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1 Introduction

Fleischner [3] has proposed a novel approach to several deep graph-theoretic
conjectures, such as the Cycle Double Cover Conjecture [9,10] or the 5-Flow
Conjecture of Tutte [12]. A key ingredient in this approach is the Bipartizing
Matchings Conjecture (Conjecture 1.2 below, abbreviated BM Conjecture).
In this paper, we introduce the notion of an Eulerian coloring of a trigraph,
providing a setting that allows a generalization of the Bipartizing Matchings
Conjecture and inspires new questions. We also prove the counterparts of
major known facts about bipartizing matchings in the more general context.

Let us describe in detail the connection between the BM Conjecture and the
Cycle Double Cover Conjecture which asserts that any bridgeless graph has a
cycle double cover (CDC), i.e., a (multi)set of circuits which covers each edge
exactly twice. It is well known [13, Theorem 7.2.4] that it is enough to prove
the CDC Conjecture for 3-connected cubic graphs, in fact, even only for snarks.
(Recall that a snark is a cubic cyclically 4-edge-connected graph of girth at
least 5 which is not 3-edge-colorable. See [6] or [11] for more information.)

It is easy to find a CDC of a hamiltonian cubic graph. Although no snark
has a Hamilton cycle, they are all conjectured to be rather close to being
hamiltonian:
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Conjecture 1.1 (Dominating cycle conjecture [2]) Every snark has a do-
minating cycle, i.e., a cycle incident with every edge.

If a cubic graph has a dominating cycle, does it help in finding a CDC? Not in
an obvious way. However, with the help of the BM Conjecture of Fleischner [3]
(Conjecture 1.2 below), it is indeed possible to construct a CDC. Let C be
a dominating cycle in a cubic graph G. A bipartizing matching in G (with
respect to the dominating cycle C) is a matching M that is edge-disjoint from
C, covers all the vertices not on C, and has the property that G −M is a
subdivision of a cubic bipartite graph. Figure 1 shows a bipartizing matching
M in the Petersen graph with respect to the “outside” dominating cycle.
Indeed, the removal of M yields a subdivision of K3,3.

(a) (b)

Fig. 1. (a) A bipartizing matching M (bold) in the Petersen graph P . The domi-
nating cycle is shown dashed. (b) The graph P −M is a subdivision of K3,3.

Conjecture 1.2 (Bipartizing Matchings Conjecture [3]) Given any dom-
inating cycle C in a snark, there is a pair of (edge-)disjoint bipartizing match-
ings with respect to C.

Fleischner [3,4] showed that Conjecture 1.2 implies the existence of a CDC and
a nowhere-zero 5-flow for any snark with a dominating cycle. (For information
on nowhere-zero flows, consult [8].) Thus, if Conjectures 1.1 and 1.2 hold,
then the CDC Conjecture and the 5-Flow Conjecture follow. Speaking about
two disjoint bipartizing matchings, it is natural to ask whether at least one
bipartizing matching (with respect to a given dominating cycle) always exists.
Fleischner and Stiebitz [5] showed that this is indeed the case:

Theorem 1.3 Any cubic graph has a bipartizing matching with respect to any
dominating cycle.

As shown in [3], an analogue of Conjecture 1.2 holds for hamiltonian cubic
graphs. More precisely, any cubic graph with a Hamilton cycle C has a pair
of disjoint bipartizing matchings with respect to C. The following alternative
proof of this fact is the starting point of our work.

Two chords of a Hamilton cycle C in G intersect if one of them separates the
end-vertices of the other. Let us define the circle graph CG(G) of G (with
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respect to C) to be the graph whose vertices are the chords of the cycle C in
G, and whose edges join intersecting pairs of chords. An example of a circle
graph is given in Figure 2.
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Fig. 2. (a) A graph G with a Hamilton cycle C (dashed). (b) The circle graph CG(G)
of G with respect to C.

Throughout this paper, an Eulerian graph is a graph all of whose vertices
have even degrees (the graph may or may not be connected).

Proposition 1.4 Let C be a Hamilton cycle in a cubic graph G. A matching
M ⊂ E(G)−E(C) is bipartizing if and only if the set V (CG(G))−M induces
an Eulerian graph.

Proof. Consider a matching M ⊂ E(G) − E(C). For each chord f /∈ M of
the cycle C, fix a cycle Cf ⊂ G−M consisting of f and one of the two parts
of C delimited by the endvertices of f . We prove the following:

Claim The degree of any chord f , as a vertex of CG(G)−M , has the same
parity as the number of vertices on Cf whose degree in G−M is 3.

A vertex of Cf has degree 3 in G −M if and only if it is an endvertex of a
chord not in M . A chord h /∈M contributes 1 such vertex if it crosses f , and
it contributes 0 or 2 such vertices if it does not cross f . Since the degree of f
in CG(G)−M is precisely the number of chords h /∈M crossing f , the claim
follows.

To prove the equivalence in the proposition, note that M is bipartizing if and
only if each cycle in G−M contains an even number of degree 3 vertices. In
particular, if M is bipartizing, then each cycle Cf contains an even number of
degree 3 vertices. By the claim, the degree of each f ∈ V (CG(G)) is even.

For the converse, let G′ be the graph obtained from G−M by suppressing all
degree 2 vertices, and let C ′ and C ′f denote the cycles corresponding to C and
Cf in G′, respectively. By the claim, all of these cycles are of even length. If
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the number of chords f /∈M of C is t, then the set

{C ′} ∪ {C ′f : f /∈M is a chord of C }

is a set of t + 1 independent vectors in the cycle space Z(G′) of G′ (see, e.g.,
[1, p. 52]). The graph G′ has 2t vertices and 3t edges, so the dimension of
Z(G′) is 3t−2t+ 1 = t+ 1. Hence, we have a basis of Z(G′) consisting of even
cycles. Clearly, G′ is bipartite, and so M is bipartizing. 2

Thus, G has two disjoint bipartizing matchings with respect to the Hamilton
cycle C if and only if CG(G) contains two induced Eulerian subgraphs H1 and
H2, such that V (CG(G)) = V (H1) ∪ V (H2). Not only is the latter condition
always true. Somewhat surprisingly, there is a much stronger result due to
T. Gallai (see Problem 5.17(a) in [7]). We include a proof since we use simi-
lar ideas later, in the more complicated proof of Theorem 4.1. As usual, the
induced subgraph of a graph H on a set X ⊂ V (H) is denoted by H[X].

Theorem 1.5 The vertices of any graph H can be partitioned into two sets,
each of which induces an Eulerian subgraph of H.

Proof. If H itself is Eulerian, then the trivial partition into V (H) and ∅ does
the job. Otherwise, let v be a vertex of odd degree and let its neighborhood
be denoted by N . Remove v and perform the complementation on N (delete
all edges on N and replace all former non-edges on N with edges) to obtain a
graphH ′. SinceH was not the one-vertex graph,H ′ is nonempty. By induction,
V (H ′) has a partition V ′1 ∪ V ′2 into sets inducing Eulerian subgraphs. Since
|N | is odd, |V ′i ∩N | is even for precisely one i, say i = 1. If we reverse the
complementation on N , the degree of each w ∈ V ′1 ∩N in H[V ′1 ] changes from
even to odd, while all other degrees in H[V ′1 ] and all degrees in H[V ′2 ] stay
even. Thus, the partition of V (H) into V1 = V ′1 ∪ {v} and V2 = V ′2 has the
desired property. 2

By Proposition 1.4, the partition in Theorem 1.5 yields a partition of the
chords of C in G into two bipartizing matchings, thus providing a new proof
of an analogue of Conjecture 1.2 in the hamiltonian case. This brings up the
following question: is there a generalization of the circle graph that can be
used if C is just a dominating cycle? We describe such a generalization in the
following section.

One more comment on the proof of Theorem 1.5 is in order. An alternative
argument involves a system of linear equations over Z2 where each v ∈ V (H)
has its own variable xv and defines the following equation:

∑

w∈N(v)

(xv + xw + 1) = 0.
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This system of equations always has a solution, and the solutions are in one-
to-one correspondence with the partitions from Theorem 1.5. The interesting
thing is that the two arguments, despite their apparent dissimilarity, are in
fact very close to each other. Roughly speaking, the complementation on the
neighborhood of a vertex (as in the proof of Theorem 1.5) corresponds to a
step of the Gauss elimination on the above system of equations.

2 Trigraphs

We shall now define trigraphs and Eulerian colorings. These concepts will
enable us to transfer questions about bipartizing matchings to a more general
level, in the direction indicated by Proposition 1.4.

Throughout, C will always be a dominating cycle of a cubic graph G. Any
vertex not on C will be called internal. For our purposes, it may be assumed
that C has no chords (so every edge not on C is adjacent to an internal vertex).
This is ensured by the following chord elimination process (originally from [3])
whose outcome is illustrated in Figure 3. Let c1c2 be a chord of C, with the
vertex c1 adjacent to a vertex d on C. Subdivide the edges c1c2 and c1d, and
join the two new vertices by an edge. The resulting graph G′ is cubic and the
dominating cycle C ′, arising from C, has one chord fewer. Furthermore, G′

has a bipartizing matching with respect to C ′ if and only if G has one with
respect to C. A similar claim holds for a pair of disjoint bipartizing matchings.

Fig. 3. A graph obtained by repeated chord elimination from the graph in Fig-
ure 2(a). The added vertices and edges are shown in grey.

We now define an analogue of the circle graph from Section 1. In contrast to
the previous case, there are essentially 3 possible configurations of two internal
vertices x and y, as shown in Figure 4. To tell them apart, one can form a
cyclic sequence σ that contains the symbol x for each neighbor of x, and the
symbol y for each neighbor of y, as they appear in the clockwise order around
C. Then, internal vertices x and y form a disjoint pair if σ = xxxyyy (as in
Figure 4(a)), a crossing pair if σ = xxyxyy (Figure 4(b)), or an alternating
pair if σ = xyxyxy (Figure 4(c)).

We now define our analogue of the circle graph. A trigraph is a pair (T, c),
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(a) A disjoint pair. (b) A crossing pair. (c) An alternating pair.

Fig. 4. The three configurations of two internal vertices.

where T is a loopless multigraph whose edges are viewed as composed of two
half-edges, and c is a coloring of the half-edges by the colors 1, 2, 3. If an edge
e joins vertices x and y, then the half-edge incident with x is denoted by ex.
The color c(ex) of ex will be referred to as the color of e at x. In cases where
the coloring c is clear from the context, we just speak of a trigraph T .

The trigraph TG(G,C) of a cubic graph G, with respect to a dominating
cycle C, is defined as follows. Its vertices are the internal vertices of G. Two
vertices are joined by 0, 1 or 3 edges according to whether they form a disjoint,
crossing or alternating pair, respectively.

The coloring of the half-edges of TG(G,C) reflects the special role of certain
edges, e.g., in a crossing pair of internal vertices. Choose a labelling ` of V (C)
by 1, 2 and 3 such that the neighbors of each internal vertex get all three labels.
For a pair of vertices x, y ∈ V (TG(G,C)), let Gxy be the graph obtained from
G by removing all internal vertices except x and y, and suppressing all vertices
of degree 2 this creates. Thus, Gxy has 8 vertices, and is isomorphic to one of
the graphs in Figure 4. We shall now define the coloring in each of the three
cases. At the same time, we shall define the notion of a related pair of vertices.

For a disjoint pair x, y, there is no edge between x and y to color, and there
will also be no related neighbors of x and y.

If x and y form a crossing pair, let x′ and y′ be the unique neighbors of x
and y, respectively, that are not contained in any triangle in Gxy. The (single)
edge xy in TG(G,C) will be assigned the color `(x′) at the vertex x, and the
color `(y′) at y. The vertices x′ and y′ form a related pair (written as x′ ∼ y′),
and there are no other related pairs among the neighbors of x and y.

If x and y form an alternating pair, then for each neighbor x′ of x, there is a
unique vertex, y′, such that x′ and y′ are not contained in any 4-cycle in Gxy.
Correspondingly, one of the 3 edges joining x to y in TG(G,C) will have the
color `(x′) at x and `(y′) at y. The other choices of x′ yield the colorings of the
remaining two edges joining x and y in TG(G,C). We have 3 pairs of related
vertices in this case: each x′ is related to the associated y′. This completes
both the definition of TG(G,C) and of the related vertices.

6



Note that TG(G,C) depends on the choice of the labelling `. However, tri-
graphs obtained for different choices of ` are equivalent in the following sense:
trigraphs T1 and T2 are isomorphic if there is an isomorphism ϕ : T1 → T2

of uncolored multigraphs, and for each vertex v ∈ V (T1) and edges e, e′ in-
cident with v, the colors of e, e′ at v are the same if and only if the colors
of ϕ(e), ϕ(e′) at ϕ(v) are the same. Thus, isomorphic trigraphs only differ
by color permutations at each vertex. Their combinatorial properties are the
same, and we shall regard such trigraphs as identical. With this provision,
TG(G,C) is well-defined.

An example of a cubic graph G with a dominating cycle C, along with the
corresponding trigraph TG(G,C), is shown in Figure 5. We represent the
colors 1, 2, 3 by shades of grey (from lighter to darker).
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Fig. 5. (a) A cubic graph G. (b) The trigraph TG(G,C) with respect to the dashed
dominating cycle C of G.

We remark that not all trigraphs arise as TG(G,C) for a cubic graph G and
a dominating cycle C. A trivial obstruction is the presence of more than 3
parallel edges joining two vertices. It is, however, not difficult to construct
such examples without any multiple edges as well.

3 Eulerian colorings of trigraphs

Fix a cubic graph G and a labelling ` of the vertices of the dominating cycle C
by {1, 2, 3}. Let xi denote the neighbor of an internal vertex x with `(xi) = i.
Define the (x, i)-segment Sx,i to be the arc of C delimited by the neighbors of
x different from xi. More formally, Sx,i is the component of C − {x1, x2, x3}
containing no neighbor of xi. Further, let Cx,i be the cycle formed by the
segment Sx,i, the two neighbors of x adjacent to it, and the vertex x itself.

The notion of a bipartizing matching has a natural counterpart in the trigraph
setting. Let a full matching in G be a matching disjoint from C and covering all
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internal vertices. Since we have assumed that C has no chords, all bipartizing
matchings are full. Any full matching M induces a (not necessarily proper)
vertex coloring fM of TG(G,C) by the colors 1, 2, 3: a vertex x of TG(G,C)
gets color i in fM if the edge xxi is contained in M . In fact, this defines a
bijective correspondence between full matchings in G and vertex colorings of
TG(G,C) by 1, 2, 3. For a trigraph T and a coloring f : V (T ) → {1, 2, 3},
Tf is the multigraph on V (T ) obtained from T by the removal of all the
edges e such that for at least one endvertex of e, c(ex) = f(x). The coloring
f is Eulerian if Tf is an Eulerian graph. Eulerian colorings are related to
bipartizing matchings by the following analogue of Proposition 1.4.

Proposition 3.1 Let M be a full matching in a cubic graph G with a domi-
nating cycle C, and let fM be the corresponding vertex coloring of TG(G,C).
The matching M is bipartizing if and only if fM is an Eulerian coloring.

Proof. Let x be an internal vertex of G with neighbors x1, x2, x3 and assume
that xx1 ∈M . For convenience, we shall write T for TG(G,C) and f for fM .

Let us call a vertex z ∈ V (C) surviving if z is not incident with an edge in M
(and hence is not suppressed after the removal of M). We show:

Claim The number s of surviving vertices in Sx,1 has the same parity as the
degree d(x) of x in Tf .

To prove this claim, we consider each internal vertex y ∈ V (T ) in turn and
evaluate its contribution to s and d(x) based on the type of the pair (x, y).

If y forms a disjoint pair with x, then all the yi reside in a single (x, j)-segment,
and exactly 2 of them are surviving. Thus, the contribution of y to s is 0 or
2. This is fine because there are no edges between y and x in Tf .

Next, assume y forms a crossing pair with x. If any neighbor of y is related
to x1, then no yi is contained in Sx,1 — a zero contribution to the number
s. On the other hand, the contribution to d(x) is also zero, since any edge
colored 1 at x gets deleted on the way to Tf . If some yi is related to x2, then
the neighbors of y other than yi are either both in Sx,1 or both in Sx,3, and
yi is in the other one of these two segments. It follows that the contribution
to s is 0 or 2 if yyi ∈ M , and 1 otherwise. Now y contributes 0 to d(x) if
yyi ∈ M (because edges colored i at y are deleted), and 1 if yyi /∈ M . Hence,
the contribution to d(x) is as required. The case that some yi is related to x3

is symmetric.

Finally, consider the case that x and y form an alternating pair. The only
neighbor of y in Sx,1 (say, yj) is related to x1. If yj is surviving, then the
contribution of y to s is 1. So is the contribution to d(x), because the edge
colored j at y gets deleted because of its color at x, exactly one other edge will
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be deleted because of its color at y, and one edge remains. Thus, assume that
yj is not surviving, i.e. yyj ∈ M . Then two of the three edges between x and
y are in Tf , so y contributes an even number to d(x) and 0 to s as desired.

We have shown that the number s of surviving vertices in Sx,1 is the same,
modulo 2, as d(x). Note that the number of surviving vertices in Cx,i is s+ 2
(because x is not surviving, but two of its neighbors are). This implies that if
M is bipartizing, then fM is Eulerian.

To see the converse, proceed exactly as in the proof of Proposition 1.4. Assume
that fM is Eulerian and that there are a total of t internal vertices. Let G′ be
the graph obtained from G−M by suppressing all degree 2 vertices, and let
C ′ and C ′x,i denote the cycles corresponding to C and Cx,i in G′. These t + 1
even cycles form a basis of the cycle space Z(G′) of G′. Hence, G′ is bipartite
and M is bipartizing. 2

4 The existence of Eulerian colorings

The main result of this section is a generalization of Theorem 1.3 which jus-
tifies the hope that trigraphs provide a reasonable setting for the study of
Conjecture 1.2:

Theorem 4.1 Every trigraph has an Eulerian coloring.

For the time being, we postpone the proof of Theorem 4.1, and observe first
that it suffices to prove the theorem for a special class of trigraphs. To begin
with, we may restrict ourselves to rainbow trigraphs, i.e. trigraphs in which
no two edges e, e′ with the same endvertices x and y have the same color at x.
Suppose a trigraph T contains such edges and form a trigraph T ′ as follows. If
c(ey) = c(e′y), then remove e and e′ from T . Otherwise, replace e and e′ with
a single edge e′′ colored so that c(e′′x) = c(ex) and c(ey) 6= c(e′′y) 6= c(e′y). In
either case, it is easy to check that any Eulerian coloring of T is an Eulerian
coloring of T ′ and vice versa. Since the new trigraph T ′ has fewer edges than
T , repeating the above process yields a rainbow trigraph. The result is well-
defined. Note that rainbow trigraphs contain at most 3 edges between any pair
of vertices.

Next, we eliminate all the triple edges. Let x, y be vertices of T joined by 3
parallel edges e1, e2, e3. Permute the colors of all half-edges incident with y so
as to make each ei have the same color at x and y. (Note that this permutation
applies to all edges incident with y, not just the edges ei.) Now the trigraph
T ′′ is obtained by replacing the edges ei with 2 parallel edges h, h′, colored as
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follows:
c(hx) = c(h′y) = 1 and c(hy) = c(h′x) = 2.

Observe that if f is any coloring of the vertices of T (with 1, 2, 3), then the
number of edges between x and y in Tf has the same parity as in T ′′f . It follows
that T has an Eulerian coloring if and only if T ′′ does. Eventually, this process
yields a rainbow trigraph with no triple edges. However, since the result of this
reduction depends on the order in which triple edges are eliminated, we prefer
to allow triple edges in the following definitions.

We are now going to define the ‘flip’, an operation that corresponds to the
neighborhood complementation of Section 1. Fix a vertex x of a rainbow tri-
graph (T, c) and a color k ∈ {1, 2, 3}. Let Xk = Xx,k be the set of vertices
which are joined to x by at least one edge whose color at x differs from k. For
each vertex z ∈ Xk, we define the distinguished color γk(z) ∈ {1, 2, 3} as the
unique γ such that the number of edges e between x and z with c(ex) 6= k and
c(ez) 6= γ is even. It is easy to check that the choice is indeed unique in each
of the possible situations:

• if x and z are joined by a single edge e with c(ex) 6= k, set γk(z) = c(ez),
• if x and z are joined by two edges e, e′ with c(ex) = k, set γk(z) = c(e′z),
• if x and z are joined by two edges e, e′ with k /∈ {c(ex), c(e′x)}, then γk(z) is

the color different from both c(ez) and c(e′z),
• if x and z are joined by three edges e, e′, e′′ with c(ex) = k, set γk(z) = c(ez).

The (x, k)-flip is an operation whose result is a rainbow trigraph T ∗x,k on
V (T )−{x}. To perform the (x, k)-flip in T , start with the trigraph T −x, add
a new edge between every two vertices in Xk and set the color of each new
edge at an endvertex z to be γk(z). Finally, reduce the result to a rainbow
trigraph.

For an example, consider the (x, 1)-flip in the trigraph T shown in Figure 6(a).
The edges added to T −x are shown in Figure 6(b), and the resulting rainbow
trigraph is in Figure 6(c). Recall that color 1 corresponds to the lightest shade
of grey. We have X1 = {z, w, t}. The distinguished colors are γ1(z) = 1 and
γ1(w) = γ1(t) = 2. Note how the addition of a new edge between w and t
(colored 2 on both ends) and the subsequent reduction to a rainbow trigraph
eliminates an edge of T .

Fix a coloring f of the trigraph T and k ∈ {1, 2, 3}. Set

Xk(f) = { z ∈ Xk : f(z) 6= γk(z) }.

We make several observations used later in the proof of Theorem 4.1.

Lemma 4.2 With respect to degree parity, the (x, k)-flip behaves like the com-
plementation on Xk(f). More precisely, let w and w′ be two vertices of T − x.
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Fig. 6. (a) A trigraph T . (b) The intermediate step of the (x, 1)-flip in T . (c) The
result of the (x, 1)-flip.

If m denotes the number of edges between w and w′ in Tf and m∗ denotes the
number of edges between them in (T ∗x,k)f , then

m 6≡ m∗ (mod 2) if and only if both w and w′ are in Xk(f).

Proof. Performing the (x, k)-flip, one begins with T − x and adds a suitably
colored edge between each pair of vertices in Xk. Let us call the resulting
intermediate trigraph T̃ . Assume that w,w′ ∈ V (T − x) and let m̃ denote the
number of edges between w and w′ in T̃f . We prove the following:

Claim The numbers m and m̃ have different parity if and only if both w and
w′ are in Xk(f).

If either of the two vertices is not contained in Xk, then the claim is trivially
true, since the edges between w and w′ in T̃ are, in this case, the same as
in T − x. If both w and w′ are in Xk, then T̃ contains a new edge between
them, colored γk(w) at w and γk(w

′) at w′. This edge is in T̃f if and only if
f(w) 6= γk(w) and f(w′) 6= γk(w

′), i.e., if and only if w,w′ ∈ Xk(f). The claim
follows.

To obtain T ∗x,k, one finally reduces T̃ to a rainbow trigraph. It is easy to check
this does not change the parity in question, i.e., that m̃ ≡ m∗ (mod 2). Thus,
the statement of the lemma is implied by the claim. 2

For a coloring f of T − x, let fx7→k be the extension of f to T obtained by
assigning color k to x. We have the following easy observation.

Lemma 4.3 If f is a coloring of T − x, then fx 7→k is an Eulerian coloring of
T if and only if all of the following conditions hold:

(i) all z /∈ Xk(f) have even degree in (T − x)f ,
(ii) all z ∈ Xk(f) have odd degree in (T − x)f , and

(iii) the size of Xk(f) is even. 2
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Another observation shows that the behavior of colorings under flips is some-
what similar as in Lemma 4.3. In particular, condition (i) is the same in both
statements.

Lemma 4.4 A coloring f of T − x is Eulerian for T ∗x,k if and only if all of
the following hold:

(i) all z /∈ Xk(f) have even degree in (T − x)f , and
(ii) all z ∈ Xk(f) have degree (in (T − x)f) different from |Xk(f)| modulo

2. 2

Proof of Theorem 4.1. Let T be a trigraph. As noted above, T may be
assumed to be rainbow. We proceed similarly as in the Fleischner–Stiebitz
proof [5] of Theorem 1.3. Let x ∈ V (T ). We show:

Claim

e(T ) ≡ e(T ∗x,1) + e(T ∗x,2) + e(T ∗x,3) (mod 2). (1)

We now prove this congruence. Fix a coloring f of T − x. We show that the
number A of Eulerian extensions of this coloring f to T has the same parity
as the number B of distinct i such that f is an Eulerian coloring of T ∗x,i. We
may assume that A 6= B (otherwise there is nothing to prove).

If k is a color such that fx7→k is Eulerian, then we claim that f is Eulerian
for T ∗x,k. To begin with, conditions (i)–(iii) of Lemma 4.3 are satisfied. These
conditions imply the two conditions of Lemma 4.4. Indeed, condition (i) is
identical in these two lemmas, while (ii) of Lemma 4.4 follows from (ii) and
(iii) of Lemma 4.3. Thus, Lemma 4.4 shows that f is Eulerian for T ∗x,k as
claimed.

By our assumption that A 6= B, there must be some j such that f is Eulerian
for T ∗x,j, but fx 7→j is not Eulerian. By Lemma 4.4, all z /∈ Xj(f) have even
degrees (all degrees are taken in (T −x)f in this paragraph) and all z ∈ Xj(f)
have degrees different from |Xj(f)| modulo 2. On the other hand (since fx7→i

is not Eulerian), either (ii) or (iii) of Lemma 4.3 fail to hold. Thus, either some
z ∈ Xj(f) has even degree, or |Xj(f)| is odd. Each of these possibilities leads
to the same conclusion: all z ∈ Xj(f) have even degrees, and |Xj(f)| is odd.

An important consequence is that f must be Eulerian for T −x. To prove this,
recall that f is Eulerian for T ∗x,j and note that the degree of any z /∈ Xj(f)
is the same in (T ∗x,j)f as in (T − x)f , i.e., even. Since we have shown that
all z ∈ Xj(f) also have even degrees in (T − x)f , it follows that (T − x)f is
Eulerian.
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This has implications for colors i 6= j. Consider any color i ∈ {1, 2, 3}. By
Lemmas 4.3 and 4.4,

f is Eulerian for T ∗x,i if and only if either Xi(f) = ∅ or |Xi(f)| is odd, while

fx 7→i is Eulerian if and only ifXi(f) = ∅. (2)

In particular, the difference B −A is the number of colors i such that |Xi(f)|
is odd.

It is not hard to see from the definition of the Xi(f) (checking the several
cases that may occur) that each neighbor of x is contained in 0 or 2 of the sets
Xi(f). Thus X3(f) = X1(f) ⊕ X2(f), where ⊕ is the symmetric difference.
Hence, either 0 or 2 of the sets Xi(f) are of odd size. By the above, it follows
that B − A is even. Thus, we managed to show that A ≡ B (mod 2) and to
prove the congruence (1).

With (1) established, we prove, by induction on |V (T )|, that the number
e(T ) of Eulerian colorings of T is odd. This is clear if T has a single vertex.
Otherwise, the induction hypothesis implies that each of e(T ∗x,i) (where i =
1, 2, 3) is odd. By (1), e(T ) is odd as well. The proof is finished. 2

5 Orthogonal Eulerian colorings

Two Eulerian colorings of a trigraph T are orthogonal if they differ at each
vertex. Observe that a pair of disjoint bipartizing matchings in a cubic graph
G (with a dominating cycle C) corresponds to a pair of orthogonal Eulerian
colorings of TG(G,C). In view of Conjecture 1.2, one might ask for conditions
implying that a trigraph has a pair of orthogonal Eulerian colorings.

There are trigraphs with no pair of orthogonal Eulerian colorings, since there
are examples of cubic graphs with no pair of disjoint bipartizing matchings (for
a given dominating cycle). For instance, an example due to Fleischner yields
the trigraph shown in Figure 7(a). There are also 2-connected such trigraphs,
see Figures 7(b) and 7(c).

We have investigated in detail the existence of two orthogonal Eulerian color-
ings in cubic trigraphs, i.e., ones in which each vertex has degree 3. (We define
the degree of a vertex x in a multigraph to be the total number of edges in-
cident with x; thus, any multiple edges are counted with their multiplicities.)
A cubic trigraph is balanced if the three half-edges incident with any vertex
have all three colors. Rather unexpectedly, it turns out that the existence of
a perfect matching in such a trigraph plays a key role:
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(a) (b) (c)

Fig. 7. Trigraphs with no orthogonal pair of Eulerian colorings.

Theorem 5.1 A balanced cubic trigraph T has a pair of orthogonal Eulerian
colorings if and only if T has a perfect matching.

Proof. We begin with a reformulation of the problem. A suitable coloring of
a cubic multigraph H is a coloring of its half-edges by colors from {B, Y,G}
(blue, yellow and green) with the property that

(1) the 3 edges incident with any vertex get all 3 colors,
(2) the edges e whose color on both ends differs from B form an Eulerian

subgraph, and
(3) the same property holds for Y in place of B, i.e., the edges e whose color

on both ends differs from Y form an Eulerian subgraph.

One way to interpret this definition is to regard the half-edges of color G as
being ‘blue’ and ‘yellow’ at the same time. Property (2), for instance, then
states that each vertex is incident with an even number of edges with both
ends ‘yellow’.

A balanced cubic trigraph T has a pair of orthogonal Eulerian colorings if
and only if its underlying multigraph H has a suitable coloring. This can be
seen as follows. Given the Eulerian colorings f1 and f2 of T , assign color B to
all half-edges h of H satisfying c(hy) = f1(y), where y is the endvertex of h.
Similarly, color h with Y if c(hy) = f2(y), and assign color G to the remaining
half-edges. The result is a suitable coloring of H, and the correspondence is
bijective.

We define the type of an edge to be the unordered pair of the colors of its ends.
Assume now that H has a suitable coloring a. Consider a vertex x ∈ V (H)
and the possible color assignments on edges incident with x. We shall use the
notation a(ex) just like in the case of trigraphs. Let ax,G denote the color of
the edge e with a(ex) = G on the end opposite to x. Define ax,B and ax,Y in
the analogous way. The properties (1)–(3) above restrict the possible values
of ax,G, ax,B and ax,Y . In fact, it is straightforward to check that the following
is the complete list of admissible configurations :

(a) ax,G = G, ax,Y 6= B and ax,B 6= Y ,
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(b) ax,G = B, ax,Y = B and ax,B 6= Y ,
(c) ax,G = Y , ax,Y 6= B and ax,B = Y .

Conversely, let a coloring a of the half-edges of H in {B, Y,G} be given.
Assume that the configuration at each vertex x is admissible. Then it is easy
to see that a is suitable.

Note that in each of the 3 cases, exactly one edge incident with each x is of
type GG or BY . Consequently, the edges of these two types form a perfect
matching in H. This proves one implication from the theorem.

We now prove the other implication. Let F be a perfect matching in H. Then
F = H − E(F ) is a 2-factor of H. Contract each component of F to a single
point (preserving any multiple edges but discarding loops) to obtain a multi-
graph H ′. We claim that H ′ has an acyclic spanning subgraph P such that for
each vertex x, the degree of x in H ′ has the same parity as its degree in P .
(Such a subgraph is usually called a parity subgraph of H ′.) Indeed, to get P ,
it suffices to remove cycles (more precisely, their edge sets) from H ′, as long
as there are any.

Let us return to the multigraph H. Each edge of P may be naturally identified
with an edge of F ⊂ H; let us call these parity edges. Furthermore, other edges
of F correspond to edges in E(H ′)−E(P ); these will be called ordinary edges.

We now construct an auxiliary coloring a of the half-edges of H which will
later be modified to a suitable coloring. (See Figure 8.) Assign color G to
both ends of each ordinary edge of H. Consider a cycle Z of F . We have the
following requirements on the coloring of Z:

(i) each edge of Z is of type BB or Y Y ,
(ii) if two incident edges of Z share an endvertex of an ordinary edge, then

their types differ, while if they share an endvertex of a parity edge, their
types are the same.

Conditions (i) and (ii) can be ensured because by the construction of P , the
cycle Z is incident with an even number of ordinary edges. Subject to these
restrictions, any prescribed coloring of a half-edge on Z can be uniquely ex-
tended to Z.

The freedom in the choice of the coloring of Z enables us to impose another
requirement for each parity edge e:

(iii) if one end of a parity edge is incident with edges of type Y Y , then the
other end is incident with edges of type BB.

This can be achieved as follows. Consider a component R of P . Choose a root
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vertex r of the tree R and fix a coloring satisfying (i) and (ii) on the cycle of
F corresponding to r (the root cycle for R). Traverse R from the root to the
leaves; at each vertex, fix the (unique) coloring of the corresponding cycle of
F satisfying (i), (ii) and (iii). Performed for all components R, this operation
produces a coloring meeting all of our restrictions. Furthermore, color the half-
edges of each parity edge by B or Y so as to mismatch, at each end, the color
of the incident half-edges.

B

B

B

BY
Y

YY

Y

Y

Y

B

B
Y

Y

Y

Y

B
B Y Y

B

B

BB

B

B
B

Y

Y

G

G

G

G

G
G

G

G

G
G

Y B

B

Y

Fig. 8. An auxiliary half-edge coloring a. The solid edges form the 2-factor F , the
ordinary edges are dotted and the parity edges are dashed. The root cycle of F
is the cycle of length 4. Changing the circled entries to G, one obtains a suitable
coloring.

The resulting coloring a is certainly not suitable: at each end of a parity
edge, the two incident edges are either both of type BB or both of type Y Y .
However, this can be fixed. Orient each cycle Z of F . If a half-edge h on Z is
situated clockwise from the endvertex of a parity edge, then change the color
of h to G. After this modification, each vertex is incident with half-edges of
all 3 colors.

Let us determine the configurations of colors around a vertex x of H, to see
if they are admissible (i.e., if they match the set of admissible configurations
(a)–(c)). The symbols ax,G, ax,R and ax,Y have the same meaning as before.
The values are as in the following table:

ax,G ax,Y ax,B condition

G Y/G B/G if x is an endvertex of an ordinary edge,

B B B/G if x is incident with the ‘Y ’ end of a parity edge,

Y Y/G Y if x is incident with the ‘B’ end of a parity edge.

16



A comparison with the list of admissible configurations shows that indeed, all
of these configurations are admissible. This means that we have constructed
a suitable coloring. 2

As shown by the trigraph in Figure 7(c), Theorem 5.1 cannot be extended to
imbalanced cubic trigraphs. We conclude this paper with an open problem.
Call a vertex x of a trigraph bad if all edges incident with x, except for one edge
e, have the same color at x, and e has a different color. Each of the examples
in Figure 7 contains a bad vertex. This suggests the following question. It can
be shown that an affirmative answer would imply Conjecture 1.2.

Problem 5.2 Does every 2-connected rainbow trigraph with no bad vertices
admit a pair of orthogonal Eulerian colorings?
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