1,1, or B1,2.
a

aBedrossian, Forbidden subgraph and minimum degree conditions for

Hamiltonicity, Ph.D. Thesis, Memphis State University, 1991
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Motivation

Because some non-Hamiltonian 2-connected graph with small order, Fau-

dree and Gould have characterized all forbidden pairs for hamiltonicity of

2-connected graphs with sufficiently large order.

Theorem 1.2 (Faudree and Gould, DM, 1997)

Let {R,S} be a forbidden pair such that neither R nor S is an induced

subgraph of P3. Then every 2-connected graph H-free graph with suffi-

ciently large order is hamiltonian if and only if (up to symmetry) R = K1,3

and S is an induced subgraph of P6, N1,1,1, B1,2 or Z3.
a

aR. J. Faudree and R. J. Gould, Characterizing forbidden pairs for Hamil-

tonian properties, Discrete Math. 173(1997)45-60

Shipeng Wang (Beijing Institute of Technology) Characterizing forbidden disjoint pairs for 2-factor of 2-connected graphs



Motivation

Because some non-Hamiltonian 2-connected graph with small order, Fau-

dree and Gould have characterized all forbidden pairs for hamiltonicity of

2-connected graphs with sufficiently large order.

Theorem 1.2 (Faudree and Gould, DM, 1997)

Let {R,S} be a forbidden pair such that neither R nor S is an induced

subgraph of P3. Then every 2-connected graph H-free graph with suffi-

ciently large order is hamiltonian if and only if (up to symmetry) R = K1,3

and S is an induced subgraph of P6, N1,1,1, B1,2 or Z3.
a

aR. J. Faudree and R. J. Gould, Characterizing forbidden pairs for Hamil-

tonian properties, Discrete Math. 173(1997)45-60

Shipeng Wang (Beijing Institute of Technology) Characterizing forbidden disjoint pairs for 2-factor of 2-connected graphs



Motivation

Faudree, Faudree and Ryjáček characterized all forbidden pairs for

2-factor of 2-connected graphs with sufficiently larger order.

Theorem 1.3 (Faudree, Faudree and Ryjáček, DM, 2008)

Let {R,S} be a forbidden pair such that neither R nor S is an induced

subgraph of P3. Then every 2-connected graph {R,S}-free graph with

sufficiently large order has a 2-factor (up to symmetry) R = K1,3 and S

is an induced subgraph of P7, B1,4, N1,1,3, or R = K1,4 and S = P4.
a

aJ. R. Faudree, R. J. Faudree and Z. Ryjáček, Forbidden subgraphs that

imply 2-factors, Discrete Math. 308(2008)1571-1582.
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Motivation

Li and Vrána characterized all forbidden disjoint pairs for hamiltonicity

of 2-connected graphs.

Theorem 1.4 (Li and Vrána, JGT, 2017)

Let {R,S} be a forbidden disjoint pair such that neither R nor S is an

induced subgraph of P3 or 3K1. Then there is an integer n0 such that

every 2-connected {R,S}-free graph of order at least n0 is hamiltonian, if

and only if, one of the following is true (up to symmetry):

R = K1,3 and S is an induced subgraph of P6, Z3, N0,1,2, N1,1,1,

K1 ∪ Z2, K2 ∪ Z1, or K3 ∪ P4;

R = K1,k with k ≥ 4 and S is an induced subgraph of 2K1 ∪K2;

R = kK1 with k ≥ 4 and S is an induced subgraph of Ll with l ≥ 3,

or 2K1 ∪Kl′ with l′ ≥ 2.

a

aB. L. Li and P. Vrána, Forbidden Pairs of Disconnected Graphs Implying

Hamiltonicity, J. Graph Theory 84(2017)249õ261.
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Our results

We consider the following problem.

Problem: Determine the set H of forbidden disjoint pairs H such

that every 2-connected H-free graph G with sufficiently larger order

has a 2-factor.

We first characterized forbidden subgraphs to guarantee a 2-connected

graph with sufficiently large order has a 2-factor.

Theorem 2.1 (Holub, Ryjáček, Vrána, Wang and Xiong, 2017+)

Let H be a graph. Then every 2-connected H-free graph G with order at

least r(4, 28) has a 2-factor if and only if H is an induced subgraph of P3

or 4K1.
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Our results

Theorem 2.2 (Holub, Ryjáček, Vrána, Wang and Xiong, 2017+)

Let {R,S} be a forbidden disjoint pair such that neither R nor S is an

induced subgraph of P3 or 4K1. Then there is an integer n0 such that

every 2-connected {R,S}-free graph of order at least n0 has a 2-factor if

and only if (up to symmetry):

R = K1,3 and S is an induced subgraph of P7, B1,4, N1,1,3, 4∪ Z1,

Z1 ∪ P4, or Z4 ∪K1;

R = K1,4 and S is an induced subgraph of P3 ∪ 2K1;

R = K1,r with r ≥ 5 and S is an induced subgraph of P3 ∪ K1 or

3K1 ∪K2;

R = kK1 with k ≥ 5 and S is an induced subgraph of Ll with l ≥ 3,

or 3K1 ∪Kl′ with l′ ≥ 2.
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Sketch the proof of the pair {K1,4, P3 ∪ 2K1}

Next, we will sketch the proof of one pair {K1,4, P3 ∪ 2K1}. Before

sketching the proof of the pair {K1,4, P3 ∪ 2K1}, we need the following

theorems and lemma.

Theorem 2.3 (Chvátal and Erdös, 1972, DM)

Let G be a graph on at least three vertices with independent number α

and connectivity κ, where α ≤ κ. Then G is hamiltonian.
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Sketch the proof of the pair {K1,4, P3 ∪ 2K1}

Theorem 2.4 (Aldred, Egawa, Fujisawa, Ota and Saito, 2011, JGT)

For n ≥ 4, every (n− 1)-connected K1,n-free graph contains a 2-factor.

Lemma 2.5 (Holub, Ryjáček, Vrána, Wang and Xiong, 2017+)

Let G be a 2-connected kK1-free graph such that G can be partitioned

into two sets X and Y satisfying the following:

(1) X contains a clique C such that each vertex of X has at least k + 6

neighbors in C;

(2) α(G[Y ]) ≤ 2.

Then G has a 2-factor.

Now, we will prove that every 2-connected {K1,4, P3 ∪ 2K1}-free

graph with order at least r(5, r(4, 28) + 4) has a 2-factor.
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Sketch the proof of the pair {K1,4, P3 ∪ 2K1}

We first claim that G is 5K1-free.

Since G is 5K1-free and n(G) ≥ r(5, r(4, 28) + 4), G contains a

clique C of size r(4, 28)+4. Set X = {x ∈ V (G) : dC(x) ≥ 16} and

Y = V (G)\X, clearly C ⊆ X. Then κ(G[X]) ≥ 16 and α(G[X]) ≤
α(G) ≤ 4, G[X] is hamiltonian by Chvátal-Erdös Theorem.

We can prove that α(G[Y ]) ≤ 3. If α(G[Y ]) ≤ 2, then by Lemma

2.5, we are done. Hence we assume that α(G[Y ]) = 3.

X
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N Y
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Y
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Sketch the proof of the pair {K1,4, P3 ∪ 2K1}

In the following, we need distinguish two cases.

Case 1. G[Y ] is disconnected.

By α(G[Y ]) = 3, G[Y ] has at most three components. We can prove

that G[Y ] has exactly three components Y1, Y2, Y3 and each G[Yi] is a

clique.

For i ∈ {1, 2, 3}, let P (zi1, z
i
2) = zi1P

izi2 denote a path of G[X ∪ Yi]
such that V (P i) = V (Yi) and zi1, z

i
2 ∈ X, and let X1 = V (P (z11 , z

1
2) ∩

P (z21 , z
2
2) ∩ P (z31 , z

3
2).

We need to consider the following six basic cases because any other cases

can be changed to some basic case.
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Sketch the proof of the pair {K1,4, P3 ∪ 2K1}

Subcase 1.1. |X1| = 6.

X1

X2

X

Y1 Y2 Y3

G[X −X1 ∪X2] is hamiltonian.

Since κ(G[X − X1 ∪ X2]) ≥ κ(G[X]) − |X1 ∪ X2| ≥ 16 − 12 = 4

and α(G[X − X1 ∪ X2]) ≤ α(G) ≤ 4, G[X − X1 ∪ X2] is hamiltonian

by Chvátal-Erdös Theorem. Then G has a 2-factor with exactly four

components.
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Sketch the proof of the pair {K1,4, P3 ∪ 2K1}

Subcase 1.2. |X1| = 5.

Y1 Y2 Y3

X1

X

X2

G[X −X1 ∪X2] is hamiltonian

Since κ(G[X − X1 ∪ X2]) ≥ κ(G[X]) − |X1 ∪ X2| ≥ 16 − 9 = 7

and α(G[X − X1 ∪ X2]) ≤ α(G) ≤ 4, G[X − X1 ∪ X2] is hamiltonian

by Chvátal-Erdös Theorem. Then G has a 2-factor with exactly three

components.
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Sketch the proof of the pair {K1,4, P3 ∪ 2K1}

Subcase 1.3. |X1| = 4.

Y1Y1 Y2Y2 Y3Y3

X1X1

X2 X2

XX
G[X −X1 ∪X2] is hamiltonianG[X −X1 ∪X2] is hamiltonian

Since κ(G[X − X1 ∪ X2]) ≥ κ(G[X]) − |X1 ∪ X2| ≥ 16 − 9 = 7

and α(G[X −X1 ∪X2]) ≤ α(G) ≤ 4, G[X −X1 ∪X2] is hamiltonian by

Chvátal-Erdös Theorem, and thus G has a 2-factor.
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Sketch the proof of the pair {K1,4, P3 ∪ 2K1}

Subcase 1.4. |X1| = 3.

Y1 Y2 Y3

X1

X
G[X −X1] is hamiltonian

Since κ(G[X −X1]) ≥ κ(G[X])− |X1| ≥ 16− 3 = 13 and α(G[X −
X1]) ≤ α(G) ≤ 4, G[X −X1] is hamiltonian by Chvátal-Erdös Theorem.

Then G has a 2-factor with exactly two components.
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Sketch the proof of the pair {K1,4, P3 ∪ 2K1}

Case 2. G[Y ] is connected.

If κ(G[Y ]) ≥ 3, then G[Y ] is 3-connected K1,4-free, G[Y ] has a

2-factor by Theorem 2.4, and thus G has a 2-factor.

Subcase 2.1. κ(G[Y ]) = 2.

Let {v1, v2} be a vertex-cut of G[Y ]. By α(G[Y ]) = 3, G[Y ] −
{v1, v2} has at most three components. If G[Y ] − {v1, v2} has exactly

two components Y1, Y2, then we can prove that both G[Y1] and G[Y2]

are cliques. Hence G[Y ] is hamiltonian, and thus G has a 2-factor with

exactly two components.

1
Y

2
Y

X

2
v

1
v
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Sketch the proof of the pair {K1,4, P3 ∪ 2K1}
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Sketch the proof of the pair {K1,4, P3 ∪ 2K1}

Hence we assume that G[Y ]−{v1, v2} has exactly three components

Y1, Y2, Y3. Then by α(G[Y ]) = 3, each G[Yi] is a clique.

If some Yi has at least three vertices, then G[Yi] has hamiltonian

cycle. Thus we delete the set Yi and the resulting graph of G[Y ]−Yi
has a hamiltonian cycle, and thus G has a 2-factor with exactly three

components.

2
Y

3
Y

X

2
v

1
v

1
Y

Hence we assume that |Yi| ≤ 2 for i ∈ {1, 2, 3}.
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Sketch the proof of the pair {K1,4, P3 ∪ 2K1}
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Sketch the proof of the pair {K1,4, P3 ∪ 2K1}

We claim that vi is adjacent to every vertex in Y1 ∪ Y2 ∪ Y3 for

i ∈ {1, 2}. Since G is 2-connected, there exists two disjoint edges

x1y2, x2y2 such that x1, x2 ∈ X and y1, y2 ∈ {v1, v2} ∪ Y1 ∪ Y2.

We need to consider the following three basic cases because any other

cases can be changed to some basic case.
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Sketch the proof of the pair {K1,4, P3 ∪ 2K1}

Subcase 2.1.1. y1 and y2 are in the same Yi.
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Figure: G has a 2-factor with exactly three components.

Since κ(G[X − {x1, x2, x3, x4}]) ≥ κ(G[X]) − |{x1, x2, x3, x4}| ≥
16 − 4 = 12 and α(G[X − {x1, x2, x3, x4}]) ≤ α(G) ≤ 4, G[X −
{x1, x2, x3, x4}] is hamiltonian by Chvátal-Erdös Theorem. Then G has a

2-factor with exactly three components.
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Sketch the proof of the pair {K1,4, P3 ∪ 2K1}

Subcase 2.1.2. y1 and y2 are in different Yi.
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Figure: G has a 2-factor with exactly two components.

Since κ(G[X − {x1, x2, x3, x4}]) ≥ κ(G[X]) − |{x1, x2, x3, x4}| ≥
16 − 4 = 12 and α(G[X − {x1, x2, x3, x4}]) ≤ α(G) ≤ 4, G[X −
{x1, x2, x3, x4}] is hamiltonian by Chvátal-Erdös Theorem. Then G has a

2-factor with exactly two components.
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Sketch the proof of the pair {K1,4, P3 ∪ 2K1}

Subcase 2.1.3. {y1, y2} ∩ {v1, v2} 6= ∅.
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Figure: G has a 2-factor with exactly three components.

Since κ(G[X − {x1, x2, x3, x4}]) ≥ κ(G[X]) − |{x1, x2, x3, x4}| ≥
16 − 4 = 12 and α(G[X − {x1, x2, x3, x4}]) ≤ α(G) ≤ 4, G[X −
{x1, x2, x3, x4}] is hamiltonian by Chvátal-Erdös Theorem. Then G has a

2-factor with exactly three components.
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Sketch the proof of the pair {K1,4, P3 ∪ 2K1}

Subcase 2.2. κ(G[Y ]) = 1.

Let v be a cut vertex of G[Y ]. Then by α(G[Y ]) = 3, G[Y ]− v has

at most three components.

If G[Y ] − v has exactly two components Y1, Y2, then we can prove

that both G[Y1] and G[Y2] are cliques.
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Y

X

v

1
x
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x
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4
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Since κ(G[X − {x1, x2, x3, x4}]) ≥ κ(G[X]) − |{x1, x2, x3, x4}| ≥
16 − 4 = 12 and α(G[X − {x1, x2, x3, x4}]) ≤ α(G) ≤ 4, G[X −
{x1, x2, x3, x4}] is hamiltonian by Chvátal-Erdös Theorem. Then G has a

2-factor with exactly two components.
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Sketch the proof of the pair {K1,4, P3 ∪ 2K1}

Hence we assume that G[Y ]− v has exactly three components Y1, Y2
and Y3.

We claim that each G[Yj ] is a clique and v is adjacent to every vertex

in Y1 ∪ Y2 ∪ Y3.

If G[Y ∪ NC(Y )] is 2-connected, then there exists a subgraph C ′

of clique C such that G[Y ∪ NC(Y ) ∪ C ′] is 4K1-free and |G[Y ∪
NC(Y )∪C ′]| ≥ r(4, 28), and thus G[Y ∪NC(Y )∪C ′] has a 2-factor

by Theorem 2.1. Also we can prove that G[X − NC(Y ) ∪ C ′] is

hamiltonian by Chvátal-Erdös Theorem. Then G has a 2-factor.

Hence we assume that κ(G[Y ∪ NC(Y )]) = 1. Then there exists a

vertex x ∈ X\(NC(Y )) such that x is adjacent to some vertex in Y1 ∪
Y2 ∪ Y3. Let xy1 ∈ E(G) with y1 ∈ Y1.
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Sketch the proof of the pair {K1,4, P3 ∪ 2K1}
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We claim that each G[Yj ] is a clique and v is adjacent to every vertex

in Y1 ∪ Y2 ∪ Y3.

If G[Y ∪ NC(Y )] is 2-connected, then there exists a subgraph C ′

of clique C such that G[Y ∪ NC(Y ) ∪ C ′] is 4K1-free and |G[Y ∪
NC(Y )∪C ′]| ≥ r(4, 28), and thus G[Y ∪NC(Y )∪C ′] has a 2-factor

by Theorem 2.1. Also we can prove that G[X − NC(Y ) ∪ C ′] is

hamiltonian by Chvátal-Erdös Theorem. Then G has a 2-factor.

Hence we assume that κ(G[Y ∪ NC(Y )]) = 1. Then there exists a

vertex x ∈ X\(NC(Y )) such that x is adjacent to some vertex in Y1 ∪
Y2 ∪ Y3. Let xy1 ∈ E(G) with y1 ∈ Y1.
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Sketch the proof of the pair {K1,4, P3 ∪ 2K1}

Hence we assume that G[Y ]− v has exactly three components Y1, Y2
and Y3.

We claim that each G[Yj ] is a clique and v is adjacent to every vertex

in Y1 ∪ Y2 ∪ Y3.

If G[Y ∪ NC(Y )] is 2-connected, then there exists a subgraph C ′

of clique C such that G[Y ∪ NC(Y ) ∪ C ′] is 4K1-free and |G[Y ∪
NC(Y )∪C ′]| ≥ r(4, 28), and thus G[Y ∪NC(Y )∪C ′] has a 2-factor

by Theorem 2.1. Also we can prove that G[X − NC(Y ) ∪ C ′] is

hamiltonian by Chvátal-Erdös Theorem. Then G has a 2-factor.

Hence we assume that κ(G[Y ∪ NC(Y )]) = 1. Then there exists a

vertex x ∈ X\(NC(Y )) such that x is adjacent to some vertex in Y1 ∪
Y2 ∪ Y3. Let xy1 ∈ E(G) with y1 ∈ Y1.
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Sketch the proof of the pair {K1,4, P3 ∪ 2K1}

Subcase 2.2.1. x has a neighbor z1 ∈ C\NC(Y ).

We can prove that x is adjacent to every vertex in Y1 ∪ Y2. Let

z2 ∈ V (C)\(NC(Y ) ∪ {z1}). Choose a shortest path P joining z2 and

some vertex y3 ∈ Y3 such that the internal vertices of P are in X. Clearly,

the length of P is at most three.
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Sketch the proof of the pair {K1,4, P3 ∪ 2K1}

If the length of P is two, denoted by z2x1y3, then we can prove that

x1 is adjacent to every vertex in Y2 ∪ Y3, and we can find a 2-factor

of G with exactly two components.
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Sketch the proof of the pair {K1,4, P3 ∪ 2K1}

If the length of P is three, denoted by z2x2x3y3, then we can prove

that x2 is adjacent to some vertex in Y1 ∪ Y2, and thus we can find

a 2-factor of G with exactly two components.
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Sketch the proof of the pair {K1,4, P3 ∪ 2K1}

Subcase 2.2.2. NC(x) ⊆ NC(Y ).

Let x1 be a neighbor of x in NC(Y ).

If x has a neighbor in Y2 ∪ Y3, then we can prove that x is adjacent

to every vertex in Y1 ∪ Y2 ∪ Y3. Also we can prove that x1 has two

neighbors y1 and y2 in Y1 and Y2, respectively, then G has a 2-factor

with exactly two components.
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Sketch the proof of the pair {K1,4, P3 ∪ 2K1}

If x has no neighbor in Y2 ∪ Y3, then we can prove x1 is adjacent to

every vertex in Y1 ∪ Y2. Also we can prove that there exists a vertex

x2 in NC(Y ) has a neighbor in Y3, then G has a 2-factor with exactly

two components.
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Thanks for your attention!
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