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Abstract

A conjecture of G. Fan and A. Raspaud asserts that every bridgeless
cubic graph contains three perfect matchings with empty intersection. We
suggest a possible approach to problems of this type, based on the concept
of a balanced join in an embedded graph. We use this method to prove
that bridgeless cubic graphs of oddness two have Fano colorings using
only 5 lines of the Fano plane. This is a special case of a conjecture by
E. Máčajová and M. Škoviera.

1 Introduction

A number of problems involving cubic graphs concerns the existence of perfect
matchings whose intersection is small or empty. This is natural as the existence
of two disjoint perfect matchings in a cubic graph G is equivalent to G being
3-edge-colorable, a fundamental property in the world of cubic graphs. Although
there are cubic graphs (even without bridges) that do not have this property, the
following has been conjectured by Fan and the second author [2] in 1994:

Conjecture 1. Every bridgeless cubic graph contains perfect matchings M1, M2,
M3 such that

M1 ∩M2 ∩M3 = ∅.

We remark that Conjecture 1 would be implied by the celebrated Berge–
Fulkerson conjecture [4] (see also [9]).

Another related set of problems, studied, e.g., in [6, 7], concerns so-called
Fano colorings. Let G be a cubic graph. A Fano coloring of G is any assignment
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Figure 1: The Fano plane F7.

of points of the Fano plane F7 (see Figure 1) to the edges of G such that the
three edges incident with any vertex of G are mapped to three distinct collinear
points of F7. For k ≤ 7, a k-line Fano coloring is a Fano coloring in which only
at most k lines of F7 appear as color patterns at the vertices.

It is shown in [7] that every bridgeless cubic graph admits a 6-line Fano col-
oring. Furthermore, bridgeless cubic graphs are conjectured to admit 4-line Fano
colorings, and it is observed that the conjecture is equivalent to Conjecture 1.
A natural intermediate conjecture on 5-line Fano colorings is stated in [7] as
Conjecture 5.1; we give it in a slightly less specific form:

Conjecture 2. Every bridgeless cubic graph admits a 5-line Fano coloring.

We will refer to this conjecture as the 5-line conjecture. Before we present a
(more or less well-known) equivalent formulation in the spirit of Conjecture 1, we
need an important definition. A join in a graph G is a set J ⊂ E(G) such that
the degree of every vertex in G has the same parity as its degree in the graph
(V (G), J). (In the literature, the terms postman join or parity subgraph have
essentially the same meaning.)

It can be shown that the following is equivalent to Conjecture 2:

Conjecture 3. Every bridgeless cubic graph admits two perfect matchings M1,
M2 and a join J such that

M1 ∩M2 ∩ J = ∅.

In the present paper, we suggest a possible approach to problems like Con-
jectures 1 and 3, based on what we call ‘balanced joins’ in embedded graphs (see
Section 3). The technique was inspired by that of [7] and may be regarded as
its refinement. In Section 4, we relate balanced joins in an embedded graph to
independent sets in its dual.

Our main result is a special case of the 5-line conjecture. Recall that the
oddness of a cubic graph G is the minimum number of odd circuits in a 2-factor
of G. In Section 6 we prove:

Theorem 4. Conjecture 2 (and Conjecture 3) is true for bridgeless cubic graphs
of oddness two.

2



A major tool in the proof of Theorem 4 is a splitting lemma (Lemma 13)
proved in Section 5. In the concluding section, we give several intriguing open
problems.

2 Preliminaries

Our graphs may contain loops and parallel edges. The vertex and edge sets of
a graph G are denoted by V (G) and E(G), respectively. Each edge is viewed
as composed of two half-edges (that are associated to each other) and we let
E(v) denote the set of half-edges incident with a vertex v. If h is a half-edge,
we use h] to denote the edge containing h. For a set H of half-edges, we write
H] =

{
h] : h ∈ H

}
.

The degree of a vertex v ∈ V (G) is denoted by dG(v). A loop at v contributes
2 to dG(v). For X ⊂ V (G), we let ∂G(X) be the set of edges with exactly one
endvertex in X.

As usual, e.g., in the theory of nowhere-zero flows, we define a cycle in a graph
G to be any subgraph H ⊂ G such that each vertex of H has even degree in H.
(Thus, a cycle need not be connected.)

Observation 5. A subgraph H ⊂ G is a cycle in G if and only if E(G)−E(H)
is a join.

An edge-cut (or just cut) in G is a set C ⊂ E(G) such that G− C has more
components than G, and C is inclusionwise minimal with this property. A bridge
is a cut of size 1. A graph is bridgeless if it contains no bridge (note that with this
definition, a bridgeless graph may be disconnected). A k-edge-connected graph
(where k ≥ 1) is one that is connected and contains no cut of size at most k− 1.

A cut C in G is odd if |C| is odd. The odd edge-connectivity λodd(G) of G is
the size of a smallest odd cut in G, or ∞ if no such cut exists.

For terms not defined here, we refer the reader to any standard textbook of
graph theory such as [1].

3 Balanced joins in embedded graphs

We begin by recalling a combinatorial representation of graphs embedded on
surfaces, developed in the works of Heffter, Edmonds and Ringel (see, e.g., [8,
Chapter 3]). A rotation system for H is a mapping assigning to every vertex
v ∈ V (H) a cyclic ordering of the half-edges in E(v) (a rotation at v). A rotation
system for H corresponds to an embedding of H in some orientable surface.
Accordingly, we will speak of a graph H with a given rotation system as an
embedded graph. For half-edges h and h′ incident with a vertex v, we may say
that h immediately precedes or follows h′ at v, or that h and h′ are consecutive
at v, always referring to the rotation order.
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Figure 2: (a) The Petersen graph P with a perfect matching M (bold). (b) An
M -contraction P̃ of P; the clockwise ordering of half-edges at vertices specifies
the rotation system.

Cubic graphs and embedded graphs are related in the following way. Let G
be a cubic graph and M a perfect matching in G, and let o be an orientation of
the complementary 2-factor M (that is, o determines a direction for each circuit
of M). Contract each circuit C of M to a vertex vC . The resulting graph GM,o

can be viewed as an embedded graph: the rotation at vC is given by the order in
which the corresponding half-edges meet the circuit C in G. A graph of the form
GM,o for some orientation o will be called an M-contraction of G. We identify
the edges of GM,o with the corresponding edges of G.

As an example, consider the Petersen graph P and the perfect matching M
shown in Figure 2a. The result, P̃, of the above process (for a suitable orientation
o) is shown in Figure 2b. Note that we get essentially the same embedded graph
for any other choice ofM and o. An embedding of P̃ corresponding to its rotation
system (in an orientable surface of genus 2, i.e., the double torus) is shown in
Figure 3.

Let H be an arbitrary embedded graph. For z ∈ V (H) and h, h′ ∈ E(z),
we define [h, h′] as the sequence of half-edges at z starting with h, containing all
the subsequent half-edges encountered as one passes from h to h′ in the direction
given by the rotation at v, and terminated by the occurence of h′. If h = h′, then
[h, h′] is terminated by the second occurence of h.

For J ⊂ E(H), a J-segment (at z) is any sequence of the form [h, h′], where
h and h′ are half-edges incident with z and [h, h′]] ∩ J = {h, h′}]. In addition,
if J ∩ E(z)] = ∅, we consider E(z) as a J-segment. The length or size of a J-
segment is its length as a sequence. (Note that in a J-segment of the form [h, h],
the half-edge h is counted twice.)

We define a balanced join in H to be a set J ⊂ E(H) such that for each
vertex v, every J-segment at v has even length. The choice of the term is partly
justified by the following observation:

Observation 6. Every balanced join in an embedded graph is a join.
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Figure 3: An embedding of the graph P̃ of Figure 2b in the double torus deter-
mined by its rotation system. The opposite edges of the bounding octagon are
identified (in such a way that the arrows match).

Proof. Let J be a balanced join in H and v ∈ V (H). Summing the lengths of
all the J-segments at v, we count each half-edge h with h] ∈ J twice and the
other half-edges once; thus, the sum equals dH(v) + dJ(v). Since the lengths of
J-segments are even, so is the sum. Consequently, dH(v) and dJ(v) have the
same parity as claimed.

The most important reason for us to consider balanced joins, however, is a
close relation to perfect matchings:

Lemma 7. Let G̃ be an M-contraction of a cubic graph G, where M is a perfect
matching of G. A set J ⊂ E(G̃) is a balanced join if and only if there is a perfect
matching M ′ in G such that

M ∩M ′ = J.

Proof. Let vC be a vertex of G̃ and J ⊂ E(G̃). Let (h1, . . . , hk) be a J-segment
at v. The lemma follows from the observation that k is even if and only if one
can match the vertices of G incident with h2, . . . , hk−1 using edges of G−M .

4 Balanced joins and the dual graph

There is a relation between balanced joins in an embedded graph H and indepen-
dent sets in the dual graph H∗. Although this relation is not our major concern
in the present paper, it is worth a brief investigation which we give in this section.

Recall that if H is an embedded graph, the dual graph H∗ contains one edge
joining faces F , F ′ (of the given embedding of H) for each edge of H with the
face F on one side and F ′ on the other. In particular, if H contains an edge with
the same face on both sides, then H∗ contains a loop.
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We call a set of faces of an H independent if it corresponds to an independent
set of vertices in H∗. An edge will be said to be belong to a face F if it is contained
in the boundary of F . Some balanced joins can be obtained from independent
sets of faces:

Proposition 8. Let I be an independent set of faces in an M-contraction H of
a cubic graph G. The edges of H that do not belong to any face in I form a
balanced join in H.

Proof. Let J be the set of edges of H not adjacent to any face in I. We need to
show that every J-segment has even length. Consider first a J-segment

[h1, hk] = (h1, . . . , hk) (1)

of size k at a vertex v. We may assume that k > 2. Let Fi be the face of H
delimited by h]

i and h]
i+1 at v, where i = 1, . . . , k − 1. Note that h]

1 ∈ J , so by

the definition of J , F1 /∈ I. Now F2 ∈ I, because h]
2 /∈ J . By the assumption

that I is independent, F3 /∈ I. Continuing in this way, we conclude that Fi ∈ I
if and only if i is even. Since Fk−1 /∈ I, k is even as claimed.

It remains to consider a segment consisting of all the half-edges incident with
a vertex v. As above, we observe that the faces in I and not in I must alternate
as we traverse around v, so there must be an even number of them. Consequently,
|E(v)| is even and the proof is complete.

It is important to note that not all balanced joins in an embedded graph
H correspond to independent sets in H∗. In our example from Figure 2, the
embedding of P̃ shown in Figure 3 has a single face. Thus, the dual graph
consists of a single vertex with 5 loops, and the only independent set in P̃∗ is
∅. This corresponds to the balanced join E(P̃). However, P̃ also contains 5
balanced joins of size 1.

Given Proposition 8, it is not surprising that non-intersecting balanced joins
are related to face colorings:

Proposition 9. Let G̃ be an M-contraction of a cubic graph G. If the faces of
G̃ can be properly colored in k colors, then G has k perfect matchings with empty
intersection.

Proof. Consider a coloring of the faces of G̃ in k colors with color classes C1, . . . , Ck.
Each Ci is an independent set of faces. Let M ′

i be the set of edges not adjacent
to any face in Ci. Since Ck is independent, each edge of G̃ is adjacent to a face
in at least one of the sets Ci with i ≤ k − 1. Consequently,

M ′
1 ∩ · · · ∩M ′

k−1 = ∅.

By Proposition 8, each M ′
i is a balanced join, so by Lemma 7, there is a perfect

matching Mi in G such that Mi ∩M = M ′
i . Since

M1 ∩ · · · ∩Mk−1 ∩M = M ′
1 ∩ · · · ∩M ′

k−1,
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we see that the k perfect matchings M1, . . . ,Mk−1,M have empty intersection.

For k = 3, one can actually get a stronger result:

Theorem 10. Let G be a cubic graph with a perfect matching M . If the faces
of some M-contraction of G can be properly colored with 3 colors, then G is
3-edge-colorable.

The proof is similar to that of Proposition 9 and is omitted. Alternatively,
at least under the assumption that every face of an M -contraction G̃ is bounded
by a circuit, Theorem 10 follows from standard facts on nowhere-zero flows and
cycle covers (see, e.g., [9]).

As a curiosity, let us mention the following (probably known) consequence of
Theorem 10 and the Grötzsch theorem [5]:

Proposition 11. Let G be a cyclically 4-edge-connected cubic plane graph with
a perfect matching M such that each circuit of M bounds a face. Then G is
3-edge-colorable.

Proof. Consider an M -contraction G̃ of G. Since G̃ is 4-edge-connected, its dual
G̃∗ is triangle-free and hence 3-colorable by the Grötzsch theorem. By Theo-
rem 10, G is 3-edge-colorable.

5 A splitting lemma

A basic tool we use in the proof of Theorem 4 is splitting. Let G be a graph and
h a half-edge incident with a vertex v ∈ V (G). For convenience, we define the
target of h to be the vertex incident with the half-edge associated to h. Let h′ be
another half-edge incident with v. Furthermore, let w and w′ be the targets of h
and h′, respectively.

Splitting off h and h′ is the operation of removing the edges containing h and
h′, and adding an edge between w and w′ (a loop if w = w′). The resulting graph
is denoted by G(v;h, h′).

The following statement is an equivalent form of the well-known splitting
lemma of Fleischner [3] (see also [9, Theorem A.5.2]):

Lemma 12. Let v be a vertex of a 2-edge-connected graph G with dG(v) ≥ 4. Let
h0, h1, h2 ∈ E(v). If both G(v;h0, h1) and G(v;h0, h2) fail to be 2-edge-connected,
then {h0, h1, h2}] is a 3-cut in G.

Our purpose requires a slightly different kind of a splitting lemma which we
derive next. Let G2 be the class of all bridgeless graphs with exactly two vertices
of odd degree.
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Lemma 13. Let G be a graph in G2 and let h0, . . . , h4 be distinct half-edges
incident with a vertex z of even degree. Let wi (i = 0, . . . , 4) denote the target
of hi and assume that w0 has odd degree. If both G(z;h1, h2) and G(z;h3, h4)
contain bridges, then {h0, h1, h2}] or {h0, h3, h4}] is a 3-cut in G.

Proof. For i = 0, . . . , 4, let ei = h]
i. Let y1 and y2 denote the two odd degree

vertices in G, where y1 = w0. Choose a bridge b′ in the graph G′ := G(z;h1, h2)
and a bridge b′′ in G′′ := G(z;h3, h4). Since G ∈ G2, each component of G′ − b′
and G′′ − b′′ contains exactly one of y1 and y2.

The bridge b′ is distinct from the edge created by splitting off h1 and h2

(otherwise G would contain a bridge). Thus, b′ (and similarly b′′) is an edge of
G.

Claim 1. The sets

C ′ = {e1, e2, b′} ,
C ′′ = {e3, e4, b′′}

are 3-cuts in G.

Consider C ′ first. Clearly, G−C ′ is disconnected, so all we need to prove is that
C ′ is inclusionwise minimal with this property. For the sake of a contradiction,
suppose that C ⊂ C ′ is a 2-cut and let C ′ − C = {e}. Then e is contained in a
component K of G− C. We distinguish two cases: e = b′ and e 6= b′.

Assume that e = b′. Since b′ is not a bridge in G, it is contained in a cycle.
This cycle contains either both or none of the edges e1, e2, and hence corresponds
to a cycle in G′ containing b′, which is a contradiction since b′ is a bridge in G′.

Thus, we may assume that e = e1. Let x be the endvertex of b′ in K. We show
that there exists a path P from x to w1 in K not using the edge e1. Indeed, let
P1 and P2 be edge-disjoint paths from x to w1 in G. If one of them is contained
in K and avoids e1, we are done. Thus, we may assume that P1 ends with e1 and
P2 contains b′ and e2. However, combining the part of P1 from x to z with the
part of P2 from z to w1, we obtain a trail from which we can select the desired
path P .

Since P extends to a cycle containing {e1, e2, b′}, b′ is contained in a cycle in
G′, a contradiction which proves that C ′ is indeed a 3-cut. A similar argument
shows that C ′′ is a 3-cut and completes the proof of the claim.

Claim 2. The edge e0 is either b′ or b′′.

For i ∈ {1, 2}, we write A′i (A′′i ) for the vertex set of the component of G′− b′
(G′′ − b′′, respectively) that contains yi, and we set

Aij = A′i ∩ A′′j and aij = |∂(Aij)| ,
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Figure 4: An illustration of the notation in the proof of Lemma 13.

where i, j ∈ {1, 2} and ∂G is abbreviated to ∂. (Figure 4 illustrates the situa-
tion.) Thus, y1 ∈ A11 and y2 ∈ A22. Hence each of ∂(A11) and ∂(A22) has odd
cardinality, and since G is bridgeless, the cardinality is at least 3. It follows that

a11 ≥ 3 and a22 ≥ 3. (2)

On the other hand, if we let d denote the number of edges with one end in
A12 and the other in A21, then

|C ′|+ |C ′′| = a11 + a22 + 2d. (3)

Since |C ′| = |C ′′| = 3 and a11, a22 ≥ 3 by (2), we conclude that a11 = a22 = 3 and
d = 0.

This implies that z /∈ A11, for otherwise we would have {e1, e2, e3, e4} ⊂
∂(A11), contradicting the fact that a11 = 3. A similar argument shows that
z /∈ A22. By symmetry, we may therefore assume that z ∈ A21, so e0 has its ends
in A11 and A21. But then e0 ∈ C ′ and hence e0 = b′. This finishes the proof of
the claim.

The lemma follows directly from Claims 1 and 2.

6 The 5-line conjecture for graphs of oddness

two

Let us begin with a notion that can be used to reformulate Conjecture 3. We
will say that a set X ⊂ E(G) is sparse if X contains no odd cut.
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Observation 14. A set X ⊂ E(G) is sparse if and only if there exists a join J
with X ∩ J = ∅.

In this section, we prove that every embedded graph from the class G2 admits
a sparse balanced join. At the end of the section, we derive Theorem 4 as a
corollary.

Let G be an embedded graph, z ∈ V (G) and h ∈ E(z). An unordered pair
{f, f ′} of half-edges is near h at z if

(1) h /∈ {f, f ′},

(2) f and f ′ are consecutive at z and one of them immediately follows or
precedes h at z.

Lemma 15. Let h be a half-edge of an embedded graph G with endvertex z. Let
G′ be a bridgeless (embedded) graph obtained by splitting off a pair of half-edges
near h at z. If G′ has a sparse balanced join containing h], then so does G.

Proof. Assume we split off the half-edges f1 and f2 immediately following h at z
(in this order) to obtain G′. Let J ′ be a sparse balanced join in G′ with h] ∈ J ′,
and let J be the corresponding join in G. Note that h] ∈ J . It is easy to compare
the sizes of the J ′-segments at z in G′ and the J-segments in G. They are the
same, except that:

• if f ]
1, f

]
2 /∈ J , then the J-segment at z in G containing f1 and f2 is longer

by 2 than the corresponding J ′-segment in G′,

• otherwise, there are two extra J-segments at z in G whose size is 2 (namely
(h, f1) and (f1, f2)).

In either case, the lengths of all the J-segments are even, which means that J is
balanced.

Assume that J contains an odd cut C. Necessarily, {f1, f2}] ⊂ J . Let C ′ =
C − {f1, f2}]. Since C ′ is an odd cut in G′, we have C ′ 6⊂ J ′ and hence C 6⊂ J , a
contradiction. It follows that J is sparse. The proof is finished.

Theorem 16. Let G ∈ G2 be a (bridgeless) embedded graph and e ∈ E(G) a non-
loop edge incident with an odd degree vertex. Then G admits a sparse balanced
join J such that e ∈ E(J).

Proof. Let G be a counterexample with as few edges as possible. Since G is
bridgeless and G ∈ G2, it has at least 3 edges. If G has exactly 3 edges, it
consists of two vertices joined by three parallel edges, and the sparse balanced
join {e} provides a contradiction.

We may thus assume that |E(G)| > 3 and that the assertion holds for graphs
with fewer edges. We may also assume that the minimum degree in G is at
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least 3 and that e has only one endvertex (u, say) of odd degree. Let z be the
other endvertex of e, h0 the half-edge of e incident with z, and let v denote the
remaining vertex of odd degree in G.

By Lemma 15 and the minimality of G, it is not possible to split off any pair
of half-edges near h0 at z so as to obtain a bridgeless graph. Enumerate the
half-edges incident with z, starting with h0 and proceeding in the rotation order,
as h0, . . . , hk−1. By the above, the degree k = dG(z) of z is even and not equal
to 2.

Assume now that k = 4. By Lemma 12, either G(z;h1, h2) or G(z;h2, h3) is
a bridgeless graph. Since both {h1, h2} and {h2, h3} are near e at z, we get a
contradiction. Thus, k ≥ 6.

Lemma 13 implies that at least one of the sets {h0, h1, h2}] or {h0, hk−1, hk−2}]
is a 3-cut. By symmetry, we may assume that {h0, h1, h2}] is a 3-cut. Since
dG(z) ≥ 6, z is a cutvertex. Moreover, there are exactly three edges joining z to
the component X of G − z containing u. Since |∂G(V (X))| is odd, v (the other
vertex of odd degree in G) is not contained in X.

Set G′ = G − V (X). Note that the degree of z in G′ is odd (namely, k − 3)
and that G′ ∈ G2. By the minimality of G, there is a balanced join J ′ in G′ such
that h]

3 ∈ J ′ and J ′ contains no odd cut in G′. Clearly,

J = J ′ ∪ {e}

is a balanced join in G. Furthermore, since every odd cut in G is contained either
in G−V (X) or in G[V (X) ∪ {z}], J is sparse. Thus, J has the properties stated
in the theorem, a contradiction.

We can now derive Theorem 4 as a corollary of Theorem 16.

Proof of Theorem 4. Let G be a cubic bridgeless graph of oddness two. Let M1

be a perfect matching such that the 2-factor M1 has exactly two odd components.
Choose an orientation o of M1 and consider the M1-contraction H = GM1,o. Note
that H ∈ G2. By Theorem 16, H admits a sparse balanced join J2.

Observation 7 implies that J2 can be extended to a perfect matching M2 in
G such that M1 ∩M2 = J2. Since J2 is sparse in H, M1 ∩M2 is sparse in G. By
Observation 14, there is a join J in G such that M1∩M2∩J = ∅. This completes
the proof.

7 Concluding remarks

There are a number of natural questions about balanced joins. The first of them
concerns a possible extension of Theorem 16 to embedded graphs with more than
two odd degree vertices. The statement of the theorem does not hold for all
bridgeless graphs: for instance, it is easy to see that the Petersen graph P,

11



together with an arbitrary rotation system, has no sparse join. However, the
following may be true:

Conjecture 17. Let H be an embedded graph with λodd(H) ≥ 5. Then H contains
a sparse balanced join.

A natural approach to the Fan–Raspaud conjecture (Conjecture 1) along the
lines of our proof of Theorem 4 would require finding two disjoint balanced joins
in an embedded graph. Again, the Petersen graph P does not even have two
disjoint joins, but we find it plausible that higher odd edge-connectivity helps.

Problem 18. Is there an integer k such that every embedded graph H of odd
edge-connectivity λodd(H) ≥ k contains two disjoint balanced joins?

Observe that if the balanced joins in Problem 18 exist, they are necessarily
sparse.

We may go one step further and ask about partitions into balanced joins. For
instance, if G is a 3-edge-colorable cubic graph, then (by Lemma 7) the edges of
any M -contraction of G can be partitioned into three balanced joins.

On the other hand, consider ‘the’ M -contraction P̃ of the Petersen graph in
Figure 2b. Since E(P̃) and any set consisting of a single edge are balanced joins,
the edge set of P̃ can be partitioned into 1 or 5 balanced joins. However, there
is no partition of E(P̃) into 3 balanced joins.

Problem 19. Is there a function f such that for every odd `, the edge set of each
embedded graph H with λodd(H) ≥ f(`) can be partitioned into ` balanced joins?
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