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Abstract

We show that for each ε > 0 and each integer ∆ ≥ 1, there exists a
number g such that for any graph G of maximum degree ∆ and girth
at least g, the circular chromatic index of G is at most ∆ + ε.

1 Introduction

A proper edge-coloring of a graph G is a coloring of all the edges of G such
that every two incident edges receive distinct colors. The smallest number of
colors for which there is a proper edge-coloring is called the chromatic index
and denoted by χ′(G). Recall that the chromatic index of a simple graph
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with maximum degree ∆ is either ∆ or ∆ + 1 by the classical theorem of
Vizing [24]. A graph is said to be of Vizing class I if its chromatic index is
∆; all other graphs are of Vizing class II. In this paper, we study circular
edge-colorings of graphs with large girth and we show that their circular
chromatic index is close to ∆.

The concept of circular coloring of graphs was introduced by Vince [23].
A proper circular `-coloring of a graph G, for a real ` ≥ 1, is a coloring of the
vertices of G by real numbers from the interval [0, `), such that the difference
modulo ` of the colors γ1 and γ2 assigned to two adjacent vertices is at least
one, i.e., 1 ≤ |γ1 − γ2| ≤ `− 1. A circular `-coloring can also be viewed as a
coloring by points on a circle of circumference ` in such a way that a pair of
adjacent vertices receive colors which are at distance at least 1 on the circle.
The smallest real ` for which there is a proper circular `-coloring is called
the circular chromatic number of G and denoted by χc(G) (the minimum is
always attained and it is a rational number [5, 23]). It can be shown that
χ(G)−1 < χc(G) ≤ χ(G). For further results on circular coloring, the reader
is referred to the survey [27] on the subject.

A circular `-edge-coloring of a graph G is just a circular `-coloring of
the line graph L(G). The circular chromatic index χ′(G) of G is defined to
be the circular chromatic number of L(G). It is not difficult to show that
∆ ≤ χ′c(G) ≤ ∆ + 1 for every simple graph G with maximum degree ∆.

Jaeger and Swart [12] conjectured that there is an integer g such that each
snark has girth at most g (actually, they conjectured that g = 6 suffices).
Recall that the girth of a graph is the length of its shortest cycle, and that a
snark is a cubic bridgeless graph belonging to the Vizing class II [6,25] (i.e.,
of chromatic index 4). We remark that the definition of snarks is often taken
to include further assumptions (as, e.g., in [14]) to avoid trivial cases.

The conjecture of Jaeger and Swart has become known as the Girth con-
jecture. More than 15 years after it was stated, the conjecture was disproved
by Kochol [14] who constructed cyclically 5-edge-connected snarks with arbi-
trarily large girths. The authors [13] recently showed that the Girth conjec-
ture is true when relaxed to the circular edge-coloring in the following sense:
for each ε > 0, there is a number g such that the circular chromatic index of
any cubic bridgeless graph of girth at least g is at most 3 + ε.

In the present paper, we extend this result to graphs of higher degree.
This provides an affirmative answer to the question presented in [13, Problem
2]: is it true that for any ∆ and ε > 0, there exists an integer g such that
every ∆-regular graph G of girth at least g has χ′c(G) ≤ ∆ + ε? Actually, we
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prove the result for graphs of maximum degree ∆ (which are not necessarily
∆-regular).

In general, large girth does not imply that the circular chromatic number
of a graph is small. For any integers k ≥ 1 and g ≥ 3, there is a graph G
with girth at least g, and with χ(G) = χc(G) = k as shown by Steffen and
Zhu [21]. On the other hand, Galluccio, Goddyn and Hell [10] proved the
following for graphs avoiding a fixed graph H as a minor: For every graph
H and every ε > 0, there is an integer g such that the circular chromatic
number of each graph whose girth is at least g and which does not contain
H as a minor is at most 2 + ε.

A well-known question related to the girth and the circular chromatic
number is the Pentagon problem (see, e.g., [18]): does every cubic graph G
of sufficiently large girth admit a homomorphism into the 5-cycle? (Recall
that a homomorphism fromG toH is a mapping from V (G) to V (H) carrying
edges of G to edges of H.) It is not hard to see that the above homomorphism
exists if and only if the circular chromatic number of G is at most 5/2. Let us
stress, however, that in the present paper, we are concerned with the circular
chromatic index, i.e., the circular chromatic number of the line graph. Thus,
our results have no direct implications for the Pentagon problem.

Similarly as in [13], the proof of our main result uses the concept of
independent systems of representatives [2–4, 9, 11, 16, 17]. The technique
used in [13] can be easily generalized to the case of ∆-regular (∆− 1)-edge-
connected graphs. However, when the connectivity assumption is removed,
the technique fails to work. To be able to use it, one must find a way to get
rid of small edge-cuts.

Small edge-cuts may indeed be dangerous: for instance, Afshani et al. [1],
motivated by the question of Zhu [27, Question 8.4], showed that the circular
chromatic index of any cubic bridgeless graph is at most 11/3. However,
their result does not hold for graphs with bridges (nor, for that matter, for
bridgeless graphs of maximum degree 3). In addition, it is known [8,20] that
the so-called fractional chromatic index χ′f (G) of every ∆-edge-connected
∆-regular graph G of even order is equal to ∆, but the statement is false
without the connectivity assumption.

Our results imply an upper bound to χ′f (G), since χ′f (G) ≤ χ′c(G) (see [27]
for details). Specifically: for each ∆ and each ε > 0, there exists an integer
g such that the fractional chromatic index of every graph with maximum
degree ∆ and girth at least g is at most ∆ + ε (Corollary 16). However, this
result on the fractional chromatic index can also be easily proved directly
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without using our results on the circular chromatic index.
The outline of the paper is as follows. In Section 3, we show, in a series

of lemmas, that the edge set of any cyclically ∆-edge-connected graph of
maximum degree ∆ can be decomposed into d∆/2e factors of maximum
degree at most 2, one of which is a matching if ∆ is odd. In Section 4, we
recall our major tool, a theorem on independent systems of representatives,
and some related results. Section 5 contains a proof of a crucial extension
property for circular edge-colorings of trees. This is used in Section 6 to prove
a special case of our main result for the class of ∆-decomposable graphs, but
in a stronger form that allows a subgraph to be precolored. The general case
is proved in Section 7.

2 Notation

We use standard terminology and notation of graph theory. For background
information on the subject, consult, e.g., [7, 26]. The symbols V (G) and
E(G) denote the vertex set and the edge set of a graph G, respectively. The
order of G is the number of its vertices, and the size of G is the number
of its edges. The result of the contraction of a subgraph H of G is denoted
by G/H; this may introduce multiple edges, but any loops that arise are
discarded. A matching in G is a set of pairwise disjoint edges. For an integer
k, a k-factor of G is a spanning subgraph of G in which each vertex has
degree precisely k.

The distance of two edges e and e′ is the length of a shortest path whose
first edge is e and whose last edge is e′ decreased by one. In particular, edges
at distance one are incident edges. If H is a subgraph of a graph G and H
contains at least one edge, then the distance of an edge e ∈ E(G) from H
is the distance of e from the closest edge of H. We write N(H, k) for the
subgraph induced by all the edges whose distance from H is at most k. We
also use N(H, k) if H is just a set of edges, and we abbreviate N({e}, k)
as N(e, k). The neighborhood N(H) of a subgraph H ⊆ G is defined to be
N(H, 1). Finally, Vd(G) stands for the set of all the vertices of a graph G
whose degree in G is d.
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3 Decompositions of graphs

In this section, we introduce the notions of decomposable graphs and graph
decompositions which play a key role in our arguments.

Let G be a graph of maximum degree ∆. For an integer k, a sub-k-factor
of G is any spanning subgraph of maximum degree at most k. Note that
a 1-factor of a graph is a perfect matching, while a sub-1-factor is just a
matching. An `-decomposition of a graph G is a decomposition of G into
d`/2e edge-disjoint sub-2-factors, one of which is required to be a matching
if ` is odd. If G has an `-decomposition, then it is said to be `-decomposable.
For our purposes, ∆-decomposable graphs of maximum degree ∆ will be
of interest. It is easy to find examples of graphs that are not of this type
(consider any cubic graph with no perfect matching). However, graphs of
even maximum degree always have a ∆-decomposition:

Lemma 1 Every graph of maximum degree 2k, k ≥ 1, has a 2k-decomposi-
tion.

Proof: Let G be a graph of maximum degree 2k. It is easy to see that one
may add vertices and edges to G so as to obtain a 2k-regular multigraph G′.
By [19] (see also [7, Corollary 2.1.5]), the edges of G′ can be decomposed into
k 2-factors. This yields a 2k-decomposition of G.

Let G be a connected graph. An edge-cut in G is a minimal set T of edges
of G such that G \ T is disconnected. Note that if T is an edge-cut, then
G \ T has exactly two components. The graph G is k-edge-connected if it
contains no edge-cut of size at most k− 1. An edge-cut T is essential if each
component of G \ T contains at least one edge. The graph G is essentially
k-edge-connected if |E(G)| > k and G does not contain any essential edge-cut
of size at most k − 1. An edge-cut T is cyclic if each component of G \ T
contains a cycle. As before, G is cyclically k-edge-connected if |E(G)| > k
and G contains no cyclic edge-cut of size at most k − 1.

In the rest of this section, we prove an analogue of Lemma 1 for graphs of
odd maximum degree ∆, provided that they are cyclically ∆-edge-connected.
The main step is to prove the existence of a matching which covers all vertices
of degree ∆.

Our approach is based on the following classical theorem of Tutte [22]:
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Theorem 2 A multigraph G contains a 1-factor if and only if for each S ⊂
V (G), the following holds:

codd(G \ S) ≤ |S|,

where codd(H) denotes the number of components of H of odd order.

The proof of the following lemma follows ideas used to prove the theorem
of Petersen [19] on the existence of 1-factors in bridgeless cubic graphs:

Lemma 3 Let G be a connected multigraph. Suppose that all the vertices of
G have the same odd degree ∆ ≥ 3, except possibly for one vertex u of degree
at most ∆. If G does not contain any edge-cut of size less than ∆, with a
possible exception of the cut formed by all the edges incident with u, then G
contains a matching that covers V∆(G).

Proof: We distinguish two cases regarding the parity of the order of G.
Assume first that |V (G)| is even. We use Theorem 2 to show that G contains
a 1-factor. Consider a subset S ⊂ V (G). If S = ∅, then codd(G \ S) = 0 as
G is connected. Otherwise, the number of edges between the vertices of S
and V (G) \ S is at most ∆|S|, since each vertex of S has degree at most ∆.
On the other hand, G contains at most one edge-cut of size less than ∆, and
so all but at most one component of G \ S are joined to the vertices of S by
at least ∆ edges. In particular,

∆(codd(G \ S)− 1) < ∆|S|,

which implies codd(G \ S) ≤ |S| as required. By Theorem 2, G has a 1-factor.
Assume now that |V (G)| is odd. Let δ be the degree of u. Since ∆ is

odd, δ < ∆ by the hand-shaking lemma. Thus, it is enough to show that the
graph G′ = G \ {u} has a 1-factor. Note that G′ is connected: otherwise,
a proper subset of the edges incident with u would form an edge-cut in G,
which was assumed not to be the case.

We again use Theorem 2 in order to show the existence of a 1-factor in
G′. Let S ′ ⊂ V (G′) and set S = S ′ ∪ {u}. If S ′ = ∅, then S = {u} and the
graph G \ S = G′ \ S ′ is connected. Since its order is even, the condition of
Theorem 2 is satisfied. If S ′ 6= ∅, then the number of edges between S and
V (G)\S is at most ∆|S ′|+δ. Each component C of G\S is joined by at least
∆ edges to the vertices of S. Indeed, if not, then the edges incident with C
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form an edge-cut of size smaller than ∆. By the assumption of the lemma,
the edges forming this edge-cut must be exactly all the edges incident with
the vertex u. Then, the graph G[C ∪ {u}] is a component of the graph G,
but since G is connected, we infer that S ′ = ∅. Hence, each component of
G \ S is joined by at least ∆ edges to the vertices of S. Since there are at
most ∆|S ′|+ δ < ∆(|S ′|+1) such edges, the graph G\S = G′ \S ′ consists of
at most |S ′| components. In particular, codd(G′ \ S ′) ≤ |S ′|, and G′ contains
a 1-factor by Theorem 2.

As announced before, we now strengthen Lemma 3 to the class of essen-
tially ∆-edge-connected graphs:

Lemma 4 Every essentially ∆-edge-connected multigraph G of odd maxi-
mum degree ∆ ≥ 3 has a matching which covers all the vertices of V∆(G).

Proof: As long as G contains a pair of non-adjacent vertices v and v′

whose degrees sum up to at most ∆, identify v and v′ (preserving multiple
edges if they arise). Just like G, the resulting multigraph G′ is essentially
∆-edge-connected.

If G′ contains a pair of vertices u and v both of whose degrees are smaller
than ∆, add the edge uv toG′. (This preserves the essential edge-connectivity
since the sum of the degrees of u and v is larger than ∆.) Repeat this process
until there is no such pair of vertices, and call the resulting multigraph G′′. If
G′′ is ∆-regular, it is also ∆-edge-connected. Otherwise, G′′ contains exactly
one vertex z of degree smaller than ∆, and the only edge-cut in G′′ of size less
than ∆ consists of the edges incident with z. In each case, Lemma 3 implies
that G′′ has a matching which covers V∆(G′′). The matching consisting of
the corresponding edges in G has the required property.

Before we handle cyclically ∆-edge-connected graphs, we need to observe
the following property of matchings in trees:

Lemma 5 Let T be a tree of maximum degree ∆ and X ⊆ V (T ). Set T∆ =
V∆(T ) \X. If no vertex of T∆ has ∆ neighbors in X, and at most one vertex
of T∆ has ∆−1 neighbors in X, then there is a matching M in T \X covering
all vertices of T∆.
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Proof: We can assume that T∆ is non-empty, for otherwise the claim holds
for trivial reasons. Let r be a vertex of T∆ with ∆ − 1 neighbors in X, if
there is one. Otherwise, choose r to be an arbitrary vertex of T∆. Orient the
edges of the tree T away from the vertex r.

Let M0 be a set of edges obtained by choosing, for each vertex v ∈ T∆,
one outgoing edge vw ending in a vertex w /∈ X. Such a choice can always
be made, since if v 6= r, then at most ∆− 2 out of the ∆− 1 outgoing edges
end in X (and a similar argument applies to r).

Finally, we change M0 into a matching M by removing certain edges. For
every maximal directed path P in M0, remove every second edge (starting
with the second one from the beginning of P ). Clearly, M is a matching,
and since each P ends in a vertex not contained in T∆, M still covers all the
vertices of T∆.

We are now able to extend Lemma 4 to cyclically ∆-edge-connected
graphs:

Lemma 6 For any odd integer ∆ ≥ 3, every cyclically ∆-edge-connected
graph G of maximum degree ∆ has a matching covering V∆(G).

Proof: We proceed by induction on the size of G. If G is essentially ∆-edge-
connected, then the claim follows from Lemma 4. Thus, let C be an essential
edge-cut of size at most ∆−1; by the cyclic connectivity assumption, at least
one of the components A and B of G− C is a tree. We may assume that it
is the component A.

Since the multigraph G/A is cyclically ∆-edge-connected and its maxi-
mum degree is at most ∆, G/A has a matching MB covering V∆(G/A) by the
induction hypothesis (note that the claim is trivially true if the maximum
degree of G/A is smaller than ∆). We will use the same symbol MB for the
matching in G comprised of the corresponding edges.

Let T be the tree obtained fromG/B by splitting the vertex corresponding
to B into |C| vertices of degree one. We define X ⊂ V (T ) to be the set
consisting of the counterparts of the vertices covered by MB in G. Observe
that |X| ≤ ∆, and if |X| = ∆, then MB uses an edge of C, and thus
X contains two adjacent vertices. It follows easily that the hypothesis of
Lemma 5 is satisfied. Hence, there is a matching MA in T \ X covering
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V∆(T ) \X. Again, we use MA for the corresponding matching in G. Clearly,
MA ∪MB is a matching which covers V∆(G).

We use Lemma 6 to find a ∆-decomposition of any cyclically ∆-edge-
connected graph:

Proposition 7 Any cyclically ∆-edge-connected graph G of maximum degree
∆ is ∆-decomposable.

Proof: If ∆ is even, then G is ∆-decomposable by Lemma 1. For ∆ = 1, the
assertion is trivial. Thus, we may assume that ∆ ≥ 3 is odd. By Lemma 6,
the graph G contains a matching M which covers V∆(G). In particular,
G \M has even maximum degree ∆ − 1. Again by Lemma 1, G \M has a
(∆− 1)-decomposition. Adding M to this (∆− 1)-decomposition, we obtain
a ∆-decomposition of G.

4 Independent systems of representatives

An important ingredient of our proof is the concept of an independent system
of representatives, introduced by Fellows [9]. Throughout this section, let G
be a graph with a given partition P = {V1, . . . , Vk} of its vertex set V into
k disjoint subsets. A set X ⊆ V is an independent system of representatives
(ISR) with respect to P if X is an independent set intersecting each member
of P in a single vertex.

Recently, there has been a surge of interest in ISRs, preceded by a result
of Haxell [11] which we describe in more detail. Let us start with some
terminology. A set D of vertices of the graph G is totally dominating if each
vertex of G has a neighbor in D. The size of a smallest totally dominating
set in G is the total domination number γ̃(G) of G. For I ⊆ {1, . . . , k}, set

VI =
⋃
i∈I
Vi.

Finally, if X ⊆ V (G), then G[X] denotes the induced subgraph on the set
X. The above mentioned result of Haxell [11] is the following:
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Theorem 8 Let G be a graph and P = {V1, . . . , Vk} a partition of V (G). If,
for each I ⊆ {1, . . . , k}, it holds that

γ̃(G[VI ]) ≥ 2|I|,
then G has an ISR with respect to P.

In the present paper, we make use of the following result which follows
from Theorem 8 as a simple corollary:

Theorem 9 Let G be a graph of maximum degree ∆ and let P be a partition
of V (G). If each member of P contains at least 2∆ vertices, then G has an
ISR with respect to P.

Although Theorem 9 is sufficient for our needs, we briefly sketch the
subsequent development in the area which started with an extension of Hall’s
matching theorem to hypergraphs, proved by topological means by Aharoni
and Haxell [4]. The result was further generalized by Meshulam [16], and a
more elementary proof of the generalization was given by Aharoni et al. [3].

As observed by Ron Aharoni (see [16]), the method of [4] implies a funda-
mental result on ISRs that underlies a number of known sufficient conditions
including Theorem 8. We refer the reader to [2] for a discussion of these, and
for the topological definitions. Here, we just state the result:

Theorem 10 Let G be a graph and P = {V1, . . . , Vk} a partition of V (G).
If the topological connectivity of the independence complex of G[VI ] is at least
|I| − 2 for each I ⊆ {1, . . . , k}, then G has an ISR with respect to P.

In [17], the relation between the properties of the independence complex
(in particular, its homology) and the existence of an ISR is elaborated even
further.

5 Local modifications of edge-colorings

In this section, we show that if e is an edge of a tree T of maximum degree ∆,
then any ∆-edge-coloring of T \ e can be modified to a circular (∆ + ε)-edge-
coloring c′ of T (where ε > 0 is a given real number) such that c′ has any
prescribed value on e, and c′ agrees with c at all edges that are sufficiently
far apart from e.

10



Lemma 11 Let T be a tree of maximum degree ∆ and e ∈ E(T ). Suppose
that c is a proper ∆-edge-coloring of T \ e. Furthermore, let real numbers
ε > 0 and γ ∈ [0,∆ + ε) be given. There exists a circular (∆ + ε)-edge-
coloring c′ of T such that c′(e) = γ, and for any edge f at distance at least
∆2/ε+ 2∆ from e,

c′(f) = c(f).

Proof: First, note that it may be assumed that e is incident with a leaf of
T . Indeed, if this is not the case, then let T1 and T2 be the trees obtained
by adding the edge e to each component of T \ e, apply the statement of the
lemma to T1 and T2 separately, and combine the corresponding (∆+ε)-edge-
colorings to obtain c′.

By our assumption, e is only incident with at most ∆− 1 other edges of
T . Without loss of generality, we may assume that none of these ∆−1 edges
is colored 0. By setting c(e) = 0, c is extended to a proper ∆-edge-coloring
of T .

If f is an edge of T , d(f) denotes the distance between f and e. Let C
be a circle of circumference ∆ + ε. We identify the points of C with numbers
from [0,∆+ε) and assume the numbers increase as one traverses C clockwise.
A palette is any ∆-tuple

P = (P (0), . . . , P (∆− 1)) ⊂ C

such that for any distinct x and y, the distance between P (x) and P (y) (on
C) is at least 1.

Set D = bγ∆/εc. In the sequel, we shall define palettes P0, . . . , PD+∆.
For each edge f ∈ E(T ), the value of c′ on f will be

c′(f) =





γ if f = e,

Pd(f)(c(f)) if 1 ≤ d(f) ≤ D + ∆,

c(f) otherwise.

(1)

The palette P0 consists of ∆ consecutive, equally spaced points of C, the first
of which is γ. In symbols,

P0(x) = xλ+ γ,

where λ = 1 + ε/∆ and (as in all that follows) all arithmetic is performed
modulo ∆ + ε. For i < D, the palette Pi+1 is obtained from Pi by a counter-
clockwise rotation by ε/∆. Using (1), this determines the values of c′ on all
edges at distance at most D from e.
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Let us check at this point that the restriction of c′ to the edges at distance
at most D from e is a proper circular (∆ + ε)-coloring. Since the distances
of colors in a palette are at least 1, the only conflict that can occur is that
for some distinct x and y in {0, . . . ,∆− 1} and some i, the distance between
Pi(x) and Pi+1(y) on C is less than 1. If this happens, then clearly y = x+ 1
(modulo ∆), and thus

Pi+1(x+ 1)− Pi(x) < 1.

However, one easily calculates that

Pi+1(x+ 1)− Pi(x) =
(

(x+ 1)λ+ γ − (i+ 1)
ε

∆

)
−
(
xλ+ γ − i ε

∆

)

= λ− ε

∆
= 1.

Hence, we do have a proper coloring so far.
Observe that PD(0) ∈ [0, ε/∆). More generally, PD(x) is close to xλ:

PD(x) = xλ+ γ −
⌊γ∆

ε

⌋
· ε

∆
∈
[
xλ, xλ+

ε

∆

)
. (2)

Next, we “round the colors down”. The ultimate outcome will be the
palette PD+∆ = (0, 1, . . . ,∆−1). The intermediate palettes PD+1,. . . ,PD+∆−1

are defined as follows. For i = 1, . . . ,∆, we let

PD+i(x) =

{
x if 0 ≤ x < i,

PD(x) otherwise.
(3)

Note that PD+1 equals PD except for the value at 0. Furthermore, the dis-
tance of PD+1(0) from PD(∆ − 1) is at least 1. Hence, c′ is proper on all
edges in N(e,D + 1).

In fact, c′ is proper on all of N(e,D+ ∆). To see this, it suffices to check
that the distance between PD+i(x) and PD+i+1(x+ 1) (where 0 ≤ i < ∆ and
0 ≤ x < ∆) is at least 1. By (3), this distance is either the distance between
x and x + 1 (which is 1), or the distance between PD(x) and PD(x + 1)
(which is λ > 1), or the distance between x and PD(x+ 1) (which is at least
(x+ 1)λ− x > 1).

Since PD+∆(x) = x for all x, the coloring c′ coincides with c on edges
at distance at least D + ∆ from e. The estimate on the distance from the
statement of the lemma follows from

D + ∆ ≤ γ∆

ε
+ ∆ <

(∆ + ε)∆

ε
+ ∆ =

∆2

ε
+ 2∆.
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6 Coloring ∆-decomposable graphs

For an integer d, a subgraph H of G is said to be d-closed if it contains every
path P in G such that P joins two vertices from V (H) and the length of P
is at most d.

Theorem 12 For any integer ∆ ≥ 3 and real ε > 0, there exist positive
integers d and g such that the following holds: let G be an arbitrary ∆-
decomposable graph of maximum degree ∆ and girth at least g. If H is a
d-closed subgraph of G with 1 ≤ |E(H)| ≤ d∆, then any proper (∆+ε)-edge-
coloring h of the neighborhood of H extends to a (∆ + ε)-edge-coloring of the
entire graph G.

Proof: Set ` = d∆2/ε + 2∆e, d = 2` + 2 and g = 2(d∆ + 1)∆2`+1. We are
given a ∆-decomposition

F = (F0, . . . , Fd∆/2e−1)

of G, where Fd∆/2e−1 is a matching if ∆ is odd. A key idea of the proof is
to use the ∆-decomposition to construct a ∆-edge-coloring c of G \S, where
S will be a set of edges that are “sparse” and, in addition, distant from the
subgraph H. Applying Lemma 11 to a suitable neighborhood of each edge
of S ∪ ∂H, where ∂H is the set of edges with precisely one endvertex in H,
one can then modify c to a (∆+ε)-edge-coloring of the whole graph G which
extends the coloring h.

Let C1, . . . , Ck be all the odd cycles contained in F0, . . . , Fd∆/2e−1. Con-

struct an auxiliary graph G̃ whose vertices are all edges e contained in the
cycles Ci such that the distance of e from H is at least 2` + 2. Two such
edges e and f are joined by an edge in G̃ if they come from different cycles
Ci, and their distance in G is at most 2`. The vertex set of G̃ is naturally
partitioned into k classes C̃i corresponding to the cycles Ci.

In a graph of maximum degree ∆ ≥ 3, the number of edges at distance
less than t from any given edge does not exceed

1 + 2(∆− 1) + 2(∆− 1)2 + · · ·+ 2(∆− 1)t−1 < 2∆t−1 < ∆t.

Consequently, the maximum degree of G̃ is at most ∆2`+1, and there are at
most 2d∆2`+2 edges in N(H, 2` + 1). Thus, the size of each C̃i is at least
g − 2d∆2`+2 = 2∆2`+1.

13



We aim to use Theorem 9 for G̃. By the choice of g, the hypotheses of
Theorem 9 are satisfied, and hence G̃ has an independent system of repre-
sentatives S = {e1, . . . , ek} with respect to the parts C̃i.

Define an edge-coloring c of G \ S as follows. Since S intersects all odd
cycles contained in the sub-2-factors of the decomposition F , each graph
Fi \ S (where i = 0, . . . , b∆/2c − 1) is bipartite and can be colored by colors
2i and 2i + 1. If ∆ is odd, then Fd∆/2e−1 is a matching and all of its edges
can be colored with the color ∆ − 1. Clearly, c is a proper ∆-edge-coloring
of G \ S.

Let ∂H be the set of edges of N(H) not contained in H. For each e ∈ ∂H,
let T0(e) be the subgraph of G induced by e and all edges in N(e, `) outside
H ∪ ∂H, and set T (e) to be the component of T0(e) containing e. For an
edge e ∈ S, let T (e) = N(e, `). Since the girth of G is larger than 2(` + 1),
each subgraph T (e), e ∈ ∂H ∪ S, is a tree. Moreover, for two distinct edges
e1, e2 ∈ ∂H ∪ S, the trees T (e1), T (e2) are edge-disjoint. To prove this, it is
enough to show that

the distance of e1 and e2 is at least 2`+ 1. (4)

We distinguish three cases. If e1, e2 ∈ S, then (4) follows from the fact that
S is an ISR for G̃ and the parts C̃i. If e1 ∈ S and e2 ∈ ∂H (or vice versa),
(4) is ensured by the construction of G̃: the edges of distance less than 2`+1
from ∂H are not included in G̃ at all. Finally, if both e1 and e2 are in ∂H,
then (4) holds since H is d-closed.

We now define a (∆ + ε)-edge-coloring h′ of G that extends the given
edge-coloring h of the neighborhood of H. For each edge e ∈ ∂H ∪ S, use
Lemma 11 to find a (∆ + ε)-coloring h′e of T (e) that agrees with c on the
edges of the tree T (e) incident with leaves, and such that

h′e(e) =

{
h(e) if e ∈ ∂H,

0 if e ∈ S.

Now define, for all edges f of G,

h′(f) =





h′e(f) if f is contained in some tree T (e),

h(f) if f ∈ E(H),

c(f) otherwise.
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It is straightforward to check that h′ is a proper (∆ + ε)-edge-coloring which
extends h.

7 The main result

Before we are able to prove our main result, Theorem 15, we must establish
an auxiliary lemma on cyclic edge-cuts in graphs.

Lemma 13 Let k ≥ 2 be a given integer and let G be a connected graph with
more than k edges. If G is not cyclically k-edge-connected, then it contains
a cyclic edge-cut of size at most k− 1 which splits G into two components A
and B such that G/A is cyclically k-edge-connected or the size of G/A is at
most k.

Proof: Let C be a cyclic edge-cut of G whose size is at most k − 1, chosen
such that the order of a component B of G \ C is as small as possible. Let
A be the other component of G \ C. We need to show that the graph G/A
has no cyclic edge-cut of size at most k − 1. Assume the opposite and let
C ′A be such an edge-cut. Let C ′ be the set of edges of G corresponding to
those in C ′A. Clearly, C ′ is a cyclic edge-cut of G, |C ′| ≤ k − 1 and one of
the components of G \ C ′ has fewer vertices than B — a contradiction.

Consider a subgraph H of a graph G and an integer d ≥ 1. A path P in
G is a d-connecting path for H if

(i) the endvertices of P are in H,

(ii) no edge nor internal vertex of P is contained in H,

(iii) the length of P is at most d.

The d-connector connd(H) of H is the smallest d-closed subgraph of G
which contains H. A sequence (P1, . . . , Pk) of paths in G is a construction
sequence for connd(H) if, for each i = 0, . . . , k − 1, the path Pi+1 is d-
connecting for

H(i) = H ∪ P1 ∪ · · · ∪ Pi,
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and H(k) = connd(H). Clearly, there is at least one construction sequence for
connd(H). Although the construction sequence is not uniquely determined,
the d-connector itself is.

We now show that if the girth of a graph G is sufficiently large, then the
d-connector (as well as its neighborhood) of a subgraph with few edges is a
forest of small size.

Lemma 14 Let d > ` ≥ 1. Suppose that a subgraph H of a graph G contains
at most ` edges and no isolated vertices. If the girth of G is greater than (d+
1)`, then the neighborhood of the d-connector of H is a forest. Furthermore,
the size of connd(H) is less than d`.

Proof: Let (P1, . . . , Pk) be a construction sequence for connd(H). Let c(H)
denote the number of components of H. Observe that c(H) ≤ `. We claim
that the endvertices of each Pi+1 are in different components of

H(i) = H ∪ P1 ∪ · · · ∪ Pi.

If not, then let i0 be the smallest index i violating the claim. Clearly, H(i0+1)

contains a cycle. Furthermore, i0 < `. To see this, observe that the numbers
of components of the graphs

H,H(1), H(2), . . . , H(i0)

form a decreasing sequence; since c(H) ≤ `, i0 must be less than `.
Now i0 < ` implies that the size of H(i0+1), and hence also the length of

the cycle it contains, is at most `+ i0d ≤ `(d+ 1). This contradicts the fact
that the girth of G is greater than `(d+ 1).

We have shown that each path Pi+1 joins vertices in different components
of H(i). Since H itself contains no cycles (by the girth assumption), we
infer that connd(H) is a forest. Its neighborhood must be a forest as well.
This follows from the fact that no two vertices of connd(H) have a common
neighbor outside connd(H) (as there is no 2-connecting path for connd(H)).

It remains to prove the stated bound on the size of connd(H). Since
k < c(H) (recall that k stands for the number of paths in the construction
sequence), the size of connd(H) is at most `+ d(`− 1) < d` as claimed.

We are now ready to prove our main theorem:
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Theorem 15 For any integer ∆ ≥ 1 and real ε > 0, there exists a positive
integer g such that if G is a graph of maximum degree ∆ and girth at least
g, then

χ′c(G) ≤ ∆ + ε.

Proof: We may clearly assume that ∆ ≥ 3. Fix d ≥ ∆ and g ≥ (d + 1)∆
large enough for the statement of Theorem 12 to hold. The proof proceeds
by induction on the size of G. The assertion of the theorem is trivial if
|E(G)| ≤ ∆. Furthermore, we may assume that G is connected.

If G is cyclically ∆-edge-connected, then G has a ∆-decomposition by
Proposition 7. Note that this includes the case when G is a tree. By The-
orem 12 (where we set H to be any subgraph consisting of a single edge),
χ′c(G) ≤ ∆ + ε. Otherwise, since |E(G)| > ∆, Lemma 13 implies that there
is a cyclic edge-cut F of size at most ∆ − 1 whose removal splits G into
components A and B such that G/A is cyclically ∆-edge-connected or the
size of G/A is at most ∆. Let F ′ denote the d-connector of F in the union
of B and F . Lemma 14, used with ` = ∆− 1, implies that N(F ′) is a forest.
Since B contains a cycle, N(F ′) \ F has fewer edges than B. Thus, if we set
GA to be the union of A with N(F ′), the size of GA is smaller than the size
of G. At the same time, GA has girth at least g and its maximum degree is
at most ∆. By induction (needed only if the maximum degree is precisely
∆), GA has a (∆ + ε)-edge-coloring cA.

The graph G/A has maximum degree at most ∆. We claim that it
has a ∆-decomposition. As shown above, G/A is either cyclically ∆-edge-
connected (in which case it has a ∆-decomposition by Proposition 7), or
it has at most ∆ edges (in which case there is a trivial ∆-decomposition).
Therefore, B ∪F is ∆-decomposable as well. Since F ′ is a d-closed subgraph
of B∪F of size less than d∆, the precoloring of N(F ′) induced by cA extends
to a (∆ + ε)-coloring cB of B ∪ F by Theorem 12. The combination of cA
and cB is the desired (∆ + ε)-coloring of G.

An immediate corollary of Theorem 15 is the following:

Corollary 16 For any integer ∆ ≥ 1 and real ε > 0, there exists a positive
integer g such that if G is a graph of maximum degree ∆ and girth at least
g, then

χ′f (G) ≤ ∆ + ε,

where χ′f denotes the fractional chromatic index.
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[15] D. König: Über Graphen und ihre Anwendung auf Determinantenthe-
orie und Mengenlehre, Math. Ann. 77 (1916), 453–465.

[16] R. Meshulam: The clique complex and hypergraph matching, Combi-
natorica 21 (2001), 89–94.

[17] R. Meshulam: Domination numbers and homology, J. Combin. Theory
Ser. A 102 (2003), 321–330.
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