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Introduction

Fault detection

• Fault detection helps to improve system reliability or reduce
operating costs.

• Important methods of fault detection are model-based methods.

• One group of model-based methods is based on multiple-model fault
detection. The aims is to decide correctly about a model from a set
of all models that describe a possible behavior of a system.

Passive fault detection

• The decision about model is generated based on the input and
output data. There is no action of a passive detector on a system.

• Since the passive fault detection architecture does not influence a
system, some faults become evident after unacceptably long
time-period.
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Introduction
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Active fault detection

• Active fault detection (AFD) is based on an idea of improving the
quality of detection by probing the monitored system by a suitably
designed input signal u.

• AFD methods can be classified into two groups.
• Deterministic methods consider system disturbances to be bounded

signals.
• Probabilistic methods assume disturbances to be random variables

with known probabilistic distributions.

• A probabilistic AFD method based on minimization of a general
detection cost criterion over an infinite-time horizon is discussed.
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Problem formulation

xk+1 =Aµkxk+Bµkuk+Gµkwk,
yk =Cµkxk+Hµkvk,
Pj,i =P(µk+1 = j |µk = i)

ξk+1 =φ(ξk , uk , yk+1)

Estimator
of xk and µk

J = lim
F→∞

E

{
F∑
k=0

ηkLd(µk , dk)

}

[
dk
uk

]
=ρ(yk0 , u

k−1
0 )

J = lim
F→∞

E

{
F∑
k=0

ηk L̄d(ξk , dk)

}

[
dk
uk

]
= ρ̄(ξk )

Imperfect state information
problem

Perfect state information
problem
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State xk and model index µk
are not directly accessible.

Hyper state ξk represents
sufficient statistics of xk and µk .

Model of system Model of system and estimator

Active fault
detector

Active fault
detector

Criterion Criterion
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Problem formulation

Model of system and state estimator

System
xk , µk

State
estimator

uk yk

ξk

Model of system and state estimator

ξk+1 = φ(ξk ,uk , yk+1),

where k ∈ T = {0, 1, . . .} is a time index, ξk ∈ G ⊂ Rnξ is a hyper state,
uk ∈ U = {ū1, . . . , ūNu} ⊂ Rnu is an input, yk ∈ Rny is an output, and
φ : G × U × Rny 7→ G is a function that describes a behavior of the
original system coupled with a state estimator.

• The state estimator consists of a bank of Kalman filters and
Generalized Pseudo Bayes algorithm that tracks only a h-step history
of possible model sequences and reduce computational complexity.
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Problem formulation

Active fault detector

The goal is to find an active fault detector represented by a stationary
policy ρ̄ : G 7→ M× U that generates an input uk and a decision
dk ∈M = {1, 2, . . . ,Nµ} about the model index µk ∈M,[

dk
uk

]
= ρ̄(ξk) =

[
σ̄(ξk)
γ̄(ξk)

]
,

where σ̄ : G 7→ M is a stationary policy of the decision generator
and γ̄ : G 7→ U is a stationary policy of the input signal generator.

Criterion

J = lim
F→∞

E

{
F∑

k=0

ηk L̄d(ξk , dk)

}
,

where L̄d : G ×M 7→ R+ is a given detection cost function that imposes
a penalty on incorrect decisions, η ∈ (0, 1) is a discount factor, and E{·}
is the expectation operator.
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Dynamic programming solution

Dynamic programming

The optimal value function V ∗ : G 7→ R satisfies the Bellman functional
equation

V ∗(ξ)= min
d∈M,u∈U

E
{
L̄d(ξ, d)+ηV ∗(φ(ξ,u, y′))|ξ,u, d

}
.

• The Bellman functional equation is almost impossible to solve
analytically. Thus, numerical algorithms are used such as the policy
iteration algorithm.

• Due to a size of the hyper-state space G, suboptimal techniques
such as a state-space quantization or linear value function
approximation (VFA) must be employed.

• It is not easy to find the VFA by dynamic programming. However,
reinforcement learning could naturally identify the most important
regions of the hyper-state space for which the VFA could be
subsequently obtained.

SysTol 2016 8 / 19



Reinforcement learning solution

Q-function

In reinforcement learning, a Q-function is used. The optimal Q-function
Q∗ : G × U ×M 7→ R for the AFD problem can be defined as

Q∗(ξ,u, d)= L̄d(ξ, d)+η E {V ∗(φ(ξ,u, y′))|ξ,u} .

Q-function approximation

An approximation Q̃ : G × U ×M× Rnθ 7→ R of the Q-function can be
defined as

Q̃(ξ,u, d ,θ)= L̄d(ξ, d)+

nθ∑
i=1

ψi (ξ,u)θi = L̄d(ξ, d)+ψ(ξ,u)Tθ,

where θ = [θ1, . . . , θnθ ]T ∈ Rnθ is a vector of weights and
ψ : G × U 7→ Rnθ is a vector-valued function of basis functions.
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Reinforcement learning solution

Temporal-difference Q-learning

• A temporal difference (TD) Q-learning is a method of learning the
active fault detector iteratively from experience.

• The decision dk and the auxiliary input uk are generated by the
approximate policy ρ̃(m) = [σ̄∗, (γ̃(m))T]T according to

dk = σ̄∗(ξk)=arg min
d∈M

L̄d(ξk , d),

uk = γ̃(m)(ξk)=arg min
u∈U

{
Q̃
(
ξk ,u, σ̄

∗(ξk),θ(m)
)}
,

where m = 0, 1, . . . , is an iteration index.

• The weights θ(m) of the approximate Q-function

Q̃
(
ξk ,u, σ̄

∗(ξk),θ(m)
)

are updated using a TD error δQk .
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Reinforcement learning solution

Temporal-difference Q-learning

• The TD-error expresses a difference between the expected costs and
current admitted costs based on the simulation data,

δQk = L̄d(ξk , dk)+ηQ̃
(
ξk+1,uk+1, σ̄

∗(ξk+1),θ(m)
)

− Q̃
(
ξk ,uk , σ̄

∗(ξk),θ(m)
)
.

• The weights θ(m) can be updated as

θ(m+1) = θ(m) + αkδ
Q
k zQk ,

where αk > 0 is a scalar step-size parameter, λ ∈ [0, 1] is a TD
parameter, and zQk ∈ Rnθ is an eligibility vector recursively defined as

zQk+1 = ηλzQk +ψ(ξk+1,uk+1).

• Exploration of the hyper-state space can be supported by assuming
an ε-greedy policy, 0 ≤ ε ≤ 1.

SysTol 2016 11 / 19



Reinforcement learning solution

Temporal-difference Q-learning algorithm

Initialization Intialize θ(0), ψ, η, αk , λ, ε, and set m = 0, k = 0.

1. Observation Measure output yk .

2. Filtering Compute the hyper state ξk .

3. TD algorithm If k ≥ 1, update the
weights θ(m) using the TD Q-learning.

1) Get hyper states ξk−1, ξk .

2) Compute the TD error δQk−1.

3) Update the weights θ(m+1).
4) Set m=m+1.

4. Decision and input Generate the decision dk and the
input uk with respect to the actual weights θ(m) and ε.

5. Prediction Continue by the prediction step
of the state estimation algorithm.

Go to Step 1. Set k = k + 1 and continue until
a stopping condition is satisfied.
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Numerical example

A second-order linearized model of a pendulum

[
x1,k+1

x2,k+1

]
=

[
1 Ts

1− Tsg
l

−Tsβµk

ml2

][
x1,k

x2,k

]
+

[
0
Ts

ml2

]
uk +Gwk ,

yk =
[

1 0
]
+Hvk ,

where x1,k [rad] is an angle of displacement from the zero downward position,
x2,k [rad·s−1] is an angular velocity, uk ∈{−10, 0, 10} [N·m] is a moment of a
force applied at the pendulum joint, β1 =6 [kg ·m2 · s−1] is a friction
coefficient, l =1 [m] is a length of pole, m=2 [kg] is a mass of pendulum,
g =9.81 [m·s−2] is the gravitational acceleration, Ts =5·10−2 [s] is a sampling
period, G=8·10−4I2, H=10−3, P(µk+1 = j |µk = i)=0.02 for i , j ∈{1, 2}, i 6= j
are transition probabilities, and the initial conditions are x̂T

0|−1 =[0 0],

Σx
0|−1 =2·10−4I2, and P(µ0 =1)=1.

In case of the faulty behavior the friction coefficient changes to

β2 =6.2 [kg ·m2 · s−1].
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Numerical example

Simulation example settings

The detection cost function is defined as

Ld(µk , dk) =

{
0 if dk = µk ,

1 otherwise.
(1)

• The discount factor is η = 0.98 and the h-step history is h = 1.

• A performance is studied for a zero constant signal (ZSG), sine
signal with amplitude 10 and frequency 1 [Hz] (SSG), active fault
detector designed by a TD learning (AFDR) that uses 21 normalized
Gaussian basis functions to approximate the value function and 100
Monte Carlo (MC) simulations to approximate the expectation, and
active fault detector designed by TD Q-learning (AFDRQ) that uses
63 normalized Gaussian basis functions, and the exploration
parameter ε = 0.03. Both detectors are tuned in 10000 time steps
with parameters αk = 1000

2000+k and λ = 0.4.

SysTol 2016 14 / 19



Numerical example

Simulation results

• The performance, in terms of estimates of the criterion Ĵ and
variance var{Ĵ}, of the designed active fault detector compared to
the other input signals is evaluated through 1000 MC simulations.

Input signal generator Ĵ var{Ĵ}
ZSG 1.3119 0.0043
SSG 1.0942 0.0029

AFDR 1.0239 0.0025
AFDRQ 0.9879 0.0023
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Numerical example

Simulation results

• Typical trajectories of the model µk , decision dk , and conditional
model probabilities P(µk |Ik0) for the AFDRQ.
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Conclusion

Contributions and conclusion

• A problem of active fault detection for stochastic linear Markovian
switching systems on the infinite-time horizon is considered.

• An active fault detector that minimizes a general detection cost
criterion is designed.

• A simulation-based algorithm based on the TD Q-learning is
proposed and its good performance is shown in the numerical
example.

• The future step is to extend the problem to nonlinear systems and
apply the proposed algorithm to find the active fault detector.

• Another direction in the future can be better analysis of the basis
function selection and convergence.
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Thank you!
contact: http://idm.kky.zcu.cz
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