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Abstract

A graph G is k-Hamilton-connected (k-hamiltonian) if G−X is Hamilton-connected

(hamiltonian) for every setX ⊂ V (G) with |X| = k. In the paper, we prove that

(i) every 5-connected claw-free graph with minimum degree at least 6 is 1-

Hamilton-connected,

(ii) every 4-connected claw-free hourglass-free graph is 1-Hamilton-connected.

As a byproduct, we also show that every 5-connected line graph with minimum

degree at least 6 is 3-hamiltonian.

1 Introduction

We follow the most common graph-theoretical terminology and for concepts and notations
not defined here we refer e.g. to [2]. Specifically, by a graph we mean a finite undirected
graph G = (V (G), E(G); in general, we allow graphs to have multiple edges. We use
dG(x) to denote the degree of a vertex x, and we set Vi(G) = {x ∈ V (G)| dG(x) = i},
V≤i(G) = {x ∈ V (G)| dG(x) ≤ i} and V≥i(G) = {x ∈ V (G)| dG(x) ≥ i}. The weight of
an edge e is the number of edges incident with e and distinct from it.

For a set M ⊂ V (G), ⟨M⟩G denotes the induced subgraph on M , and for a simple
graph F , G is said to be F -free if G is a simple graph that does not contain an induced
subgraph isomorphic to F . Specifically, for F = K1,3 we say that G is claw-free. The
hourglass Γ is the only graph with degree sequence 4, 2, 2, 2, 2 (see Fig. 2), and for F = Γ
we say that G is hourglass-free.

The neighborhood of a vertex x, denoted NG(x), is the set of all neighbors of x, and a
vertex x ∈ V (G) is simplicial (locally connected, locally disconnected, eligible) if ⟨NG(x)⟩G
is a complete (connected, disconnected, connected noncomplete) subgraph of G. An edge
e ∈ E(G) is pendant if one of its vertices is of degree 1.

For x ∈ V (G), G − x is the graph obtained from G by removing x and all edges
adjacent to it. If x, y ∈ V (G) are such that e = xy /∈ E(G), then G+ e is the graph with
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V (G + e) = V (G) and E(G + e) = E(G) ∪ {e}, and, conversely, for e = xy ∈ E(G) we
denote G− e the graph with V (G− e) = V (G) and E(G− e) = E(G) \ {e}. Specifically,
for F ⊂ G and e ∈ E(G), we set F − e = F if e ∈ E(G) \ E(F ). We use ω(G) to denote
the number of components of G.

A graph G is hamiltonian if G contains a hamiltonian cycle, i.e. a cycle of length
|V (G)|, and G is Hamilton-connected if, for any a, b ∈ V (G), G contains a hamiltonian
(a, b)-path, i.e., an (a, b)-path P with V (P ) = V (G). For k ≥ 1, G is k-hamiltonian if
G−X is hamiltonian for every set of vertices X ⊂ V (G) with |X| = k, and k-Hamilton-
connected ifG−X is Hamilton-connected for every set of verticesX ⊂ V (G) with |X| = k.
Note that a hamiltonian graph is necessarily 2-connected, a Hamilton-connected graph
must be 3-connected, a k-hamiltonian graph must be (k + 2)-connected, and if G is k-
Hamilton-connected, then G must be (k + 3)-connected. The line graph of a graph G is
the simple graph L(G) with vertex set E(G), in which two vertices are adjacent if and
only if the corresponding edges of G share a vertex, and a graph G is a line graph if there
is a graph H such that G = L(H). Note that every line graph is claw-free, and that the
degree of a vertex in G equals the weight of the corresponding edge in H.

The main motivation of our research is the following conjecture by Thomassen.

Conjecture A [18]. Every 4-connected line graph is hamiltonian.

There are many known equivalent versions of the conjecture (see [3] for a survey on
this topic). We mention here the following one, which is of importance for our results.

Theorem B [16]. The following statements are equivalent:
(i) Every 4-connected line graph is hamiltonian.
(ii) Every 4-connected claw-free graph is 1-Hamilton-connected.

In this paper, we prove the following two results giving a partial affirmative answer to
the statement (ii) of Theorem B, i.e., equivalently, to Conjecture A:

• in Section 3, we show that every 4-connected claw-free hourglass-free graph is 1-
Hamilton-connected,

• in Section 4, we show that every 5-connected claw-free graph with minimum degree
at least 6 is 1-Hamilton-connected.

As a byproduct, in Section 5 we show that every 5-connected line graph with minimum
degree at least 6 is 3-hamiltonian.

2 Preliminaries

In this section we summarize some background knowledge that will be needed for our
results.

Let H be a graph and G = L(H). It is well-known that if we admit H to be a
multigraph, then (unlike in line graphs of simple graphs), for a line graph G, a graph H
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such that G = L(H) is not uniquely determined. A simple example is the hourglass Γ in
Fig. 2, where Γ is the line graph of all three graphs to the right. As shown in [15], this
difficulty can be overcome by imposing an additional requirement that simplicial vertices
in G correspond to pendant edges in H.

The basic graph of a multigraph is the simple graph with the same vertex set, in which
every multiedge is replaced by a single edge. A multitriangle (multistar) is a multigraph
such that its basic graph is a triangle (star). The center of a multistar S with m edges
is the vertex x ∈ V (S) with dS(x) = m (for |V (S)| = 2 we choose the center arbitrarily),
and all other vertices of S are its leaves. An induced multistar S in H is pendant if none
of its leaves has a neighbor in V (G) \ V (S), and similarly a multitriangle T is pendant if
exactly one of its vertices (called the root) has neighbors in V (G) \V (S). We will use the
following operations, introduced in [20] (Operation B) and [15] (Operation C).
Operation B. Choose a pendant multitriangleH with vertices {v, x, y} and root v, delete

all edges joining v and x, and add the same number of edges between v and y.
Operation C. Choose a pendant multistar in H and replace every leaf of degree k ≥ 2

by k leaves of degree 1.
Now, for a multigraph H, BC(H) denotes the multigraph obtained from H by recursively
repeating operations B and C. It can be shown that L(H) = L(BC(H)), BC(H) is
uniquely determined and has the property that simplicial vertices in L(H) correspond to
pendant edges in H.

Proposition C [15]. Let G be a connected line graph of a multigraph. Then there is,
up to an isomorphism, a uniquely determined multigraph H such that a vertex e ∈ V (G)
is simplicial in G if and only if the corresponding edge e ∈ E(H) is a pendant edge in H.

For a line graph G, we will always consider its preimage to be the unique multigraph
with the properties given in Proposition C; this preimage will be denoted L−1(G). Simi-
larly, we will write x = L(e) and e = L−1(x) if e ∈ E(L−1(G)) is the edge corresponding
to a vertex x ∈ V (G). In accordance with our definitions, when working with a claw-free
graph or with a line graph G, we always consider G to be a simple graph, while if G is a
line graph, for its preimage H = L−1(G) we always admit H to be a multigraph, i.e. we
always (even if we say “a graph H”) allow H to have multiple edges.

An edge cut R of a graphH is essential ifH−R has at least two nontrivial components.
For an integer k > 0, H is essentially k-edge-connected if every essential edge cut R of
G contains at least k edges. Obviously, a line graph G = L(H) of order at least k + 1 is
k-connected if and only if the graph H is essentially k-edge-connected.

Given a trail T and an edge e in a multigraph G, we say that e is dominated (internally
dominated) by T if e is incident to a vertex (to an interior vertex) of T , respectively. A
trail T in G is called an internally dominating trail, shortly IDT, if T internally dominates
all the edges in G. For e1, e2 ∈ E(G), an IDT with terminal edges e1, e2 will be referred to
as an (e1, e2)-IDT. If T is a closed trail, every vertex of T is considered to be an internal
vertex, hence every dominated edge is internally dominated, and we simply say that T is
a dominating trail. A classical result by Harary and Nash-Williams [5] shows that a line
graph G = L(H) of order at least 3 is hamiltonian if and only if H contains a dominating
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closed trail. The following result relates Hamilton paths in a line graph to internally
dominating trails in its preimage.

Theorem D [9]. A line graph G of order at least 3 is Hamilton-connected if and only
if H = L−1(G) has an (e1, e2)-IDT for any pair of edges e1, e2 ∈ E(H).

For x ∈ V (G), the local completion of G at x is the graph G
∗
x = (V (G), E(G) ∪

{y1y2| y1, y2 ∈ NG(x)}), i.e. the graph obtained from G by adding to ⟨NG(x)⟩G all the
missing edges. The closure cl(G) of a claw-free graph G is then defined [13] as the graph
obtained from G by recursively performing the local completion operation at eligible
vertices, as long as this is possible, and G is said to be closed if G = cl(G). It is well-
known [13] that, for every claw-free graph G, cl(G) is uniquely determined, cl(G) is the
line graph of a triangle-free simple graph, and cl(G) is hamiltonian if and only if G
is hamiltonian. However, recall that the closure operation cl(G) does not preserve the
(non-)Hamilton-connectedness of G [14, 1].

To handle Hamilton-connected graphs, the concept of SM-closure was developed in [7].
For a given claw-free graph G, we construct a graph GM by the following construction.

(i) If G is Hamilton-connected, we set GM = cl(G).
(ii) If G is not Hamilton-connected, we recursively perform the local completion oper-

ation at such eligible vertices for which the resulting graph is still not Hamilton-
connected, as long as this is possible. We obtain a sequence of graphs G1, . . . , Gk

such that
• G1 = G,
• Gi+1 = (Gi)

∗
xi

for some xi ∈ VEL(Gi), i = 1, . . . , k − 1,
• Gk has no hamiltonian (a, b)-path for some a, b ∈ V (Gk),
• for any x ∈ VEL(Gk), (Gk)

∗
x is Hamilton-connected,

and we set GM = Gk.
A graph GM obtained by the above construction is called a strong multigraph closure (or
briefly an SM -closure) of the graph G, and a graph G equal to its SM -closure is said to
be SM -closed.

The following theorem summarizes basic properties of the SM -closure operation.

Theorem E [7]. Let G be a claw-free graph and let GM be its SM -closure. Then GM

has the following properties:
(i) V (G) = V (GM) and E(G) ⊂ E(GM),
(ii) GM is obtained from G by a sequence of local completions at eligible vertices,
(iii) G is Hamilton-connected if and only if GM is Hamilton-connected,
(iv) if G is Hamilton-connected, then GM = cl(G),
(v) if G is not Hamilton-connected, then either

(α) VEL(G
M) = ∅ and GM = cl(G), or

(β) VEL(G
M) ̸= ∅ and (GM)

∗
x is Hamilton-connected for any x ∈ VEL(G

M),
(vi) GM = L(H), where H contains either

(α) at most 2 triangles and no multiedge, or
(β) no triangle, at most one double edge and no other multiedge,
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(vii) if G contains no hamiltonian (a, b)-path for some a, b ∈ V (G) and
(α) X is a triangle in H, then E(X) ∩ {L−1

GM (a), L−1
GM (b)} ≠ ∅,

(β) X is a multiedge in H, then E(X) = {L−1
GM (a), L−1

GM (b)}.

Note that in some cases (specifically, in cases (iv) and (v)(α) of Theorem E), we have
VEL(G

M) = ∅ and GM = cl(G), implying that GM is uniquely determined. However, if
VEL(G

M) ̸= ∅, then, for a given graph G, its SM -closure GM is in general not unique.
It can be shown that if G is SM-closed and H = L−1(G), then H does not contain as a
subgraph (not necessarily induced) any of the graphs shown in Fig. 1. The graph T1 in
Fig. 1 will be often referred to as the diamond.

•

•

••

..................................................................................................................

............................................................................................................................................................................

............................................................................................................................................................................

T1

e

•

•

•

..................................................................................................................

............................................................................................................................................................................

.....................................................................................................................................................

e

T2

Figure 1

For 1-Hamilton-connectedness, the second and third authors developed in [16] the
concept of 1HC-closure. We do not give technical details of the construction here since
these are not needed for our proofs. For details, we refer an interested reader to [16].
The following two results from [16] show that a 1HC-closure of a claw-free graph can be
obtained by a sequence of local completions at eligible vertices, and is a line graph of a
multigraph with a special structure.

Proposition F [16]. Let G be a claw-free graph. Then there is a sequence of graphs
G0, . . . , Gk such that

(i) G0 = G,
(ii) V (Gi) = V (Gi+1) and E(Gi) ⊂ E(Gi+1) ⊂ E((Gi)

∗
xi
) for some xi ∈ V (Gi) eligible

in Gi,
(iii) Gk is a 1HC-closure of G.

Theorem G [16]. Let G be a claw-free graph and let G be its 1HC-closure. Then
(i) G is a line graph,
(ii) for some x ∈ V (G), the graph G− x is SM -closed,
(iii) G is 1-Hamilton-connected if and only if G is 1-Hamilton-connected.

Let G be a 1HC-closure of G, let H = L−1(G) and, by Theorem G(ii), let x ∈ V (G)
be such that G − x is SM-closed. Then, for e = L−1(x), L(H − e) is SM-closed, since
clearly L(H − e) = G − x. However, note that it is possible that the graph H − e does
not satisfy properties (vi) and (vii) of Theorem E, since possibly H − e ̸= L−1(G − x)
(that is, H − e can be another “multigraph preimage” of the graph G − x). In order
to obtain the graph L−1(G − x), we have to apply to H − e the operations B,C; i.e.,
L−1(G− x) = BC(H − e).

In Section 4, we will also need the following result (see Corollary 3.2 of [8]).
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Theorem H [8]. Let H be a 4-edge-connected graph and let G = L(H). Then G is
2-Hamilton-connected if and only if G is 5-connected.

3 4-connected claw-free hourglass-free graphs

Our first main result is a strengthening of the main result of [10] and gives a partial
solution to the statement (ii) of Theorem B, i.e., equivalently, to Thomassen’s conjecture.

Here the hourglass is the unique graph Γ with degree sequence 4, 2, 2, 2, 2. The vertex
x ∈ V (Γ) of degree 4 is called the center of Γ and we also say that Γ is centered at x.
Note that Γ is a line graph and, in multigraphs, it has three nonisomorphic preimages
(see Fig. 2).
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Theorem 1. Every 4-connected claw-free hourglass-free graph is 1-Hamilton-connected.

As already noted, a 1-Hamilton-connected graph is necessarily 4-connected. Thus, by
Theorem 1, we observe that a claw-free hourglass-free graph G is 1-Hamilton-connected
if and only if G is 4-connected. This immediately implies the following fact.

Corollary 2. 1-Hamilton-connectedness is polynomial-time decidable in the class of
claw-free hourglass-free graphs.

Note than an analogous result is known to be true in planar graphs (an easy conse-
quence of [17], page 342).

For the proof of Theorem 1, we will need several auxiliary results.

Lemma 3. Let G be a claw-free graph such that every induced hourglass in G is
centered at an eligible vertex and let G be a 1HC-closure of G satisfying the statement of
Proposition F. Then every induced hourglass in G is centered at an eligible vertex.

Proof. Let G0, . . . , Gk be a sequence of graphs with the properties given in Propo-
sition F, let G = Gk, and let i, 0 ≤ i ≤ k − 1, be the smallest integer such that
Gi+1 contains an induced hourglass Γ centered at a locally disconnected vertex. Denote
V (Γ) = {u0, u1, u2, u3, u4} such that E(Γ) = {u0u1, u0u2, u0u3, u0u4, u1u2, u3u4} (i.e., u0

is the center of Γ). By the choice of i, E(Γ) ̸⊂ E(Gi). If Gi contains all the edges of Γ
containing u0, then u0 centers a claw in Gi; hence we can choose the notation such that
u0u1 /∈ E(Gi). By Proposition F, there is a vertex v eligible in Gi such that u0u1 ∈ NGi

(v).
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Let u5 be the first vertex of a (u0, u1)-path in ⟨NGi
(v)⟩Gi

. Then ⟨{u0, v, u5, u3, u4}⟩Gi
is

an induced hourglass in Gi, centered at u0. This contradicts the choice of i since u0 is
locally disconnected in Gi.

Lemma 4. Let G be a 4-connected claw-free hourglass-free graph. Then there is a
1HC-closure G of G such that L−1(G) has at most three vertices of degree three.

Proof. Let G be a 1HC-closure of G with the properties given in Proposition F and
let H = L−1(G). Recall that H is essentially 4-edge-connected and that a vertex of G is
eligible if and only if the corresponding edge of H is in a triangle or in a multiedge.

Claim 1. Let x ∈ V (H) be of degree 3 in H. Then there is a subgraph T ⊂ H such
that T is isomorphic to the graph T1 or T2 of Fig. 1 and dT (x) = 3.

Proof. Let NH(x) = {u, v, w}. We distinguish two possibilities.
First suppose that u, v, w are distinct. Since H is essentially 4-edge-connected, we

have dH(w) ≥ 3, and since the vertex L(xw) does not center in G an hourglass with
a locally disconnected center, xw is in a triangle. Since dH(x) = 3, we have, up to a
symmetry, uw ∈ E(H). The same idea, applied to the edge xv, implies vw ∈ E(H). But
then x,w, u, v are vertices of a T1 in H.

Secondly, let u = v. Similarly as before, the edge xw is in a triangle, implying
uw ∈ E(H) and then x, u, v are vertices of a T2 in H. �

Let now x ∈ V (H) be of degree 3 in H. We distinguish two cases.

Case 1: All vertices of degree 3 in H are in NH [x].
If x is in a T2, then |NH [x]| = 3 and we are done. Thus, suppose x is in a T1 ⊂ H. If

all vertices of T1 are of degree 3, then either T1 is connected to H − T1 with exactly two
edges, in which case H is not essentially 4-edge-connected, or H is in a K4, but then the
removal of any edge from H yields a diamond, contradicting the fact that G contains a
vertex whose removal yields an SM -closed graph (recall that a preimage of an SM-closed
graph cannot contain a diamond). Hence H contains at most three vertices of degree 3.

Case 2: There is y ∈ V (H) such that dH(y) = 3 and xy /∈ E(H).
By Claim 1, there are subgraphs Tx and Ty of H (not necessarily induced) such that

dTx(x) = dTy(y) = 3 and each of Tx, Ty is isomorphic to T1 or to T2. By the properties
of the 1HC-closure, there is an edge e ∈ E(H) such that L(H − e) is SM -closed, i.e., the
graph H ′ = BC(H − e) contains at most two triangles or at most one double edge.

Suppose now that Tx − e (not excluding the possibility e /∈ E(Tx), in which case
Tx−e = Tx) is a pendant multistar or a pendant multitriangle inH−e. By the connectivity
assumption and since dTx(x) = 3, we easily observe that Tx is isomorphic to T2 such that,
denoting V (Tx) = {x, x1, x2} with x2 having no neighbors in H − Tx, x1 is connected
to {x, x2} with at least three edges (two between x, x1 and at least one between x2, x1).
Now, if e ̸= xx2, then BC(H − e) contains a multiedge with multiplicity at least 3,
a contradiction. Hence Tx − e, and, symmetrically, also Ty − e, is neither a pendant
multistar nor a pendant multitriangle in H − e, implying that both Tx − e and Ty − e is
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a subgraph of H ′ = BC(H − e). Since H ′ contains at most two triangles or at most one
double edge, e is an edge of both Tx and Ty and, since x, y are nonadjacent, e contains
neither x nor y. Now, if one of Tx, Ty is a T2, then the removal of any edge leaves in H ′

two double edges or a double edge or a triangle, which is not possible. Hence both Tx and
Ty is the diamond T1.

Denote e = wz, and let u and v be the fourth vertex in Tx and Ty, respectively. Then
we have, up to a symmetry, the following two possibilities (see Fig. 3):

(a) dTx(w) = dTy(w) = 3 (implying dTx(z) = dTy(z) = 2),
(b) dTx(w) = dTy(z) = 3 (implying dTx(z) = dTy(w) = 2).

We consider these possibilites separately.
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(a) Let first dTx(w) = dTy(w) = 3. If u = v, then H − e, hence also H ′, contains a
diamond, a contradiction. Thus, u ̸= v. If dH(u) = 3, then, by the previous observations,
u is a vertex of degree 3 of a diamond Tu. This implies either uu′ ∈ E(H) and u′w ∈ E(H)
for some other vertex u′, or uz ∈ E(Tu), but then, in both cases, Tu is a diamond also in
H − e and H ′, a contradiction. If dH(u) = 2, then {uw, xw, xz} is an edge-cut separating
the edge ux, a contradiction. Hence dH(u) > 3 and, symmetrically, dH(v) > 3. Thus,
among the vertices in V (Tx)∪V (Ty), only x, y and possibly z are of degree 3. IfH contains
another vertex t of degree 3, then t is adjacent to neither x nor y and, by Claim 1, t is in
a diamond T1. But then, for any edge f ∈ E(H), H − f contains at least three triangles
(none of them being pendant), a contradiction.

(b) Secondly, let dTx(w) = dTy(z) = 3. For u = v immediately dH(u) = dH(v) > 3; for
u ̸= v, similarly as before, dH(u) = 3 implies that uz ∈ E(H) and H ′ contains a diamond,
and dH(u) = 2 contradicts the connectivity assumption. Thus, in both cases, we have
dH(u) > 3 and, symmetrically, dH(v) > 3. Hence x and y are the only vertices of degree
3 in V (Tx)∪V (Ty). Similarly, if dH(t) = 3 for some other t ∈ V (H), then t is adjacent to
neither x nor y, t is in a diamond and, for any f ∈ E(H), H − f contains at least three
nonpendant triangles, a contradiction.

The core of a graph H, denoted co(H), is the graph obtained from H by deleting all
vertices of degree 1 and suppressing all vertices of degree 2 (i.e., contracting exactly one
of the edges xy, yz for each path xyz with dH(y) = 2). Note that, by the definition of
the core, all vertices of degree one or two are deleted or suppressed, hence δ(co(H)) ≥ 3.

For the proof of Theorem 1, we will need two more results.

Theorem I [8]. Let H be a graph such that co(H) has two edge-disjoint spanning
trees and G = L(H) is 3-connected. Then, for any any pair of edges e1, e2 ∈ E(H), H
has an internally dominating (e1, e2)-trail.
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Theorem J [12], [19]. A graph G has k edge-disjoint spanning trees if and only if

|E0| ≥ k(ω(G− E0)− 1)

for each subset E0 of the edge set E(G).

Proof of Theorem 1. Let G be a 4-connected claw-free hourglass-free graph and, by
Lemma 4, let G be a 1HC-closure of G such that H = L−1(G) has at most three vertices
of degree 3. Recall that H is essentially 4-edge-connected.

By Theorem D, we need to show that for any f, e1, e2 ∈ E(H), the graph H−f has an
(e1, e2)-IDT. Since the graph L(H − f) = G−x (where x = L(F )) is clearly 3-connected,
by Theorem I, it is sufficient to show that the graph co(H − f) has two edge-disjoint
spanning trees. Thus, let f ∈ E(H).

Claim 1. The graph co(H)− f has two edge-disjoint spanning trees.

Proof. First note that possibly f /∈ E(co(H)) if f is a pendant edge of H; in this case
co(H)− f = co(H). Obviously, co(H) is essentially 4-edge-connected (since so is H) and
has at most three vertices of degree 3 (since, by the connectivity assumption, pendant
edges in H can be incident only to vertices of degree at least 4 in co(H)). Hence, for any
set E ⊂ E(co(H)), every component C of co(H) − E is connected to (co(H) − E) − C
by at least 4 edges, except for the case when C is a trivial component consisting of one
of the at most three vertices of degree 3. This implies 2|E| ≥ 4(ω(co(H) − E) − 3) +
3 · 3 = 4ω(co(H) − E) − 3, from which, by parity, 2|E| ≥ 4ω(co(H) − E) − 2, i.e.,
|E| ≥ 2ω(co(H)− E)− 1.

Now, set H ′ = co(H) − f and let E0 ⊂ E(H ′). Set E = E0 ∪ {f} if f ∈ E(co(H))
and E = E0 otherwise . Then clearly |E0| ≤ |E| ≤ |E0| + 1, E ⊂ E(co(H)) and
ω(co(H)−E) = ω(H ′−E0). Hence |E0| ≥ |E|−1 ≥ 2ω(co(H)−E)−2 = 2ω(H ′−E0)−2.
By Theorem J, H ′ has two edge-disjoint spanning trees. �

Claim 2. The graph co(co(H)− f) has two edge-disjoint spanning trees.

Proof follows from the well-known fact that if a graph has k edge-disjoint spanning trees,
then so does any of its contractions (see e.g. [11], Lemma 2.1(iii)). �

Claim 3. co(H − f) = co(co(H)− f).

Proof. The claim is trivially true if f is a pendant edge ofH, so suppose f is nonpendant.
As already noted, we have V1(co(H) − f) = ∅ and V2(co(H) − f) = V3(co(H)) ∩ V (f),
from which V (co(co(H)− f)) = V (H) \ [V1(H)∪ V2(H)∪ (V3(H)∩ V (f))]. On the other
hand, V1(H−f) = V1(H)∪ (V2(H)∩V (f)) (note that V2(H) is an independent set by the
connectivity assumption) and V2(H − f) = (V2(H) \ V (f))∪ (V3(H)∩ V (f)), from which
V1(H − f) ∪ V2(H − f) = V1(H) ∪ V2(H) ∪ (V3(H) ∩ V (f)), implying V (co(H − f)) =
V (H) \ [V1(H)∪V2(H)∪ (V3(H)∩V (f))]. Thus, co(H− f) and co(co(H)− f) are graphs
on the same vertex set.
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In the construction of co(H−f), each of the vertices in V1(H−f) = V1(H)∪ (V2(H)∩
V (f)) was removed together with a pendant edge; in co(co(H)− f), in the construction
of co(H), the set V1(H) was removed, and in the step from co(H)− f to co(co(H)− f),
V2(H)∩V (f) was removed. Thus, in the construction of both graphs, the sets of removed
vertices are the same. Consequently, the sets of suppressed vertices are also the same and
the claim follows. �

Now, co(H − f) has two edge-disjoint spanning trees by Claims 3 and 2.

4 5-connected claw-free graphs

Our second main result strengthens the main result of [6] and and can be considered
as another partial solution to the statement (ii) of Theorem B, i.e., equivalently, to
Thomassen’s conjecture.

Theorem 5. Every 5-connected claw-free graph with minimum degree at least 6 is
1-Hamilton-connected.

In our proof, we will use the hypergraph technique developed in [6], in which vertices
of degree 3 are replaced with 3-hyperedges. For the sake of completeness, we repeat here
some essential parts from [6]. We include here only basic definitions and facts that are
needed for our proof; for more details we refer the reader to the original paper [6].

A hypergraph is a pair H = (V (H), E(H)), where V (H) is a set of vertices and E(H)
is a (multi)set of subsets of V (H) that are called the hyperedges of H. A hyperedge of
cardinality k is called a k-hyperedge. We consider only 3-hypergraphs, i.e., hypergraphs
in which each hyperedge is a 2-hyperedge or a 3-hyperedge. Multiple copies of the same
hyperedge are allowed. Throughout the rest of this chapter, the symbol H will always
stand for a 3-hypergraph.

In our argument, 3-hypergraphs are obtained from graphs by replacing vertices of
degree 3 by hyperedges consisting of their neighbors. Conversely, to every 3-hypergraph
H we assign a graph Gr(H) obtained such that for each 3-hyperedge e of H we add a
vertex ve and replace e by three edges joining ve to each vertex of e.

A hypergraph H is connected if for every nonempty proper subset X ⊂ V (H), there is
a hyperedge of H intersecting both X and V (H) \X. If H is connected, then an edge-cut
in H is an inclusionwise minimal set of hyperedges F such that H − F is disconnected.
For an integer k, H is k-edge-connected if it is connected and contains no edge-cuts of
cardinality less than k. The degree of a vertex v is the number of hyperedges incident
with v.

For X ⊂ V , we define H[X] (the induced subhypergraph of H on X) as the hypergraph
with vertex set X and hyperedge set E(H[X]) = {e ∩X : e ∈ E(H) and |e ∩X| ≥ 2}. If
e ∩X = f ∩X for distinct hyperedges e, f , we include this hyperedge in multiple copies.
Furthermore, we assume a canonical assignment of hyperedges of H to hyperedges of
H[X]. To stress this fact, we always write the hyperedges of H[X] as e ∩ X, where
e ∈ E(H).
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A quasigraph in H is a pair (H, π), where π is a function assigning to each hyperedge e
of H a set π(e) ⊂ e which is either empty or has cardinality 2. The value π(e) is called the
representation of e under π. When the underlying hypergraph is clear from the context,
we simply speak about a quasigraph π. Quasigraphs will be denoted by lowercase Greek
letters. Considering all the nonempty sets π(e) as graph edges, we obtain a graph π∗

on V (H). We say that hyperedges e with π(e) ̸= ∅ are used by π; the set of all such
hyperedges of H is denoted by E(π), and the edges of the graph π∗ are denoted by E(π∗).

A quasigraph π is acyclic if π∗ is a forest and π is a quasitree if π∗ is a tree. If
e is a hyperedge of H, then π − e is the quasigraph obtained from π by changing the
value at e to ∅. The complement π of π is the spanning subhypergraph of H consisting
of all the hyperedges of H not used by π. Note that π is not a quasigraph, and since
π includes the information about its underlying hypergraph H, we can speak about π
without specifying H.

For X ⊂ V (H), the π-section of H at X is the hypergraph H[X]π with V (H[X]π) = X
and E(H[X]π) = {e ∩ X : e ∈ E(H) is such that |e ∩ X| ≥ 2 and π(e) ⊂ X}. The
quasigraph π inH naturally determines a quasigraph π[X] inH[X]π, defined by (π[X])(e∩
X) = π(e), where e ∈ E(H) and e ∩X is any hyperedge of H[X]π. The quasigraph π[X]
is called the quasigraph induced by π on X. Note that whenever we speak about the
complement of π[X], it is, in accordance with the definition, its complement in H[X]π.

A quasigraph π has tight complement (in H) if π satisfies one of the following:
(a) π is connected, or
(b) there is a partition V (H) = X1∪X2 such that for i = 1, 2, Xi is nonempty and π[Xi]

has tight complement (in H[Xi]
π); furthermore, there is a hyperedge e ∈ E(π) such

that π(e) ⊂ X1 and e ∩X2 ̸= ∅.
A set X ⊂ V (H) is π-solid (in H), if π[X] is a quasitree with tight complement in H[X]π.

Let P be a partition of V (H). An edge e ∈ E(H) is P-crossing if e intersects at least
two classes of P and, for a P-crossing edge e, e/P is the set of all classes P ∈ P with
e ∩ P ̸= ∅.

The contraction of P is the operation resulting in the hypergraphH/P with V (H/P) =
P and E(H/P) = {e/P : e is P-crossing}. Thus, H/P is a 3-hypergraph, possibly with
multiple hyperedges.

If π is a quasigraph in H, we define π/P as the quasigraph in H/P consisting
of the hyperedges e/P such that π(e) is P-crossing; the representation is defined by
(π/P)(e/P) = π(e)/P . Obviously, the complement of π/P in H/P is denoted by π/P .

Finally, if π is a quasigraph in H, then a partition P of V (H) is said to be π-skeletal
if every X ∈ P is π-solid and the complement of π/P in H/P is acyclic.

The following lemma is a special case of the Skeletal Lemma (Lemma 17 of [6]).

Lemma K [6]. Every 3-hypergraph H contains an acyclic quasigraph σ such that
there is a σ-skeletal partition S of V (H).
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Proof of Theorem 5. If G is a counterexample to Theorem 5 and G is a 1HC-
closure of G, then G is also a counterexample to Theorem 5; hence it is sufficient to
prove Theorem 5 for line graphs (of multigraphs). Thus, let G = L(H). If H is 4-edge-
connected, then the statement follows from Theorem H, hence it remains to prove the
theorem in the case when G = L(H) and H is not 4-edge-connected. By Theorem D, we
need to show that, for any e1, e2, e3 ∈ E(H), the graph H − e3 has an (e1, e2)-IDT.

By the minimum degree assumption on G, every edge of H is of weight at least 6, and
by the connectivity assumption, H is essentially 5-edge-connected. By the assumption
that H is not 4-edge-connected, H must contain vertices of degree 3, and since H is
essentially 5-edge-connected, V≤3(H) is an independent set in H. Thus, it is sufficient to
find in H − e3 an (e1, e2)-trail spanning all vertices in V≥4(H). For finding such a trail,
we use the concept of an X-join: for X ⊂ V (H), an X-join in H is a subgraph H0 of H
such that a vertex of H is in X if and only if its degree in H0 is odd (in particular, ∅-joins
are eulerian subgraphs).

For each edge e of H, fix its vertex ue of degree at least 4 in H (which exists since
V≤3(H) is independent), and for e1, e2 ∈ E(H) set

X(e1, e2) =

{
{ue1 , ue2} if ue1 ̸= ue2 ,
∅ otherwise.

Now, if the graph H − e1 − e2 − e3 contains a connected X(e1, e2)-join J spanning all of
V≥4(H), then, by the classical observation of Euler, all the edges of J can be arranged
in a trail TJ with first edge incident with ue1 and last edge incident with ue2 . Adding e1
and e2, we obtain a desired (e1, e2)-trail T in H − e3 spanning V≥4(H) (if u1 = u2, we use
the fact that u1 is incident with an edge of TJ). Thus, our task is reduced to finding a
connected X(e1, e2)-join in H − e1 − e2 − e3 spanning all vertices in V≥4(H). For finding
such a join we use the hypergraph technique.

For this, we need the following observation. Suppose that there is a vertex u ∈ V≤3(H)
having at most 2 neighbors, and let H ′ be the graph obtained by removing u if u has 1
neighbor, or by suppressing u (i.e., removing u and adding an edge joining its neighbors)
if u has 2 neighbors, respectively. By the connectivity and minimum degree assumptions,
V≥4(H

′) = V≥4(H) and if, for any f1, f2, f3 ∈ E(H ′), H ′ − f3 contains an (f1, f2)-trail
spanning V≥4(H

′), we can easily find a desired (e1, e2)-trail in H − e3 spanning V≥4(H).
Thus, we can suppose that V1(H) = V2(H) = ∅ and every vertex in V3(H) has 3 neighbors.

We can now define the 3-hypergraph H with vertex set V (H) = V≥4(H); the hyper-
edges of H are of two types:

• the edges of H with both endvertices in V (H) ,
• 3-hyperedges consisting of the neighbors of any vertex in V3(H).

Recall that every vertex in V3(H) has three distinct neighbors and these are in V (H) =
V≥4(H) since V3(H) is independent. Also note that clearly co(H) = Gr(H).

We show that H has properties that will be of importance for us (Claims 1 and 2 are
proved in [6]; for the sake of completeness, we include their proofs here as well).

Claim 1. The hypergraph H is 4-edge-connected.
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Proof. Suppose that this is not the case, let F be an inclusionwise minimal edge-cut in
H with |F | ≤ 3 and let A be the vertex set of a component of H− F . Let e ∈ F . By the
minimality of F , |e− A| ≥ 1. We assign to e an edge e′ of H, defined as follows:

• if |e| = 2, then e′ = e,
• if |e| = 3 and e ∩ A = {u}, then e′ = uve,
• if |e| = 3, |e ∩ A| = 2 and e− A = {u}, then e′ = uve.

Then F ′ := {e′ : e ∈ F} is an edge-cut in H and since H is essentially 5-edge-connected,
F ′ is a trivial edge-cut. Since |F ′| ≤ 3, A contains a vertex of degree 3 (in H), a
contradiction. �

Claim 2. No 3-hyperedge of H is included in an edge-cut of size 4 in H.

Proof. Let F be an edge-cut of size 4 in H. As in the proof of Claim 1, we consider the
corresponding edge-cut F ′ in H. Since H is essentially 5-edge-connected, one component
of H −F ′ consists of a single vertex w whose degree in H is 4. Assuming that F includes
a 3-hyperedge e, we find that in H, w has a neighbor v of degree 3. Thus, the weight of
the edge vw is 5, a contradiction. �

Let e1, e2, e3 ∈ E(H) be the given edges, and let wi, i = 1, 2, 3, be the vertex of ei
distinct from uei . We define a 3-hypergraph H{e1,e2,e3} by the following construction.

(1) If some two (possibly all three) of e1, e2, e3 have a common vertex of degree 3, i.e.,
wi = wj for some i, j ∈ {1, 2, 3}, then let H1 be the hypergraph obtained from H
by removing the 3-hyperedge corresponding to the vertex wi = wj;
otherwise set H1 = H
(note that, after this step, |{wi : 1 ≤ i ≤ 3 and wi ∈ Gr(H1)}| ∈ {0, 1, 3}).

(2) Let H{e1,e2,e3} be the hypergraph obtained from H1 by performing the following for
every wi ∈ Gr(H1):
(2a) if wi has degree 3 in H, then the 3-hyperedge ewi

of H1 corresponding to wi

is replaced by the 2-hyperedge ewi
− {uei},

(2b) otherwise, the 2-hyperedge ei of H1 is deleted
(note that, unlike H, the hypergraph H{e1,e2,e3} can contain vertices of degree 3).

Note that Gr(H{e1,e2,e3}) is the graph obtained from H− e1− e2− e3 by deleting those
its vertices of degree 1 and suppressing those its vertices of degree 2, which are not in
V (H) (i.e., deleting V1(H−e1−e2−e3)\V (H) and suppressing V2(H−e1−e2−e3)\V (H)).

Thus, our task is reduced to finding a connected X(e1, e2)-join in Gr(H{e1,e2,e3}) span-
ning all vertices in V (H). If H{e1,e2,e3} has a quasitree with tight complement, then the
existence of such a join is guaranteed by the following result (Lemma 28 of [6]).

Lemma L [6]. Let H be a 3-hypergraph containing a quasitree π with tight comple-
ment, and let X ⊂ V (H). Then there is a quasigraph τ such that E(π) and E(τ) are
disjoint, and π∗ + τ ∗ is a connected X-join in Gr(H) spanning all vertices in V (H).
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It should be noted here that, by Claims 1 and 2, H satisfies the assumptions of the
following result (Theorem 5 of [6]), which therefore guarantees the existence of a quasitree
with tight complement in H.

Theorem M [6]. Let H be a 4-edge-connected 3-hypergraph. If no 3-hyperedge in H
is included in any edge-cut of size 4, then H contains a quasitree with tight complement.

However, in H{e1,e2,e3}, a quasitree with tight complement does not have to exist
due to the fact that H{e1,e2,e3} is obtained from H by removing some hyperedges, hence
reducing degrees of some vertices. In such case, the following result gives the existence of
a quasigraph and a skeletal partition S of V (H) with a special structure, and we can use
S for constructing the desired join.

Theorem 6. Let H be a 4-edge-connected 3-hypergraph with at least one 3-hyperedge
such that no 3-hyperedge of H is included in an edge-cut of size 4 and Gr(H) is essentially
5-edge-connected. Let e1, e2, e3 ∈ E(Gr(H)) and set H′ = H{e1,e2,e3}. If H′ has no
quasitree with tight complement, then there is an acyclic quasigraph π in H′ and a π-
skeletal partition S of V (H′) such that:

(i) one of the classes of S is a trivial class {x},
(ii) the degree of x in H is 4,
(iii) e1, e2, e3 are 2-hyperedges in H and each of e1, e2, e3 is incident (in H) with x.

Proof. The proof of Theorem 6 basically follows the proof of the main result of [6]
(Sections 8 and 11), where the calculations are adapted to our assumptions.

By Lemma K, H′ contains an acyclic quasigraph π and a π-skeletal partition P . By the
assumption, H′ has no quasitree with tight complement, hence P is nontrivial. Assume
that H/P has n vertices (i.e., |P| = n) and m3 3-hyperedges. Let m′ denote the number
of hyperedges in H′/P, m′

k the number of k-hyperedges of π/P and m′
k the number of

k-hyperedges of π/P , k ∈ {2, 3}. Thus, m′ = m′
2 +m′

3 +m′
2 +m′

3.
Since π/P is acyclic, the graph Gr(π/P) is a forest. As Gr(π/P) has n+m′

3 vertices
and m′

2 + 3m′
3 edges, we find that

m′
2 + 2m′

3 ≤ n− 1. (1)

Since P is π-solid and π is an acyclic quasigraph, we know that m′
2 + m′

3 ≤ n − 1.
Moreover, by the assumption that π is not a quasitree with a tight complement, either
this inequality or (1) is strict. Summing the two, we obtain

m′ +m′
3 ≤ 2n− 3. (2)

For an arbitrary hypergraph H∗, let s(H∗) denote the sum of degrees of all its vertices.
By the construction ofH′ fromH, the operations (1), (2a) and (2b) can decrease the degree
sum by at most 6 (if all the edges e1, e2, e2 are hyperedges of size 2; otherwise the decrease
is less than 6). Hence we have

s(H′/P) ≥ s(H/P)− 6. (3)
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Set n4 = |V4(H/P)| and n5+ = |V≥5(H/P)|. Since H is 4-edge-connected, we have
n4 + n5+ = n and

s(H/P) ≥ 4n4 + 5n5+ . (4)

By simple counting,

s(H′/P) = 2(m′
2 +m′

2) + 3(m′
3 +m′

3) = 2m′ +m′
3 +m′

3. (5)

Combining (4), (3) and (5), we have

4n4 + 5n5+ − 6 ≤ s(H/P)− 6 ≤ s(H′/P) = 2m′ +m′
3 +m′

3,

from which
4n4 + 5n5+ − 6 ≤ 2m′ +m′

3 +m′
3. (6)

From (2) we have
2m′ + 2m′

3 ≤ 4(n4 + n5+)− 6,

which, using (6), gives

2m′ + 2m′
3 ≤ 2m′ +m′

3 +m′
3 − n5+ ,

or, equivalently,
m′

3 + n5+ ≤ m′
3. (7)

Suppose that m′
3 > 0. Let T ′ = (π/P)∗ be the forest on P which represents π/P .

In each component of T ′, containing an edge corresponding to a 3-hyperedge of (π/P),
choose a root in that edge and direct the edges of T ′ away from it. To each 3-hyperedge
e ∈ E(π/P), assign the head h(e) of the arc π(e). By the assumptions of the theorem,
no edge-cut of size 4 contains a 3-hyperedge, so h(e) is a vertex of degree at least 5 and,
by the same argument, the root is also of degree at least 5. At the same time, since each
vertex is the head of at most one arc in the directed forest, it gets assigned to at most
one hyperedge. From this we have

n5+ ≥ m′
3 + 1. (8)

Combining (7) and (8), we obtain m′
3 + n5+ ≤ m′

3 ≤ n5+ − 1, implying m′
3 + 1 ≤ 0, a

contradiction.
Hence we have m′

3 = 0, and from (7) we have n5+ = 0. Since every vertex of a 3-
hyperedge is of degree at least 5, we have also m3 = 0. Thus, H/P is 4-regular and all
its hyperedges are of size 2.

By the assumption, H has at least one 3-hyperedge, hence at least one element of P
is nontrivial. If there are two nontrivial elements of P , say, P1 and P2, then the edges
connecting P1 to the rest of H form an essential edge-cut of size 4 in Gr(H), contradicting
the assumption that Gr(H) is essentially 5-edge-connected. Hence exactly one element
of P , say, P1, is nontrivial. Similarly, by the essential 5-edge-connectivity assumption,
Gr(H)−P1 is independent. Since H/P is 4-regular and P has at least 2 elements, |P| = 2
and the second element of P , P2, is trivial. Set P2 = {x}.
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If x is connected in H′ to H′[P1] with at least two edges, we easily extend π[P1] to a
quasitree with tight complement in H′, a contradiction. Hence x is connected to H′[P1]
in H′ with exactly one edge. Since x is of degree 4 in H, x is incident with each of
e1, e2, e3.

Now we can complete the proof of Theorem 5. Let uei be the vertex of ei different from
x, i = 1, 2. By the structure of H described in Theorem 6, an X(e1, e2)-join in Gr(H′[P1])
(which exists by Lemma L and since P1 is π-solid) has the required properties (see the
last paragraph before Lemma L).

5 Concluding remarks

By a slight modification of the proof of Theorem 5, we can also obtain the following result.

Theorem 7. Every 5-connected line graph with minimum degree at least 6 is 3-
hamiltonian.

Proof of Theorem 7 is similar to the proof of Theorem 5 with the only difference that, in
the notation of the proof of Theorem 5, instead of proving the existence of an X(e1, e2)-
join, we find in Gr(H′[P1]) a ∅-join. If co(H) is not 4-edge-connected, then the existence
of a ∅-join in Gr(H′[P1]) follows by Theorem 6 in the same way as in Section 4; the case
when co(H) is 4-edge-connected has to be treated in a slightly different way. For this, we
will need to recall some more concepts and facts.

A graph G is collapsible if, for any even subset R ⊂ V (G), G has a spanning connected
subgraph F such that O(F ) = R, where O(F ) denotes the set of vertices of odd degree
in F . The reduction of G is the graph obtained from G by contracting every maximal
collapsible subgraph of G to a distinct vertex. Clearly, if a graph G is collapsible, then G
has an X-join for any X ⊂ V (G). For a graph G, let f(G) denote the minimum number
of edges that have to be added to G so that the resulting graph has two edge-disjoint
spanning trees. We will need the following fact by Catlin et al. [4].

Theorem N [4]. Let G be a connected graph with f(G) ≤ 2. Then G is collapsible
or the reduction of G is either K2 or a K2,t for some t ≥ 1.

Thus, suppose now that co(H) is 4-edge-connected, and for i = 1, 2, 3, let fi ∈
E(co(H)) be the edge corresponding to ei (in the special cases when some ej is a pendant
edge, we set fj = ∅, and if some ej1 , ej2 share a vertex of degree 2, we set fj1 = fj2).
Set H ′ = co(H) − f1 and H ′′ = H ′ − f2 − f3 = co(H) − f1 − f2 − f3. If H ′ has two
edge-disjoint spanning trees, then, by Theorem N, either H ′′ is collapsible and we are
done, or the reduction of H ′′ is either K2 or a K2,t for some t ≥ 1. However, the second
case is impossible since adding three edges to a K2,t can never create a reduction of a
4-edge-connected graph, and if the reduction of H ′′ is K2, we find a desired ∅-join in the
same way as in the proof of Theorem 5.
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Thus, it remains to show that H ′ = co(H) − f1 has 2 edge-disjoint spanning trees.
By Theorem J, we need to show that |E0| ≥ 2(ω(H ′ − E0) − 1) for any E0 ⊂ E(H ′).
Since co(H) is 4-edge-connected, every component of co(H) − E0 is connected to the
rest of co(H) − E0 by at least 4 edges, implying 2|E0| ≥ 4ω(co(H) − E0), from which
|E0| ≥ 2ω(co(H) − E0) (for any E0 ⊂ E(co(H)), hence also for any E0 ⊂ E(H ′)).
Since H ′ = co(H) − f1, we have ω(co(H) − E0) ≥ ω(H ′ − E0) − 1, implying |E0| ≥
2ω(co(H)− E0) ≥ 2(ω(H ′ − E0)− 1), as required.

We are not able to extend Theorem 7 to claw-free graphs since a closure concept that
would make this possible is not known so far.
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