TUTORIAL No. 1

FLUID FLOW THEORY

In order to complete this tutorial you should already have completed level 1 or have a
good basic knowledge of fluid mechanics equivalent to the Engineering Council part 1
examination 103.

When you have completed this tutorial, you should be able to do the following.
o Explain the meaning of viscosity.
a Define the units of viscosity.
o Describe the basic principles of viscometers.
o Describe non-Newtonian flow

o Explain and solve problems involving laminar flow though pipes and
between parallel surfaces.

o Explain and solve problems involving drag force on spheres.
o Explain and solve problems involving turbulent flow.

o Explain and solve problems involving friction coefficient.

Throughout there are worked examples, assignments and typical exam questions. You
should complete each assignment in order so that you progress from one level of
knowledge to another.

Let us start by examining the meaning of viscosity and how it is measured.
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1. VISCOSITY

1.1 BASIC THEORY

Molecules of fluids exert forces of attraction on each other. In liquids this is strong enough to keep the
mass together but not strong enough to keep it rigid. In gases these forces are very weak and cannot hold
the mass together.

When a fluid flows over a surface, the layer next to the surface may become attached to it (it wets the
surface). The layers of fluid above the surface are moving so there must be shearing taking place between
the layers of the fluid.

dL
«L‘ 4d_x
Fig.1.1

Let us suppose that the fluid is flowing over a flat surface in laminated layers from left to right as shown
in figure 1.1.

y is the distance above the solid surface (no slip surface)

L is an arbitrary distance from a point upstream.

dy is the thickness of each layer.

dL is the length of the layer.

dx is the distance moved by each layer relative to the one below in a corresponding time dt.
u is the velocity of any layer.

du is the increase in velocity between two adjacent layers.

Each layer moves a distance dx in time dt relative to the layer below it. The ratio dx/dt must be the
change in velocity between layers so du = dx/dt.

When any material is deformed sideways by a (shear) force acting in the same direction, a shear stress t
is produced between the layers and a corresponding shear strain y is produced. Shear strain is defined as

follows.

sideways deformation _dx

Y= . =
height of the layer being deformed  dy
The rate of shear strain is defined as follows.

. shear strain _ Y _ dx d_u
! timetaken dt dtdy dy

It is found that fluids such as water, oil and air, behave in such a manner that the shear stress between
layers is directly proportional to the rate of shear strain.

T = constant X y
Fluids that obey this law are called NEWTONIAN FLUIDS.
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It is the constant in this formula that we know as the dynamic viscosity of the fluid.

shear stress 7 dy
DYNAMIC VISCOSITY = —————— = — = ’Cd—
u

rate of shear Y

FORCE BALANCE AND VELOCITY DISTRIBUTION

A shear stress T exists between each layer and this increases by dt over each layer. The pressure
difference between the downstream end and the upstream end is dp.

The pressure change is needed to overcome the shear stress. The total force on a layer must be zero so
balancing forces on one layer (assumed 1 m wide) we get the following.

dpdy+dtdL =0

dt  dp

dy dL

It is normally assumed that the pressure declines uniformly with distance downstream so the pressure
gradient j—iis assumed constant. The minus sign indicates that the pressure falls with distance.
Integrating between the no slip surface (y = 0) and any height y we get

+3)
oo _dr_ "oy

dL dy dy
dp d’u
——— = Ui, 1.1
T ay? (1.1)
Integrating twice to solve u we get the following.
dL dy
2
y dp
—-——=u+Ay+B
2a Y

A and B are constants of integration that should be solved based on the known conditions
(boundary conditions). For the flat surface considered in figure 1.1 one boundary condition is
that u = 0 when y = 0 (the no slip surface). Substitution reveals the following.

0=0+0+B hence B=0

At some height & above the surface, the velocity will reach the mainstream velocity u,. This
gives us the second boundary condition u =u, when y = 9.
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Substituting we find the following.

2
_Sdp =pu, +Ad
2 dL
__§d_p_ Ht, hence
2 dL 0
y dp _8dp _pu,
2 dL 2 dL o)

Plotting u against y gives figure 1.2.

BOUNDARY LAYER.

The velocity grows from zero at the surface to a maximum at height d. In theory, the value of &
is infinity but in practice it is taken as the height needed to obtain 99% of the mainstream
velocity. This layer is called the boundary layer and & is the boundary layer thickness. It is a
very important concept and is discussed more fully in later work. The inverse gradient of the
boundary layer is du/dy and this is the rate of shear strain y.
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1.2. UNITS of VISCOSITY

1.2.1 DYNAMIC VISCOSITY u

The units of dynamic viscosity u are N s/m2. It is normal in the international system
(SI) to give a name to a compound unit. The old metric unit was a dyne.s/cm2 and this
was called a POISE after Poiseuille. The SI unit is related to the Poise as follows.

10 Poise = 1 Ns/m2  which is not an acceptable multiple. Since, however, 1 Centi
Poise (1cP) is 0.001 N s/m2 then the cP is the accepted SI unit.

1cP = 0.001 N s/m2,
The symbol 1 is also commonly used for dynamic viscosity.
There are other ways of expressing viscosity and this is covered next.

1.2.2 KINEMATIC VISCOSITY v

This is defined as : v = dynamic viscosity /density

v= pp

The basic units are m2/s. The old metric unit was the cmZ2/s and this was called the
STOKE after the British scientist. The SI unit is related to the Stoke as follows.

1 Stoke (St) = 0.0001 m2/s and is not an acceptable SI multiple. The centi Stoke
(cSt),however, is 0.000001 m2/s and this is an acceptable multiple.

1¢St = 0.000001 m2/s = 1 mm2/s

1.2.3 OTHER UNITS

Other units of viscosity have come about because of the way viscosity is measured. For
example REDWOOD SECONDS comes from the name of the Redwood viscometer.
Other units are Engler Degrees, SAE numbers and so on. Conversion charts and
formulae are available to convert them into useable engineering or SI units.

1.2.4 VISCOMETERS

The measurement of viscosity is a large and complicated subject. The principles rely on
the resistance to flow or the resistance to motion through a fluid. Many of these are
covered in British Standards 188. The following is a brief description of some types.
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U TUBE VISCOMETER

Tirning
marks

Fig.1.3

REDWOOD VISCOMETER

Bung

Level Indicataor

0 ml— |-

Fig.1.4
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The fluid is drawn up into a reservoir and allowed to
- run through a capillary tube to another reservoir in the
other limb of the U tube.

The time taken for the level to fall between the marks is
—]- converted into ¢St by multiplying the time by the
viscometer constant.

v=ct

The constant ¢ should be accurately obtained by
calibrating the viscometer against a master viscometer
from a standards laboratory.

This works on the principle of allowing the
fluid to run through an orifice of very accurate
size in an agate block.

50 ml of fluid are allowed to fall from the level
indicator into a measuring flask. The time
taken is the viscosity in Redwood seconds.
There are two sizes giving Redwood No.l or
No.2 seconds. These units are converted into
engineering units with tables.



FALLING SPHERE VISCOMETER

This viscometer is covered in BS188 and is based on measuring
the time for a small sphere to fall in a viscous fluid from one
level to another. The buoyant weight of the sphere is balanced
by the fluid resistance and the sphere falls with a constant
velocity. The theory is based on Stokes’ Law and is only valid
for very slow velocities. The theory is covered later in the
section on laminar flow where it is shown that the terminal
velocity (u) of the sphere is related to the dynamic viscosity (u)
and the density of the fluid and sphere (p; and p;) by the
formula

n=F gd*(p;-py)/18u
Fig.1.5

F is a correction factor called the Faxen correction factor, which takes into account a
reduction in the velocity due to the effect of the fluid being constrained to flow between

the wall of the tube and the sphere.

ROTATIONAL TYPES

There are many types of viscometers, which use the principle that it requires a torque to
rotate or oscillate a disc or cylinder in a fluid. The torque is related to the viscosity.
Modern instruments consist of a small electric motor, which spins a disc or cylinder in
the fluid. The torsion of the connecting shaft is measured and processed into a digital
readout of the viscosity in engineering units.

You should now find out more details about viscometers by reading BS188, suitable
textbooks or literature from oil companies.

ASSIGNMENT No. 1

1. Describe the principle of operation of the following types of viscometers.
a. Redwood Viscometers.

b. British Standard 188 glass U tube viscometer.

c. British Standard 188 Falling Sphere Viscometer.

d. Any form of Rotational Viscometer

Note that this covers the E.C. exam question 6a from the 1987 paper.
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2. LAMINAR FLOW THEORY

The following work only applies to Newtonian fluids.

2.1 LAMINAR FLOW

A stream line is an imaginary line with no flow normal to it, only along it. When the flow is
laminar, the streamlines are parallel and for flow between two parallel surfaces we may consider
the flow as made up of parallel laminar layers. In a pipe these laminar layers are cylindrical and
may be called stream tubes. In laminar flow, no mixing occurs between adjacent layers and it
occurs at low average velocities.

2.2 TURBULENT FLOW

The shearing process causes energy loss and heating of the fluid. This increases with mean
velocity. When a certain critical velocity is exceeded, the streamlines break up and mixing of
the fluid occurs. The diagram illustrates Reynolds coloured ribbon experiment. Coloured dye is
injected into a horizontal flow. When the flow is laminar the dye passes along without mixing
with the water. When the speed of the flow is increased turbulence sets in and the dye mixes
with the surrounding water. One explanation of this transition is that it is necessary to change
the pressure loss into other forms of energy such as angular kinetic energy as indicated by small
eddies in the flow.

LAMINAR FLOW TURBULENT FLOW
Fig.2.1

2.3 LAMINAR AND TURBULENT BOUNDARY LAYERS

In chapter 2 it was explained that a boundary layer is the layer in which the velocity grows
from zero at the wall (no slip surface) to 99% of the maximum and the thickness of the layer is
denoted 5. When the flow within the boundary layer becomes turbulent, the shape of the
boundary layers waivers and when diagrams are drawn of turbulent boundary layers, the mean
shape is usually shown. Comparing a laminar and turbulent boundary layer reveals that the
turbulent layer is thinner than the laminar layer.

&
Larminar
Wean shape of —_— boundary
turbulent boundary  Turbulent layer
layer boundary
layer ¥ ¥
Fig.2.2
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2.4 CRITICAL VELOCITY - REYNOLDS NUMBER

When a fluid flows in a pipe at a volumetric flow rate Q m3/s the average velocity is defined

m

u_ = % A is the cross sectional area.

_pu,D u /D

m

il %
If you check the units of Re you will see that there are none and that it is a dimensionless
number. You will learn more about such numbers in a later section.

The Reynolds number is defined as R,

Reynolds discovered that it was possible to predict the velocity or flow rate at which the
transition from laminar to turbulent flow occurred for any Newtonian fluid in any pipe. He also
discovered that the critical velocity at which it changed back again was different. He found that
when the flow was gradually increased, the change from laminar to turbulent always occurred at
a Reynolds number of 2500 and when the flow was gradually reduced it changed back again at a
Reynolds number of 2000. Normally, 2000 is taken as the critical value.

WORKED EXAMPLE 2.1

Oil of density 860 kg/m’ has a kinematic viscosity of 40 cSt. Calculate the critical velocity
when it flows in a pipe 50 mm bore diameter.

SOLUTION
R, = u, D
Vv
R v 2000x40x10°°
u, =—= =1.6m/s
D 0.05
© D.J.DUNN




2.5 DERIVATION OF POISEUILLE'S EQUATION for LAMINAR FLOW

Poiseuille did the original derivation shown below which relates pressure loss in a pipe to the
velocity and viscosity for LAMINAR FLOW. His equation is the basis for measurement of
viscosity hence his name has been used for the unit of viscosity. Consider a pipe with laminar
flow in it. Consider a stream tube of length AL at radius r and thickness dr.

AL _
R
—h. |_1_
‘ l prips —-— - —+—F
\< /) — —
dr \ ]|
Fig.2.3
du du

y is the distance from the pipe wall. y=R-r dy=—-dr —=-—
dy dr

The shear stress on the outside of the stream tube is 1. The force (Fs) acting from right
to left is due to the shear stress and is found by multiplying t by the surface area.

Fs=1x2nr AL
du

For a Newtonian fluid ,t = ud— = —ui—u . Substituting for T we get the following.
y r
F, =- 2nrALpd—u

dr
The pressure difference between the left end and the right end of the section is Ap. The
force due to this (F}) is Ap x circular area of radius r.

F,=Ap x r’
Equating forces we have - 2zr ,uALi—u = Apm’
r
Ap
2 uAL

In order to obtain the velocity of the streamline at any radius r we must integrate between the
limitsu=0 whenr=R andu=uwhenr=r.

u Ap r
N _F[ rdr

rdr

Jdu=-

) 2
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This is the equation of a Parabola so if the equation is plotted to show the boundary layer, it is
seen to extend from zero at the edge to a maximum at the middle.

Uy

e
Ll

-

Um

-
-

= ﬁ;\
L J - —

Fig.2.4
. . ApR?
For maximum velocity put r = 0 and we get u =—:"
4 uAL
The average height of a parabola is half the maximum value so the average velocity is
ApR?
ull‘l = p
AL

Often we wish to calculate the pressure drop in terms of diameter D. Substitute R=D/2 and
rearrange.

32uALu,
=?

The volume flow rate is average velocity x cross sectional area.

Ap

o AR?ApR?  AR*Ap  aD*Ap
8 AL SuAL 128 uAL
This is often changed to give the pressure drop as a friction head.

The friction head for a length L is found from hf =Ap/pg
32ulu
h, = —
9D

This is Poiseuille's equation that applies only to laminar flow.

© D.J.DUNN
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WORKED EXAMPLE 2.2

A capillary tube is 30 mm long and 1 mm bore. The head required to produce a
flow rate of 8 mm3/s is 30 mm. The fluid density is 800 kg/m3.
Calculate the dynamic and kinematic viscosity of the oil.

SOLUTION

Rearranging Poiseuille's equation we get
"= h;pgD*
32Lu

_nd®  mx1?

A =0.785 mm?

4
u,. _Q__8 10.18 mm/s
A 0.785

~0.03x800x9.81x 0.001°

32x0.03x0.01018
n 0.0241

p 800

=0.0241 Ns/mor24.1cP

=30.11x10°m? /s or30.11cSt

WORKED EXAMPLE No.2.3

Oil flows in a pipe 100 mm bore with a Reynolds number of 250. The dynamic
viscosity is 0.018 Ns/m2. The density is 900 kg/m3.

Determine the pressure drop per metre length, the average velocity and the radius at
which it occurs.

SOLUTION
Re=pu,, D/p.
Hence u, =Re p/ pD
U, = (250 x 0.018)/(900 x 0.1) = 0.05 m/s

Ap = 32uL uy, /D2
Ap=32x0.018x 1x0.05/0.12
Ap= 2.88 Pascals.

u= {Ap/4Lu}(R2 - r2) which is made equal to the average velocity 0.05 m/s

0.05=(2.88/4x 1x 0.018)(0.052 - r2)
r=0.035 mor 35.3 mm.

© D.J.DUNN
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2.6. FLOW BETWEEN FLAT PLATES

Consider a small element of fluid moving at velocity u with a length dx and height dy at
distance y above a flat surface. The shear stress
acting on the element increases by dt in the y

i T +d7 direction and the pressure decreasesdby dp ;nz ljhe X
—] f—*u dy direction. Tt was shown earlier that— —> = H——
s If'“ dx ° dy
77?7777;?7?7— It is assumed that dp/dx does not vary with y so it
may be regarded as a fixed value in the following
work.
Fig.2.5
Integrating once -y dp = ,ud—u + A
dx dy
. . y* dp
Integrating again - i =uu+ Ay +B........... (2.6A)
X

A and B are constants of integration. The solution of the equation now depends upon
the boundary conditions that will yield A and B.

WORKED EXAMPLE No.2.4

Derive the equation linking velocity u and height y at a given point in the x direction
when the flow is laminar between two stationary flat parallel plates distance h apart. Go
on to derive the volume flow rate and mean velocity.

SOLUTION
When a fluid touches a surface, it sticks to it and moves with it. The velocity at the flat
plates is the same as the plates and in this case is zero. The boundary conditions are
hence
u=0wheny=20
Substituting into equation 2.6A yields that B =0
u=0 when y=h
Substituting into equation 2.6A yields that A = (dp/dx)h/2
Putting this into equation 2.6A yields

u = (dp/dx)(1/2p){y? - hy}

(The student should do the algebra for this). The result is a parabolic distribution similar
that given by Poiseuille's equation earlier only this time it is between two flat parallel
surfaces.

© D.J.DUNN
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FLOW RATE
To find the flow rate we consider flow through a small rectangular slit of width B and

height dy at height y.
0%

dyi
— h

Fy - - - —

b4 — -

AN

Fig.2.6

The flow through the slit is dQ =u Bdy =(dp/dx)(1/2n){y2 - hy} Bdy
Integrating between y = 0 and y = h to find Q yields

Q = -B(dp/dx)(h3/12p)
The mean velocity is Um = Q/Area = Q/Bh

hence Um = -(dp/dx)(h2/12p)

(The student should do the algebra)

2.7 CONCENTRIC CYLINDERS

This could be a shaft rotating in a bush filled with oil or a rotational viscometer.
Consider a shaft rotating in a cylinder with the gap between filled with a Newtonian
liquid. There is no overall flow rate so equation 2.A does not apply.

HD-Ri é
=

u

Due to the stickiness of the fluid, the liquid sticks to
both surfaces and has a velocity u = ®R; at the inner
layer and zero at the outer layer.

Fig 2.7

© D.J.DUNN
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If the gap is small, it may be assumed that the change in the velocity across the gap
changes from u to zero linearly with radius r.

T = du/dy
But since the change is linear du/dy = u/(R,-Ri) = ® R; /(Ro-Rj)
T=UO Ri /(Ro-Ri)

Shear force on cylinder F = shear stress x surface area

27R’h

F=2mRhr=""10H9
R, - R

Torque=Fx R,

3
T—Fre 27R huw

R, - R
In the case of a rotational viscometer we rearrange so that
_ T(Ro - R)
2R’ he

In reality, it is unlikely that the velocity varies linearly with radius and the bottom of the
cylinder would have an affect on the torque.

2.8 FALLING SPHERES

This theory may be applied to particle separation in tanks and to a falling sphere
viscometer. When a sphere falls, it initially accelerates under the action of gravity. The
resistance to motion is due to the shearing of the liquid passing around it. At some
point, the resistance balances the force of gravity and the sphere falls at a constant
velocity. This is the terminal velocity. For a body immersed in a liquid, the buoyant
weight is W and this is equal to the viscous resistance R when the terminal velocity is
reached.

R =W = volume x density difference x gravity
d ’ g( s — Pt )
6
ps = density of the sphere material
ps = density of fluid
d = sphere diameter

R=W =

The viscous resistance is much harder to derive from first principles and this will not be
attempted here. In general, we use the concept of DRAG and define the DRAG
COEFFICIENT as

C - Resistance force
P Dynamic pressure x projected Area

© D.J.DUNN
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The dynamic pressure of a flow stream is

2
The projected area of a sphere is Ve

Research shows the following relationship between Cp and R, for a sphere.

i
Cp

044 1

(]
—_
m
_
(]
—_
i
m
)
m

Fig. 2.8
For R.<0.2 the flow is called Stokes flow and Stokes showed that R = 3nduu hence
Cp=24w/pad = 24/R,

For 0.2 <R, < 500 the flow is called Allen flow and C]3=18.5Re'()'6
For 500 <R, < 10° Cp is constant Cp=0.44
An empirical formula that covers the range 0.2 <R, < 10’ is as follows.

CD=E+ 6
R, 1+4R,

+04

For a falling sphere viscometer, Stokes flow applies. Equating the drag force and the
buoyant weight we get

3nduu = (nd*/6)(ps - pr) g
p= gdz(pS - pp)/18u  for a falling sphere vicometer
The terminal velocity for Stokes flow is u = d’g(ps - pr)18p
This formula assumes a fluid of infinite width but in a falling sphere viscometer, the

liquid is squeezed between the sphere and the tube walls and additional viscous
resistance is produced. The Faxen correction factor F is used to correct the result.

© D.J.DUNN
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2.9 THRUST BEARINGS

Consider a round flat disc of radius R rotating at angular velocity o rad/s on top of a flat
surface and separated from it by an oil film of thickness t.

’di' dr
/L t
P u=0
J walocity gradient

’_D”'_‘ elermnentary ring of fluid

Fig.2.9

Assume the velocity gradient is linear in which case du/dy = u/t = or/t at any radius r.

.. r
The shear stress on the ringis 7 = ,ud— = ya)T
y

The shear forceis dF = 27zr2dr,u?

The torqueis dT = rdF = 2ﬂf3dry%

The total torque is found by integrating with respect tor.
R

@ )

T=|2a’dru—=mR*u—

! o o

oD’
32t

In terms of diameter D thisis T =

There are many variations on this theme that you should be prepared to handle.

© D.J.DUNN
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2.10 MORE ON FLOW THROUGH PIPES

Consider an elementary thin cylindrical layer that makes an element of flow within a
pipe. The length is 8x , the inside radius is r and the radial thickness is dr. The pressure
difference between the ends is dp and the shear stress on the surface increases by dt
from the inner to the outer surface. The velocity at any point is u and the dynamic
viscosity is L.

Bx

I 3
L4

4/
13]
1

dr
Fig.2.10
The pressure force acting in the direction of flow is {n(r+dr)*-nr} 8p
The shear force opposing is {(t+01)(2m)(r+dr) - 127r}ox

Equating, simplifying and ignoring the product of two small quantities we have the
following result.

* =Ty ar T= ,ud—u for Newtonian fluids.
X r dr d
If y is measured from the inside of the pipe thenr =-yanddy=-drso7 = —u 3—“
r
H_ pdu diu
& rdr Car
ldu du_ 1
rdr dr? 1 X
du rdu_ ro
dr dr’ 1 X
d rd—u 5
. L - . . dr) . du rd-u
Using partial differentiation to differentiate yields the result ar + i
r r

d(r duj
ar) _ v

hence =
dr U X
2
Integrating we get rd—u = o + A
dr 241 X
u_ TR A (A)

dr 2uX r

where A is a constant of integration.

© D.J.DUNN
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Integrating again we get
2
U= P AT 4B (B)
41 X
where B is another constant of integration.
Equations (A) and (B) may be used to derive Poiseuille's equation or it may be used to
solve flow through an annular passage.

2.10.1 PIPE

At the middle r=0 so from equation (A) it follows that A=0
At the wall, u=0 and r=R. Putting this into equation B yields

2
0=— R P AIR+B  whereA=0
4u X
2
g_R_%¥
4u X

4u X E&z 4u X

2 2
r-op + A {R or? } and this isPoiseuille's equation again.

2.10.2 ANNULUS

Fig.2.11

2

u :_r_@+ Alnr+B
4u X

The boundary conditionsareu =0 at r=R, andr=R .

subtract D from C

0= PR 4R+ AflnR, ~InR,}
4 X

R
- i%{Rf “RZ}+ Aln{?"}

© D.J.DUNN
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1 ® R -RY

In< —%
Ri

This may be substituted back into equation D. The same result will be obtained from C.

2 2 _p2
__ R L R-RY o
du & 4u & I{RO}
n -

R -R/
B= Lo R’ - M InR, This is put into equation B
4u X R,
Ing—
Ri

o, L eR-RY T[RRI

C4ux 4u (R 4u | R !
ln?O Ind —2

u= LB +—{R§ — Riz}1nr +R? iR -RY] Riz}ln R
41 X

Lo Lol R-R T
411 OX {R} R,
Ind—%

R.

For given values the velocity distribution is similar to this.

Ro

Ri

RADIUS

R

F‘,D
YELOCITY

Fig. 2.12
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ASSIGNMENT 2

1. Oil flows in a pipe 80 mm bore diameter with a mean velocity of 0.4 m/s. The
density is 890 kg/m3 and the viscosity is 0.075 Ns/m2. Show that the flow is
laminar and hence deduce the pressure loss per metre length.

(150 Pa per metre).

2. Oil flows in a pipe 100 mm bore diameter with a Reynolds’ Number of 500. The
density is 800 kg/m3. Calculate the velocity of a streamline at a radius of 40 mm.
The viscosity p = 0.08 Ns/m2. (0.36 m/s)

3. A liquid of dynamic viscosity 5 x 10-3 Ns/m2 flows through a capillary of
diameter 3.0 mm under a pressure gradient of 1800 N/m3. Evaluate the
volumetric flow rate, the mean velocity, the centre line velocity and the radial
position at which the velocity is equal to the mean velocity.

(uay = 0.101 m/s, umax = 0.202 m/s r=1.06 mm)

4. Similar to Q6 1998
a. Explain the term Stokes flow and terminal velocity.

b. Show that a spherical particle with Stokes flow has a terminal velocity given by

u=d’g(ps - p)/18p
Go on to show that Cp=24/R.

c. For spherical particles, a useful empirical formula relating the drag coefficient
and the Reynold’s number is

Co :ﬁ+ 6
R. 1+4R,
Given pr = 1000 kg/m’, p= 1 cP and p= 2630 kg/m’ determine the maximum
size of spherical particles that will be lifted upwards by a vertical stream of
water moving at 1 m/s.

+04

d. If the water velocity is reduced to 0.5 m/s, show that particles with a diameter of
less than 5.95 mm will fall downwards.

© D.J.DUNN
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5. Similar to Q5 1998
A simple fluid coupling consists of two parallel round discs of radius R separated
by a a gap h. One disc is connected to the input shaft and rotates at ®; rad/s. The
other disc is connected to the output shaft and rotates at w, rad/s. The discs are
separated by oil of dynamic viscosity p and it may be assumed that the velocity
gradient is linear at all radii.

7D 4#(0)1 —w, )

32h
The input shaft rotates at 900 rev/min and transmits S00W of power. Calculate the
output speed, torque and power. (747 rev/min, 5.3 Nm and 414 W)
Show by application of max/min theory that the output speed is half the input
speed when maximum output power is obtained.

Show that the Torque at the input shaft is given by T =

6. Show that for fully developed laminar flow of a fluid of viscosity p between
horizontal parallel plates a distance h apart, the mean velocity uy, is related to the
pressure gradient dp/dx by  upy = - (h2/12p)(dp/dx)

Fig.2.11 shows a flanged pipe joint of internal diameter d; containing viscous
fluid of viscosity p at gauge pressure p. The flange has an outer diameter d,, and is
imperfectly tightened so that there is a narrow gap of thickness h. Obtain an
expression for the leakage rate of the fluid through the flange.

Fig.2.13

Note that this is a radial flow problem and B in the notes becomes 2nr and dp/dx
becomes -dp/dr. An integration between inner and outer radii will be required to
give flow rate Q in terms of pressure drop p.

The answer is Q = (2rh3p/12p)/{In(dy/d;)}
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3. TURBULENT FLOW

3.1 FRICTION COEFFICIENT

The friction coefficient is a convenient idea that can be used to calculate the pressure drop in a
pipe. It is defined as follows.

C - Wall Shear Stress

f = .
Dynamic Pressure

3.11 DYNAMIC PRESSURE

Consider a fluid flowing with mean velocity uy,. If the kinetic energy of the fluid is converted
into flow or fluid energy, the pressure would increase. The pressure rise due to this conversion
is called the dynamic pressure.

KE =% mu,,’

Flow Energy =p Q Q is the volume flow rate and p = m/Q
Equating s muy,” =p Q p=mu’2Q = %pu,’

3.1.2 WALL SHEAR STRESS 19

The wall shear stress is the shear stress in the layer of fluid next to the wall of the pipe.

L
F 3 ' ———
pressure — «— pressure
A P+ Ap— — P
N gradient  [*
I —+[ > —at wall
Fig.3.1

du
The shear stress in the layer next to the wall is 7, = ﬂ(d_]
y wall

The shear force resisting flow is F, = 7,7LD

ApzD?
The resulting pressure drop produces a force of Fp = P
. . DAp
Equating forces gives 7, = T

© D.J.DUNN
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3.13 FRICTION COEFFICIENT for LAMINAR FLOW

_ WallShear Stress ~ 2DAp
" DynamicPressure  4Lpu?’,

32uL
From Poiseuille’s equation Ap = % Hence C; = 2D (32%411) = 162“ = 16
D D pu-D R,

C

3.14 DARCY FORMULA

This formula is mainly used for calculating the pressure loss in a pipe due to turbulent flow but
it can be used for laminar flow also.

Turbulent flow in pipes occurs when the Reynolds Number exceeds 2500 but this is not a clear
point so 3000 is used to be sure. In order to calculate the frictional losses we use the concept of
friction coefficient symbol Cf. This was defined as follows.

_ WallShear Stress ~ 2DAp

Cf - . o 2
Dynamic Pressure  4Lpu;,

Rearranging equation to make Ap the subject

Ap— 4C,Lpu’,
2D
This is often expressed as a friction head hf
ho— Ap 4C,Lu’
S
pg  2gD

This is the Darcy formula. In the case of laminar flow, Darcy's and Poiseuille's equations must
give the same result so equating them gives

4C,Lu’, _ 32ulu,

2gD pgD2
c 6w 16
pu,D R,

This is the same result as before for laminar flow.

Turbulent flow may be safely assumed in pipes when the Reynolds’ Number exceeds
3000. In order to calculate the frictional losses we use the concept of friction coefficient
symbol Cf. Note that in older textbooks C; was written as f but now the symbol f
represents 4Cr.

3.15 FLUID RESISTANCE

Fluid resistance is an alternative approach to solving problems involving losses. The above
equations may be expressed in terms of flow rate Q by substituting u = Q/A

_A4C;Lu, _4C,LQ’

h, . Substituting A =nD*/4 we get the following.
2gD 2gDA
32C,LQ° 32CL
h, = g—? =RQ? R is the fluid resistance or restriction. R = — f B
gn'D gr°D
© D.J.DUNN

24



If we want pressure loss instead of head loss the equations are as follows.

32pC,LQ>
T

32C, L

RQ’ R is the fluid resistance or restriction. R =
7D’

p; = pgh,

It should be noted that R contains the friction coefficient and this is a variable with velocity and
surface roughness so R should be used with care.

3.2 MOODY DIAGRAM AND RELATIVE SURFACE ROUGHNESS

In general the friction head is some function of u,, such that hf = ¢u,, 0. Clearly for laminar flow,
n =1 but for turbulent flow n is between 1 and 2 and its precise value depends upon the
roughness of the pipe surface. Surface roughness promotes turbulence and the effect is shown in
the following work.

Relative surface roughness is defined as € = k/D where k is the mean surface roughness and D
the bore diameter.

An American Engineer called Moody conducted exhaustive experiments and came up with the
Moody Chart. The chart is a plot of Cg vertically against R horizontally for various values of €.
In order to use this chart you must know two of the three co-ordinates in order to pick out the
point on the chart and hence pick out the unknown third co-ordinate. For smooth pipes, (the
bottom curve on the diagram), various formulae have been derived such as those by Blasius and
Lee.

BLASIUS C;=0.0791 R’

LEE Cr=0.0018 +0.152 R,
The Moody diagram shows that the friction coefficient reduces with Reynolds number but at a
certain point, it becomes constant. When this point is reached, the flow is said to be fully

developed turbulent flow. This point occurs at lower Reynolds numbers for rough pipes.

A formula that gives an approximate answer for any surface roughness is that given by Haaland.

1.11
L 3610g,i%2 (Lj
Ic. R, (3.71
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WORKED EXAMPLE 3.1

Determine the friction coefficient for a pipe 100 mm bore with a mean surface roughness of
0.06 mm when a fluid flows through it with a Reynolds number of 20 000.

SOLUTION
The mean surface roughness € = k/d = 0.06/100 = 0.0006
Locate the line for € = k/d = 0.0006.

Trace the line until it meets the vertical line at Re = 20 000. Read of the value of Cs
horizontally on the left. Answer C;= 0.0067.Check using the formula from Haaland.

69 e 1.11
=-3.6log, s —+| —
glO{Re (3.71) }
1.11
_ _3.6l0g, 102 +(0.0006]
20000 | 3.71

1.11
_ 36log, 6.9 +(0.0006j
20000 \ 3.71

=12.206

5- 5~ 5~ F-

@]
Il

. =0.0067

WORKED EXAMPLE 3.2

Oil flows in a pipe 80 mm bore with a mean velocity of 4 m/s. The mean surface roughness
is 0.02 mm and the length is 60 m. The dynamic viscosity is 0.005 N s/m2 and the density
is 900 kg/m3. Determine the pressure loss.

SOLUTION

Re = pud/p = (900 x 4 x 0.08)/0.005 = 57600

e=k/d = 0.02/80 = 0.00025

From the chart C;= 0.0052

hf=4CiLu2/2dg = (4 x 0.0052 x 60 x 42)/(2x9.81 x 0.08)=12.72 m

Ap = pghs =900 x 9.81 x 12.72 = 112.32 kPa.
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4.

ASSIGNMENT 3

A pipe is 25 km long and 80 mm bore diameter. The mean surface roughness is
0.03 mm. It carries oil of density 825 kg/m3 at a rate of 10 kg/s. The dynamic
viscosity is 0.025 N s/mZ2.

Determine the friction coefficient using the Moody Chart and calculate the
friction head. (Ans. 3075 m.)

Water flows in a pipe at 0.015 m3/s. The pipe is 50 mm bore diameter. The
pressure drop is 13 420 Pa per metre length. The density is 1000 kg/m3 and the
dynamic viscosity is 0.001 N s/m2.

Determine
i. the wall shear stress (167.75 Pa)
ii. the dynamic pressure (29180 Pa).
iii. the friction coefficient (0.00575)
iv. the mean surface roughness (0.0875 mm)

Explain briefly what is meant by fully developed laminar flow. The velocity u at any
radius r in fully developed laminar flow through a straight horizontal pipe of internal
radius rq is given by
u = (1/4p)(ro2 - r2)dp/dx
dp/dx is the pressure gradient in the direction of flow and p is the dynamic viscosity.
Show that the pressure drop over a length L is given by the following formula.
Ap = 32uLu,,/D?

The wall skin friction coefficient is defined as Cy= 21,/( pum2).

Show that Cy= 16/Re where Re = pumpD/p and p is the density, up, is the mean velocity
and T, is the wall shear stress.

Oil with viscosity 2 x 10-2 Ns/m2 and density 850 kg/m3 is pumped along a straight
horizontal pipe with a flow rate of 5 dm3/s. The static pressure difference between two

tapping points 10 m apart is 80 N/m2. Assuming laminar flow determine the following.

i. The pipe diameter.
ii. The Reynolds number.

Comment on the validity of the assumption that the flow is laminar

NON-NEWTONIAN FLUIDS

© D.J.DUNN
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du

A Newtonian fluid as discussed so far in this tutorial is a fluid that obeys the law 7= yu—= uy

dy
A Non — Newtonian fluid is generally described by the non-linear law 7 =7, + ky "

7, is known as the yield shear stress and J is the rate of shear strain. Figure 4.1 shows the principle forms
of this equation.

Graph A shows an ideal fluid that has no viscosity and hence has no shear stress at any point. This is
often used in theoretical models of fluid flow.

Graph B shows a Newtonian Fluid. This is the type of fluid with which this book is mostly concerned,
fluids such as water and oil. The graph is hence a straight line and the gradient is the viscosity p.

There is a range of other liquid or semi-liquid materials that do not obey this law and produce strange
flow characteristics. Such materials include various foodstuffs, paints, cements and so on. Many of these
are in fact solid particles suspended in a liquid with various concentrations.

Graph C shows the relationship for a Dilatent fluid. The gradient and hence viscosity increases
with ¥ and such fluids are also called shear-thickening. This phenomenon occurs with some

solutions of sugar and starches.

Graph D shows the relationship for a Pseudo-plastic. The gradient and hence viscosity reduces
with 7 and they are called shear-thinning. Most foodstuffs are like this as well as clay and

liquid cement..

Other fluids behave like a plastic and require a minimum stress before it shears t,. This is
plastic behaviour but unlike plastics, there may be no elasticity prior to shearing.

Graph E shows the relationship for a Bingham plastic. This is the special case where the
behaviour is the same as a Newtonian fluid except for the existence of the yield stress.
Foodstuffs containing high level of fats approximate to this model (butter, margarine, chocolate
and Mayonnaise).

Graph F shows the relationship for a plastic fluid that exhibits shear thickening characteristics.
Graph G shows the relationship for a Casson fluid. This is a plastic fluid that exhibits shear-

thinning characteristics. This model was developed for fluids containing rod like solids and is
often applied to molten chocolate and blood.

G E
Sheir ifress shear stress
D Tk
B F
A4 Tdeal fluid _ _
B Newtonian E Bingham' plastic
C. C Dilatent F Plastic
D Pseudo-plastic Ty 3 Casson Plastic
A
rate of shear du _ . rate of shear du o
dy Iy
Fig.4.1
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MATHEMATICAL MODELS

The graphs that relate shear stress T and rate of shear strain y are based on models or equations.
Most are mathematical equations created to represent empirical data.

Hirschel and Bulkeley developed the power law for non-Newtonian equations. This is as
follows.

T=1,+ Ky" K is called the consistency coefficient and n is a power.

In the case of a Newtonian fluid n = 1 and 1, = 0 and K = p_(the dynamic viscosity) T = Ly

For a Bingham plastic, n = 1 and K is also called the plastic viscosity p,. The relationship reduces to

T=T, +U,Y
For a dilatent fluid, 7,=0 and n>1
For a pseudo-plastic, 7, = 0 and n<1

The model for both is T = Ky"
The Herchel-Bulkeley model is as follows. t=1, +Ky"

This may be developed as follows.
r=7,+Ky"

en . : . . .. :
r—7,=Ky" sometimeswrittenasz —7, = 7" where u iscalled the plastic viscosity.

dividing by y
T Kﬁ= Ky
v 4
1_ =2 4+ Ky"™" Theratiois called the apparent viscosity Hepo
vy
T
:uapp __:73/_'_ Kynil

T
Fora Bingham plasticn =1 so  z,,, = <L+ K

For a Fluid with no yield shear value 7, =0 so ., = Ky""

The Casson fluid model is quite different in form from the others and is as follows.
1 1 1

2 _ 2 02
2 =1; +Ky
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THE FLOW OF A PLASTIC FLUID

Shearing takes place in the Note that fluids with a shear yield
boundary layer. stress will flow in a pipe as a plug.
[ ! Within a certain radius, the shear stress
P B B will be insufficient to produce shearing
o central plug so inside that radius the fluid flows as a
N mowves at a solid plug. Fig. 4.2 shows a typical
- a single velocity.  situation for a Bingham Plastic.
-, >

Fig.4.2

MINIMUM PRESSURE

The shear stress acting on the surface of the plug is the yield value. Let the plug be diameter d.
The pressure force acting on the plug is Ap x nd*/4
The shear force acting on the surface of the plugis tyx nd L
Equating we find Ap x d*/4 = tyxndL
d=1t,x 4L/Ap or Ap= 1, x 4L/d

The minimum pressure required to produce flow must occur when d is largest and equal to the
bore of the pipe. Ap (minimum) = 1, x 4 L/D

The diameter of the plug at any greater pressure must be given by d =1, x 4 L/Ap

For a Bingham Plastic, the boundary layer between the plug and the wall must be laminar and
the velocity must be related to radius by the formula derived earlier.

__Ap — = Ap —
u 4 (R2 I’Z) 16 (D2 dz)
FLOW RATE

The flow rate should be calculated in two stages. The plug moves at a constant velocity so the
flow rate for the plug is simply Q, = u x cross sectional area = u x nd*/4

The flow within the boundary layer is found in the usual way as follows. Consider an
elementary ring radius r and width dr.

dQ=ux27z1rdr:£(R2 —rz)x27zrdr
4l

_APT (R _
Q= 2L l(rR2 r3)dr

Q_Apﬁ_rsz_ﬁR_Apﬂ R* R*) (r’rR® r*
2ul| 2 4 2u| 2 4 2 4

_Apr|(RY) rPRPrt
2uL || 4 2 4

The mean velocity as always is defined as u,, = Q/Cross sectional area.
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WORKED EXAMPLE 4.1

The Herchel-Bulkeley model for a non-Newtonian fluid is as follows. T=1, + Ky".

Derive an equation for the minimum pressure required drop per metre length in a straight
horizontal pipe that will produce flow.

Given that the pressure drop per metre length in the pipe is 60 Pa/m and the yield shear
stress is 0.2 Pa, calculate the radius of the slug sliding through the middle.

SOLUTION

3
Y

|... 2
o Ll
=

Fig. 3.3

The pressure difference p acting on the cross sectional area must produce sufficient force to
overcome the shear stress t acting on the surface area of the cylindrical slug. For the slug to
move, the shear stress must be at least equal to the yield value ty. Balancing the forces
gives the following.

pxmr= Ty X 2nrL
p/L =21, /r
60=2x0.2/r

r=0.4/60 = 0.0066 m or 6.6 mm
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WORKED EXAMPLE 4.2

A Bingham plastic flows in a pipe and it is observed that the central plug is 30 mm
diameter when the pressure drop is 100 Pa/m.

Calculate the yield shear stress.

Given that at a larger radius the rate of shear strain is 20 s and the consistency coefficient
is 0.6 Pas, calculate the shear stress.

SOLUTION

For a Bingham plastic, the same theory as in the last example applies.
p/L=21t,/r

100 =2 1,/0.015

1, =100x 0.015/2=0.75 Pa

A mathematical model for a Bingham plastic is

T=T, + Ky =0.75+0.6 x20=12.75 Pa
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ASSIGNMENT 4

1. Research has shown that tomato ketchup has the following viscous properties at 25°C.

Consistency coefficient K= 18.7 Pa s"
Power n=0.27
Shear yield stress = 32 Pa

Calculate the apparent viscosity when the rate of shear is 1, 10, 100 and 1000 s and conclude on
the effect of the shear rate on the apparent viscosity.

Answers

Y=1 =507

Y=10 = 6.682
Y =100 gy, =0.968
Y =1000 pap, = 0.153

2. A Bingham plastic fluid has a viscosity of 0.05 N s/m” and yield stress of 0.6 N/m”. It flows in a
tube 15 mm bore diameter and 3 m long.

(i) Evaluate the minimum pressure drop required to produce flow. (480 N/m? )

The actual pressure drop is twice the minimum value. Sketch the velocity profile and calculate the
following.

(i) The radius of the solid core. (3.75 mm)
(iii) The velocity of the core. (67.5 mm/s)
(iv) The volumetric flow rate. (7.46 cm’/s)

dul"
3. A non-Newtonian fluid is modelled by the equation 7 = K(d— where n = 0.8 and

r
K =0.05 N s"*/m?. It flows through a tube 6 mm bore diameter under the influence of a pressure
drop of 6400 N/m” per metre length. Obtain an expression for the velocity profile and evaluate the
following.

(i) The centre line velocity. (0.953 m/s)
(il) The mean velocity. (0.5 m/s)
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FLUID MECHANICS 203
TUTORIAL No.2

APPLICATIONS OF BERNOULLI

On completion of this tutorial you should be able to

o derive Bernoulli's equation for liquids.

O

find the pressure losses in piped systems due to fluid friction.

a find the minor frictional losses in piped systems.

o match pumps of known characteristics to a given system.

a derive the basic relationship between pressure, velocity and force..
a solve problems involving flow through orifices.

a solve problems involving flow through Venturi meters.

o understand orifice meters.

a understand nozzle meters.

o understand the principles of jet pumps

a solve problems from past papers.

Let's start by revising basics. The flow of a fluid in a pipe depends upon two
fundamental laws, the conservation of mass and energy.
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1. PIPE FLOW

The solution of pipe flow problems requires the applications of two principles, the law of
conservation of mass (continuity equation) and the law of conservation of energy (Bernoulli’s

equation)

1.1 CONSERVATION OF MASS

When a fluid flows at a constant rate in a pipe or duct, the mass flow rate must be the same at all
points along the length. Consider a liquid being pumped into a tank as shown (fig.1).

The mass flow rate at any section is m = pAuy,

p = density (kg/m3)
un, = mean velocity (m/s)
A = Cross Sectional Area (m2)

Pz
——— —
|r' | 3
e G)
P, — e
| K
1.11 —— ._J,I_,J 22
|
SIS
¥ ¥ hd

Fig.1.1
For the system shown the mass flow rate at (1), (2) and (3) must be the same so
pP1AU; = p2Asu; = p3Asus

In the case of liquids the density is equal and cancels so

Aju=Au =Au=Q
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1.2 CONSERVATION OF ENERGY

ENERGY FORMS

FLOW ENERGY
This is the energy a fluid possesses by virtue of its pressure.
The formula is F.E. = pQ Joules

p is the pressure (Pascals)
Q is volume rate (m3)

POTENTIAL OR GRAVITATIONAL ENERGY

This is the energy a fluid possesses by virtue of its altitude relative to a datum level.
The formula is P.E. = mgz Joules

m is mass (kg)
z is altitude (m)

KINETIC ENERGY

This is the energy a fluid possesses by Virtuze of its velocity.
The formula is K.E. =% mu,, Joules
u,, is mean velocity (m/s)

INTERNAL ENERGY
This is the energy a fluid possesses by virtue of its temperature. It is usually expressed relative
to 0°C. The formula is U = mcé@

c is the specific heat capacity (J/kg °C)

0 is the temperature in °C

In the following work, internal energy is not considered in the energy balance.

SPECIFIC ENERGY
Specific energy is the energy per kg so the three energy forms as specific energy are as follows.

F.E./m = pQ/m = p/p Joules/kg
P.E/m. = gz Joules/kg
K.E./m =% u2 Joules/kg

ENERGY HEAD
If the energy terms are divided by the weight mg, the result is energy per Newton. Examining
the units closely we have J/N = N m/N = metres.

It is normal to refer to the energy in this form as the energy head. The three energy terms
expressed this way are as follows.

F.E/mg=p/pg=nh

P.E/mg=z

K.E./mg = u®/2g
The flow energy term is called the pressure head and this follows since earlier it was shown that
p/pg = h. This is the height that the liquid would rise to in a vertical pipe connected to the
system.

The potential energy term is the actual altitude relative to a datum.

The term u’/2g is called the kinetic head and this is the pressure head that would result if the
velocity is converted into pressure.
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1.3 BERNOULLI’S EQUATION

Bernoulli’s equation is based on the conservation of energy. If no energy is added to the system
as work or heat then the total energy of the fluid is conserved. Remember that internal (thermal
energy) has not been included.

The total energy Er at (1) and (2) on the diagram (fig.3.1) must be equal so :
2 2
E; =p,Q, +mgz, + m% =p,Q, + mgz, + m%

Dividing by mass gives the specific energy form

E u’ u;
—T=&+gzl +—1=p—2+gz2 +—=
m p 2 p,

Dividing by g gives the energy terms per unit weight
E u’ u;
—T=i+z1 LTI +z,+—=
mg - gp, 2g  gp, 2g

Since p/pg = pressure head h then the total head is given by the following.

2 2

u u
h,=h +z,+—=h, +z, +—=
2g 2g

This is the head form of the equation in which each term is an energy head in metres. z is the
potential or gravitational head and u*/2g is the kinetic or velocity head.

For liquids the density is the same at both points so multiplying by pg gives the pressure form.
The total pressure is as follows.
2

2
pu pu
pT=p1+pgzl+Tl=pz+ngz+ 2

In real systems there is friction in the pipe and elsewhere. This produces heat that is absorbed by
the liquid causing a rise in the internal energy and hence the temperature. In fact the temperature
rise will be very small except in extreme cases because it takes a lot of energy to raise the
temperature. If the pipe is long, the energy might be lost as heat transfer to the surroundings.
Since the equations did not include internal energy, the balance is lost and we need to add an
extra term to the right side of the equation to maintain the balance. This term is either the head

lost to friction h; or the pressure loss pr.
2 2

h, +z, +121_1g=h2 +z, +121—2+hL

The pressure form of the equation is as follows.
2 2

pu pu
p, +pgz, +7‘=p2 +pgz, +72+pL

The total energy of the fluid (excluding internal energy) is no longer constant.
Note that if a point is a free surface the pressure is normally atmospheric but if gauge pressures
are used, the pressure and pressure head becomes zero. Also, if the surface area is large (say a

large tank), the velocity of the surface is small and when squared becomes negligible so the
kinetic energy term is neglected (made zero).
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WORKED EXAMPLE No. 1

The diagram shows a pump delivering water through as pipe 30 mm bore to a tank. Find
the pressure at point (1) when the flow rate is 1.4 dm3/s. The density of water is 1000
kg/m3. The loss of pressure due to friction is 50 kPa.

(2)

25m

(1) e P L

Fig.1.2
SOLUTION

Area of bore A = 7 x 0.032/4 =706.8 x 100 m2.
Flowrate Q=14 dm3/s =0.0014 m3/s
Mean velocity in pipe = Q/A = 1.98 m/s

Apply Bernoulli between point (1) and the surface of the tank.

2 2
P, + 097, +%: p, + P9z, +%+ PL

Make the low level the datum level and z; =0 and z, =25.
The pressure on the surface is zero gauge pressure.
PL =50 000 Pa

The velocity at (1) is 1.98 m/s and at the surface it is zero.

1000x1.98*
+—

p, +0 =0+1000x9.9125+ 0+ 50000

p, =293.29kPa gauge pressure
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WORKED EXAMPLE 2

The diagram shows a tank that is drained by a horizontal pipe. Calculate the pressure head
at point (2) when the valve is partly closed so that the flow rate is reduced to 20 dm®/s. The
pressure loss is equal to 2 m head.

1)

15m

@)
0
50 mm bore

Fig.1.3
SOLUTION

Since point (1) is a free surface, h; = 0 and u, is assumed negligible.

The datum level is point (2) so z; = 15 and z, = 0.
Q=0.02 m3/s

A =nd%4 =nx (0.05%)/4 =1.963 x 10° m*.

u = Q/A =0.02/1.963 x 10°=10.18 m/s

Bernoulli’s equation in head form is as follows.
2 2

h, +z, +l2l_;g:h2 +z, +121—2+hL
10.18

0+15+0=h,+0+—-—+
2x9.81

h, =7.72m
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WORKED EXAMPLE 3

The diagram shows a horizontal nozzle discharging into the atmosphere. The inlet has a
bore area of 600 mm” and the exit has a bore area of 200 mm”. Calculate the flow rate when
the inlet pressure is 400 Pa. Assume there is no energy loss.

@

(1)

Fig. 1.4
SOLUTION

Apply Bernoulli between (1) and (2)
2 2
u u
P1 +pgzZ, "‘pTl:Pz +pgz, +p72+p1_
Using gauge pressure, p2 = 0 and being horizontal the potential terms cancel. The
loss term is zero so the equation simplifies to the following.

2 2
pu; _ puy
+L="=
P1 2 )
From the continuity equation we have
1 =Q:L6:1666.7Q
A, 600x10
_Q Q =5000Q

U =—"—="—""3
A, 200x10
Putting this into Bernoulli’s equation we have the following.

(1666.7Q) (5000QY
2

400+1000 x leOOXT

400+1.389x10°Q* =12.5x10°Q?
400=11.11x10°Q?

, 400
Q 11.11x10°
Q=189.7x10° m*/sor189.7 cm’/s

=36x107°
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1.4 HYDRAULIC GRADIENT

Consider a tank draining into another tank at a lower level as shown. There are small vertical
tubes at points along the length to indicate the pressure head (h). Relative to a datum, the total
energy head is hy = h + z + u’/2g and this is shown as line A.

The hydraulic grade line is the line joining the free surfaces in the tubes and represents the sum
of h and z only. This is shown as line B and it is always below the line of ht by the velocity
head u?/2g. Note that at exit from the pipe, the velocity head is not recovered but lost as friction
as the emerging jet collides with the static liquid. The free surface of the tank does not rise.

The only reason why the hydraulic grade line is not horizontal is because there is a frictional
loss hy. The actual gradient of the line at any point is the rate of change with length i = hy/SL

A total head
u2 line h,
ig
l' B hydraulic
] gradient

A/
=/ &

-

DATUM LEVEL

Fig.1.5
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SELF ASSESSMENT EXERCISE 1

1.

A pipe 100 mm bore diameter carries oil of density 900 kg/m3 at a rate of 4 kg/s. The pipe
reduces to 60 mm bore diameter and rises 120 m in altitude. The pressure at this point is
atmospheric (zero gauge). Assuming no frictional losses, determine:

i. The volume/s (4.44 dm3/s)
ii. The velocity at each section (0.566 m/s and 1.57 m/s)
iii. The pressure at the lower end. (1.06 MPa)

A pipe 120 mm bore diameter carries water with a head of 3 m. The pipe descends 12 m in
altitude and reduces to 80 mm bore diameter. The pressure head at this point is 13 m. The
density is 1000 kg/m3. Assuming no losses, determine

1. The velocity in the small pipe (7 m/s)
ii. The volume flow rate. (35 dm3/s)

A horizontal nozzle reduces from 100 mm bore diameter at inlet to 50 mm at exit. It carries
liquid of density 1000 kg/m3 at a rate of 0.05 m3/s. The pressure at the wide end is 500 kPa
(gauge). Calculate the pressure at the narrow end neglecting friction. (196 kPa)

A pipe carries oil of density 800 kg/m3. At a given point (1) the pipe has a bore area of
0.005 m? and the oil flows with a mean velocity of 4 m/s with a gauge pressure of 800 kPa.
Point (2) is further along the pipe and there the bore area is 0.002 m” and the level is 50 m
above point (1). Calculate the pressure at this point (2). Neglect friction. (374 kPa)

A horizontal nozzle has an inlet velocity u; and an outlet velocity u, and discharges into the
atmosphere. Show that the velocity at exit is given by the following formulae.

w ={2Ap/p +u*}”
and u, ={2gAh + u,*}”
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2 PRESSURE LOSSES IN PIPE SYSTEMS

2.1 REVIEW OF EARLIER WORK

FRICTION COEFFICIENT

The friction coefficient is a convenient idea that can be used to calculate the pressure drop in a
pipe. It is defined as follows.

C. - Wall Shear Stress
' Dynamic Pressure
p= Yapuy
. _Dm
4L
C - Wall Shear Stress ~ 2DAp

" DynamicPressure  4Lpu’

32ul 2D 2uL 1 16
From Poiseuille’s equation Ap = % Hence C . =( j(3 H uj — 6p -

? 4Lpu;, D> ) pu:D - R,
DARCY FORMULA
Ap— 4C,Lpu’,
2D
This is often expressed as a friction head hf
ho— Ap 4C,Lu’
" pg 2eD

This is the Darcy formula. In the case of laminar flow, Darcy's and Poiseuille's equations must
give the same result so equating them gives

4C,Lu’, _ 32uLu,,

2gD pgD’
c - lou _16
pu,D R,

This is the same result as before for laminar flow.

A formula that gives an approximate answer for any surface roughness is that given by Haaland.

1.11
1 =-3.6log,, 69 + [Lj
JC, R, \3.71

This gives a very close model of the Moody chart covered earlier.
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WORKED EXAMPLE 4

Determine the friction coefficient for a pipe 100 mm bore with a mean surface roughness of
0.06 mm when a fluid flows through it with a Reynolds number of 20 000.

SOLUTION
The mean surface roughness € = k/d = 0.06/100 = 0.0006
Locate the line for € = k/d = 0.0006.

Trace the line until it meets the vertical line at Re = 20 000. Read of the value of C¢
horizontally on the left. Answer C¢= 0.0067

Check using the formula from Haaland.

69 g 1.11
— 3.6log, 102 4| £
g”{Re (3.71] }
1.11
 3610g, |69 [0:0006
20000\ 3.71

1.11
_ 3.6log, 6.9 +(0.0006j
20000\ 3.71

=12.206

- 5- 5~ F-

_"O
Il

0.0067
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WORKED EXAMPLE 5

Oil flows in a pipe 80 mm bore with a mean velocity of 4 m/s. The mean surface roughness
is 0.02 mm and the length is 60 m. The dynamic viscosity is 0.005 N s/m? and the density
is 900 kg/m3. Determine the pressure loss.
SOLUTION
Re = pud/p = (900 x 4 x 0.08)/0.005 = 57600
e=k/d = 0.02/80 = 0.00025
From the chart C;= 0.0052
hf=4CiLu2/2dg = (4 x 0.0052 x 60 x 42)/(2x 9.81x 0.08) =12.72 m

Ap = pghs =900 x 9.81 x 12.72 = 112.32 kPa.
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2.2 MINOR LOSSES

Minor losses occur in the following circumstances.

1. Exit from a pipe into a tank.

ii. Entry to a pipe from a tank.

iii. Sudden enlargement in a pipe.

iv. Sudden contraction in a pipe.

v. Bends in a pipe.

vi. Any other source of restriction such as pipe fittings and valves.

Sudden /

expansion

Fig.2.1
In general, minor losses are neglected when the pipe friction is large in comparison but for short
pipe systems with bends, fittings and changes in section, the minor losses are the dominant

factor.

In general, the minor losses are expressed as a fraction of the kinetic head or dynamic pressure
in the smaller pipe.

Minor head loss =k u?/2g Minor pressure loss = % kpu®

Values of k can be derived for standard cases but for items like elbows and valves in a pipeline,
it is determined by experimental methods.

Minor losses can also be expressed in terms of fluid resistance R as follows.

8k
n’D*

2 2 2
hL=ku7=k Q =k 8Q4 =RQ® Hence R =

2A°% ©’D

8pgQ’ 2 8kpg
L=k s =RQ" hence R = e

Before you go on to look at the derivations, you must first learn about the coefficients of
contraction and velocity.
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COEFFICIENT OF CONTRACTION Cc

The fluid approaches the entrance from all directions and the radial velocity causes the jet to
contract just inside the pipe. The jet then spreads out to fill the pipe. The point where the jet is
smallest is called the VENA CONTRACTA.

i

WVena-contracta

Fig.2.2
The coefficient of contraction C, is defined as C.= Aj/Ao

Aj is the cross sectional area of the jet and Ao is the c.s.a. of the pipe. For a round pipe this
becomes C,= djz/doz.

COEFFICIENT OF VELOCITY C,

The coefficient of velocity is defined as C, = actual velocity/theoretical velocity

In this instance it refers to the velocity at the vena-contracta but as you will see later on, it
applies to other situations also.

EXIT FROM A PIPE INTO A TANK.

The liquid emerges from the pipe and collides with stationary liquid causing it to swirl about
before finally coming to rest. All the kinetic energy is dissipated by friction. It follows that all
the kinetic head is lost so k= 1.0

WO

e = -+

o i e

/bI
Fig.2.3
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ENTRY TO A PIPE FROM A TANK

The value of k varies from 0.78 to 0.04 depending on the shape of the inlet. A good rounded
inlet has a low value but the case shown is the worst.

L
=

Fig.2.4

SUDDEN ENLARGEMENT

This is similar to a pipe discharging into a tank but this time it does not collide with static fluid
but with slower moving fluid in the large pipe. The resulting loss coefficient is given by the

following expression.
2
-4
d,

O Jy

2

=~

—»
—
—>

L

Fig.2.5

Hi
Wi

SUDDEN CONTRACTION

This is similar to the entry to a pipe from a tank. The best case gives k = 0 and the worse case is
for a sharp corner which gives k = 0.5.

E

Fig.2.6
BENDS AND FITTINGS

The k value for bends depends upon the radius of the bend and the diameter of the pipe. The k
value for bends and the other cases is on various data sheets. For fittings, the manufacturer
usually gives the k value. Often instead of a k value, the loss is expressed as an equivalent
length of straight pipe that is to be added to L in the Darcy formula.
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WORKED EXAMPLE 6

A tank of water empties by gravity through a horizontal pipe into another tank. There is a
sudden enlargement in the pipe as shown. At a certain time, the difference in levels is 3 m. Each
pipe is 2 m long and has a friction coefficient C;= 0.005. The inlet loss constant is K = 0.3.

Calculate the volume flow rate at this point.

] [——
20 mm 60 mm
bore diameter  bore diameter

Fig.2.7
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SOLUTION

There are five different sources of pressure loss in the system and these may be expressed in
terms of the fluid resistance as follows.

The head loss is made up of five different parts. It is usual to express each as a fraction of the
kinetic head as follows.

2C,L .
Resistance pipe A R, = 3 Csf = 32x0 00? X22 =1.0328x10°s’m ™
gD, ’n*  gx0.02°n
2C.L .
Resistance in pipe B R, = 3 (S:f == 32x0 002 X22 =4.250x10°s’m™
gDy £x0.06°
Loss at entry K=0.3 R, = 8K = 82X 0.3 - =158s’m™
gn’D,’ gmn’x0.02
a. V| 20V
Loss at sudden enlargement. k=<1-| 24 =<1- (—Oj =0.79
dg 60
R, = ?K - = 82X0'79 -=407.7s’m"
gn"D, gn”x 0.02
Loss at exit K=1 R, 8K 8x1 =63710s°m™

~en’D,'  en’x0.06°

h, = R1Q2 +R2Q2 +R3Q2 "'R4Q2 +R5Q2
Total losses. h, =R, +R, +R, +R, +R,)Q’
h, =1.101x10°Q’

BERNOULLI'S EQUATION

Apply Bernoulli between the free surfaces (1) and (2)
2 2

u u
h,+z,+—L=h,+z,+—>+h,
2 2

On the free surface the velocities are small and about equal and the pressures are both
atmospheric so the equation reduces to the following.

Z1—Z2:hL:3
3=1.101x 10°Q?
Q*=2.724x10°

Q=1.65x10"m’s
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2.3 SIPHONS

Liquid will siphon from a tank to a lower level even if the pipe connecting them rises above the
level of both tanks as shown in the diagram. Calculation will reveal that the pressure at point (2)
is lower than atmospheric pressure (a vacuum) and there is a limit to this pressure when the
liquid starts to turn into vapour. For water about 8 metres is the practical limit that it can be
sucked (8 m water head of vacuum).

& 3)

Fig.2.8

WORKED EXAMPLE 7

A tank of water empties by gravity through a siphon. The difference in levels is 3 m and the
highest point of the siphon is 2 m above the top surface level and the length of pipe from inlet to
the highest point is 2.5 m. The pipe has a bore of 25 mm and length 6 m. The friction
coefficient for the pipe is 0.007.The inlet loss coefficient K is 0.7.

Calculate the volume flow rate and the pressure at the highest point in the pipe.

SOLUTION

There are three different sources of pressure loss in the system and these may be expressed in
terms of the fluid resistance as follows.

~32C,L  32x0.007x6

Pipe Resistance Ri=—¥—5= —=1.422x 10°s’m™
gD’n £x0.025"n
K .
Entry Loss Resistance R, = 82 = 28X 0.7 S =15.1x 10° s’m™
gn'D"  gn"x0.025
K 1
Exit loss Resistance R, = 82 = 8x = 21.57x10° s’m™
gn’D"  gn"x0.025
Total Resistance Rr=R; +R,+R;=1.458 x 10° s’ m™
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Apply Bernoulli between the free surfaces (1) and (3)

2 2
u u

h,+z, +—L=h,+z,+—+h,
2 2

0,+z,+0=0+2z,+0+h

z,—-zy,=h =3

Flow rate Q= 25 =\/ S _1434x107m’ /s
R,  \1458x10

Bore Area A=ntD*/4 = 1t x 0.025%/4 = 490.87 x 10° m?
Velocity in Pipe u= Q/A = 1.434 x 107/490.87 x 10° =2.922 m/s
Apply Bernoulli between the free surfaces (1) and (2)

2 2
W, U,
h, +z, +—g=h2 +z,+—+h,

2
0+0+0=h, +2+2'922 +h,
2g
2
h,=—2-h, 2.922 “h,
2g

h,=-2+0435-h, =-2.435-h,
Calculate the losses between (1) and (2)

Pipe friction Resistance is proportionally smaller by the length ratio.

R, =(2.5/6) x1.422 x 10°=0.593 x 10°

Entry Resistance R,=15.1x 10° as before
Total resistance R;=608.1x10°
Head loss hy =Ry Q* = 1.245m

The pressure head at point (2) is hence h, =-2.435 -1.245 = -3.68 m head
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3. MATCHING PUMPS TO A PIPE SYSTEM.

The ideal pump for any given pipe system will produce the required flow rate at the required

PRESSURE
HERD &

IDEAL PIST M PUMP

THPICAL CENTRIFUGAL PLIMP

Figure 3.1

FLGW RATE

pressure. The maximum
efficiency of the pump will
occur at these conditions. These
points are considered in detail in
a later tutorial.

The relationship between flow
rate Q, pressure head H and
efficiency m depend upon the
speed but most of all, they
depend upon the type of pump.
The diagram below shows
typical relationships.

The relationship between pressure head and flow rate for a given pipe system is generally one

FRESSURE
HESD &

]
LaSSES
. ¥

&

LIFT

L 3

Figure 3.2

FRESSURE
HESD &

LOSSES
r

LIFT

L3

FLGIN RATE

SYSTEM

Figure 3.3

FLOW RETE

that requires a bigger head for a
bigger flow rate. The exact
relationship depends upon the losses.
If the pump is required to raise the
level of the flow, then the required
head h is the change in level (lift)
plus the losses. The losses are due to
pipe friction ( and hence the friction
factor Cy) , the losses at entry, exit,
bends, sudden changes in section and
fittings such as valves. The
relationship is typically as shown.

If a given pump is to work with a
given system, the operating point
must be common to each. In
other words H = h at the required
flow rate.

The solution of problems depends upon finding the relationship between head and flow rate for
both the pump and the system and finding the point where the graphs cross.
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SELF ASSESSMENT EXERCISE 2

1.

A pipe carries oil at a mean velocity of 6 m/s. The pipe is 5 km long and 1.5 m diameter.
The surface roughness is 0.8 mm. The density is 890 kg/m3 and the dynamic viscosity is
0.014 N s/m2. Determine the friction coefficient from the Moody chart and go on to
calculate the friction head hf.

(Ans. C¢=0.0045 hf=110.1 m)

The diagram shows a tank draining into another lower tank through a pipe. Note the
velocity and pressure is both zero on the surface on a large tank. Calculate the flow rate
using the data given on the diagram. (Ans. 7.16 dm3/s)

50 mm bore, 50 m long
Cf =0.007

Fig. 3.4

Water flows through the sudden pipe expansion shown below at a flow rate of 3 dm3/s.
Upstream of the expansion the pipe diameter is 25 mm and downstream the diameter is 40
mm. There are pressure tappings at section (1), about half a diameter upstream, and at
section (2), about 5 diameters downstream. At section (1) the gauge pressure is 0.3 bar.

Evaluate the following.

(i) The gauge pressure at section (2) (0.387 bar)
(i1) The total force exerted by the fluid on the expansion. (-23 N)

| —

- L

@) @)

Fig. 3.5
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4. A tank of water empties by gravity through a siphon into a lower tank. The difference in
levels is 6 m and the highest point of the siphon is 2 m above the top surface level. The
length of pipe from the inlet to the highest point is 3 m. The pipe has a bore of 30 mm and
length 11 m. The friction coefficient for the pipe is 0.006.The inlet loss coefficient K is
0.6.

Calculate the volume flow rate and the pressure at the highest point in the pipe.
(Answers 2.378 dm’/s and —4.31 m)

5. A domestic water supply consists of a large tank with a loss free-inlet to a 10 mm diameter
pipe of length 20 m, that contains 9 right angles bends. The pipe discharges to atmosphere
8.0 m below the free surface level of the water in the tank.
Evaluate the flow rate of water assuming that there is a loss of 0.75 velocity heads in each
bend and that friction in the pipe is %iven by the Blasius equation C=0.079(Re)-0.25
The dynamic viscosity is 0.89 x 1072 and the density is 997 kg/rn3.
(0.118 dm3/s).

6. A pump A whose characteristics are given in table 1, is used to pump water from
an open tank through 40 m of 70 mm diameter pipe of friction factor C#0.005 to
another open tank in which the surface level of the water is 5.0 m above that in the
supply tank.

Determine the flow rate when the pump is operated at 1450 rev/min.
(7.8 dm3/s)

It is desired to increase the flow rate and 3 possibilities are under investigation.
(1) To install a second identical pump in series with pump A.

(i1))  To install a second identical pump in parallel with pump A.
(ii1))  To increase the speed of the pump by 10%.
Predict the flow rate that would occur in each of these situations.

Head-Flow Characteristics of pump A when operating at 1450 rev/min
Head/m 9.75 8.83 7.73 690  5.50 3.83
Flow Rate/(1/s)4.73 6.22 7.57 8.36 9.55 10.75

Table 1
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7. A steel pipe of 0.075 m inside diameter and length 120 m is connected to a large
reservoir. Water is discharged to atmosphere through a gate valve at the free end,
which is 6 m below the surface level in the reservoir. There are four right angle
bends in the pipe line. Find the rate of discharge when the valve is fully open. (ans.
8.3 dm3/s).The kinematic viscosity of the water may be taken to be 1.14 x 10-6
m2/s. Use a value of the friction factor C¢ taken from table 2 which gives Cr as a
function of the Reynolds number Re and allow for other losses as follows.

at entry to the pipe 0.5 velocity heads.
at each right angle bend 0.9 velocity heads.
for a fully open gate valve 0.2 velocity heads.

Rex 105 0.987 1.184 1.382
Cr 0.00448 0.00432 0.00419
Table 2

8. (1) Sketch diagrams showing the relationship between Reynolds number, Re, and
friction factor, C¢ , for the head lost when oil flows through pipes of varying
degrees of roughness. Discuss the importance of the information given in the
diagrams when specifying the pipework for a particular system.

(i1) The connection between the supply tank and the suction side of a pump consists
of 0.4 m of horizontal pipe , a gate valve one elbow of equivalent pipe length 0.7 m
and a vertical pipe down to the tank.

If the diameter of the pipes is 25 mm and the flow rate is 30 1/min, estimate the
maximum distance at which the supply tank may be placed below the pump inlet in
order that the pressure there is noless than 0.8 bar absolute. (Ans. 1.78 m)

The fluid has kinematic viscosity 40x10-6 m2/s and density 870 kg/m3.

Assume
(a) for laminar flow Cf=16/(Re) and for turbulent flow C¢= 0.08/(Re)0.25.

(b) head loss due to friction is 4C¢ V2L/2gD and due to fittings is KV2/2g.
where K=0.72 for an elbow and K=0.25 for a gate valve.

What would be a suitable diameter for the delivery pipe ?
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4. DIFFERENTIAL PRESSURE DEVICES

Differential pressure devices produce differential pressure as a result of changes in fluid
velocity. They have many uses but mainly they are used for flow measurement. In this
section you will apply Bernoulli's equation to such devices. You will also briefly
examine forces produced by momentum changes.

4.1 GENERAL REL ATIONSHIP

Many devices make use of the transition of flow energy into kinetic energy. Consider a
flow of liquid which is constrained to flow from one sectional area into a smaller
sectional area as shown below.

|

(1)

|

Fig.4.1
The velocity in the smaller bore uy is given by the continuity equation as
w =uijAi/As
Let Aj/Ay=r uy =ruj
In BS1042 the symbol used is m but r is used here to avoid confusion with mass.

If we apply Bernoulli (head form) between (1) and (2) and ignoring energy losses we
have

2 2
hl+z,+u—1=h2+zz+u—2
2 29
For a horizontal system z1=z; so
u; u’
h +—~=h,+—=*
29 29
2 2 2 2
2g(h1_h2): uz_ul) U (r _1)
2g(h, —h,
: r’—1
2g(h, —h
Vol /s=Q=Au, = A -9 s
r —

In terms of pressure rather than head we get, by substituting p= pgh

To find the mass flow remember m = pAu = pQ
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Because we did not allow for energy loss, we introduce a coefficient of discharge Cq to
correct the answer resulting in

_ 24p

=C, A
Q dlm

The value of Cq depends upon many factors and is not constant over a wide range of
flows. BS1042 should be used to determine suitable values. It will be shown later that if
there is a contraction of the jet, the formula needs further modification.

For a given device, if we regard Cq as constant then the equation may be reduced to :

0.5
Q =K(Ap)
where K is the meter constant.

4.2 MOMENTUM and PRESSURE FORCES

Changes in velocities mean changes in momentum and Newton's second law tells us that this is
accompanied by a force such that

Force = rate of change of momentum.
Pressure changes in the fluid must also be considered as these also produce a force. Translated
into a form that helps us solve the force produced on devices such as those considered here, we
use the equation  F = A(pA) + m Au.
When dealing with devices that produce a change in direction, such as pipe bends, this has to be
considered more carefully and this is covered in chapter 4. In the case of sudden changes in
section, we may apply the formula

F = (piA; + mu))- (p2 A, + muy)

point 1 is upstream and point 2 is downstream.
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WORKED EXAMPLE 8

A pipe carrying water experiences a sudden reduction in area as shown. The area at point (1) is
0.002 m? and at point (2) it is 0.001 m>. The pressure at point (2) is 500 kPa and the velocity is 8
m/s. The loss coefficient K is 0.4. The density of water is 1000 kg/m’. Calculate the following.

i. The mass flow rate.
il. The pressure at point (1)
iil. The force acting on the section.
(1)
(2)
| |
| — ™ 'l.'l.l I — ul
I
I
P2
I'1
Fig.4.2
SOLUTION

u; = wAA; =(8x0.001)/0.002 =4 m/s

m = pAju; = 1000 x 0.002 x 4 = 8 kg/s.

Q=Au =0.002 x 4=0.008 m/s

Pressure loss at contraction = % pkul2 =1 x 1000 x 0.4 x 4% = 3200 Pa
Apply Bernoulli between (1) and (2)

2 2
pu pu
p, + 21 =p, t 22 +PpL
2 2
p, +1000x47 _ 5064100 +1090X87 3500
2 2
p, =527.2kPa

F= (p1A1 + mul)— (pz Az + l’nll2)
F=[(527.2 x 10° x 0.002) + (8 x 4)] — [500 x 10° x 0.001) + (8 x 8)]
F=1054.4 +32 -500 - 64

F=5224N
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5. SPECIFIC DEVICES

We will now examine specific d.p. devices starting with an orifice. All these devices
appear in BS1042

5.1. ORIFICE METERS

When a liquid flows through an orifice it experiences frictional energy loss and a
contraction in the diameter of the jet, both of which affect the value of Cq. The diagram
below shows this contraction which is due to the fluid approaching the orifice from
radial directions and not along the centre line. This makes the velocity of the jet greater
than it would otherwise be because of the reduction in area. In addition to this, there is a
2 or 3 % reduction in velocity due to friction. The value of Cq depends upon the
sharpness of the orifice edge. In a sharp edged orifice Cq is typically 0.62 but is slightly
larger if the sharp edge is replaced by a square edge.

|
T

Figure 5.1

W

5.1.1 COEFFICIENT OF CONTRACTION

The coefficient of contraction is defined as
C. = Area of Jet/Area of Orifice =Aj/Ao = Dj2/Dg?

5.1.2 COEFFICIENT OF VELOCITY

The coefficient of velocity is defined as
Cy = Actual velocity of jet/theoretical velocity

The theoretical velocity = (2Ap/p)*

It follows that the actual velocity is :

u = Cy(2Ap/p)*
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5.1.3 COEFFICIENT OF DISCHARGE

The flow rate through the orifice is the product of area and velocity so
Q = Aju= CcCyAo(2Ap/p)*:
The product of C.Cy must be the coefficient of discharge so it follows that

Caq =CcCy
and Q= CqAo2Ap/p)*

This formula neglects the approach velocity. The kinetic energy up stream of the orifice
is not usually neglected. Let's do the derivation of the flow formula again.

FLOW THROUGH AN ORIFICE

Referring to fig.21, applying Bernoulli between point (1) upstream and the vena-
contracta (2) we have

p1+ % pui2 =pa + % puy?2

p1 - p2 =2 p(uz?- ui2)

utA1=uAs u1= wAr/A1 = updr2/d;2
Ar/Ag= C. = dp2/dg2 dr2=C.d2

ur= upCedo2/d12 = upC.p2
B=do/d;

—p,=Ap=— puz(l c.p )

2Ap
\/p(1 c:p')

This is the velocity at the vena contracta. If friction is taken into account a coefficient of
velocity must be used to correct it.

2Ap

plt-c2p*)

This formula may be rearranged to give the pressure drop if the flow is known.

Ap=( 0 ](I—Cfﬁ“)g

CaAy
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The pressure tapping points are normally placed at one pipe diameter upstream and one
half pipe diameter downstream in order to get the maximum d.p. However if the
maximum value is not important, the d.p. is more easily obtained by the use of corner or
flange tappings. The results are still valid but less d.p. is obtained.

o 0y

el
J-ﬂ—"f

Fig.5.2 showing tapping positions

Figure 5.2 shows how the flow after the orifice must expand to the full bore of the pipe.
The velocity in the full bore is less than the jet so the jet must be slowed down. It can
only do this by colliding with the slower moving fluid downstream and consequently
there is a lot of friction and energy loss in the turbulent mixing taking place. The result
is that only a small amount of kinetic energy is reconverted into pressure downstream
and the overall pressure loss for the system is high. The loss from the vena contracta
(2) to the point downstream where the flow has settled (3) is the loss due to sudden
expansion covered earlier and is given by

pressure loss due to expansion = %2 p(up -u3)2

Further pressure losses are produced by skin friction and could be estimated. The
problem is that the mean velocity is uncertain in the areas near the orifice so it is
difficult to apply Darcy's formula.

Figure 5.3 shows the way that pressure changes on approach to and departure from the
orifice.

(1) (2] (3)
i [ i
S S
p | I [
| I
[ ' |
| o A I
Iengti
Figure 5.3
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WORKED EXAMPLE No.9

The figure shows a sharp edged orifice plate of diameter 20 mm in a horizontal pipe of
diameter 25 mm. There are three pressure tappings as follows.

(1) at about 3 pipe diameters upstream of the orifice plate. (2) at half a pipe diameter
downstream of the orifice plate and (3) at about 5 pipe diameters downstream of the
orifice plate. The tappings read pressures p1, p2 and p3 respectively.

If there is a flow rate of 0.8 x 10-3 m3/s of water at 250C, evaluate the pressure
differences p1-p2 and pi-p3. Calculate the % of pressure recovered downstream of the
orifice. It may be assumed that the discharge coefficient is 0.64 and the contraction
coefficient is 0.74. The density and viscosity for water are usually given on the front of
the exam paper. The density is 998 kg/m3.

SOLUTION
f irst the pressure drop from 1 to 2. There is friction in the jet so the formula to be used
i Ap = (Q/CaA0)2(1 - Cc2pH)p/2

Ao=p x 0.022/4=0.0003142 m2 b =20/25=0.8

Ap = {0.0008/(0.64x 0.0003142)2}(1 - 0.742x0.84)998/2

Ap =p1-p2 = 6.126 kPa

This includes the pressure loss due to friction in the jet as well as due to the change in
velocity.

u; =u3 = 0.0008/(px0.0252/4 ) =1.63 m/s

Ay=C¢x p x 0.022/4 =0.000232 m?2

uz = 0.0008/0.000232 = 3.44 m/s
loss due to sudden expansion = p(up -u3)2/2 = 998(3.44 - 1.63)2/2 = 1.63 kPa
Now we must find the pressure loss due to friction in the jet.

Ideal jet velocity = uy/Cy Cy=Cq/C: =0.64/0.74 = 0.865
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Ideal jet velocity = 3.44/0.865 = 3.98 m/s

Loss of kinetic energy as pressure = (p/2)(3.982 -3.442) = 1.99 kPa
p1+ pu1?/2=p3+ puz?/2
p1 - p3 = (p/2)(u32-ui2) + losses
u3 = u3
p1 - p3 =losses = 1.63 kPa + 1.99 kPa = 3.62 kPa

The pressure regained downstream = 6.126 - 3.62 = 2.5 kPa

The diffuser efficiency = 2.5/6.126 = 41%

5.2. VENTURI METERS

The Venturi Meter is designed to taper down to the throat gradually and then taper out
again. No contraction occurs in the flow so C; = 1. The outlet (diffuser) is designed to
expand the flow gradually so that the kinetic energy at the throat is reconverted into
pressure with little friction. Consequently the coefficient of discharge is much better
than for an orifice meter. The overall pressure loss is much better than for an orifice
meter.

TAPPINGS
m /f’ \ T
h;ﬁ;
N THROAT ouT
== T

T~

Le nEth
Fig.5.5 showing pressure distribution
If there is no vena-contracta then the flow rate is given by the formula
2Ap
=C
Q=CyA, /m
and Cq = Cy and is about 0.97 for a good meter.
The draw back of the Venturi is the expense involved in the design. The pressure

tappings have special inserts in the bore to gather the pressure from around the
circumference.
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5.3 NOZZLE METER

The nozzle meter is a compromise between the orifice and the venturi. It may be easily
fitted in a pipe between flanges with flange or corner tappings. There is no contraction
of the jet but there is little pressure recovery downstream. The loss due to sudden
expansion occurs down stream. The flow formula is the same as before.

I = I

L

Fig.5.6 Nozzle Meter

WORKED EXAMPLE No.10

A nozzle is 100 mm diameter at inlet and 20 mm diameter at outlet. The coefficient
of velocity is 0.97 and there is no contraction of the jet. The jet discharges into the
atmosphere. The static pressure at inlet is 300 kPa gauge. The density is 1000
kg/m3.

Calculate:

a. the velocity at exit.

b. the flow rate.

c. the pressure loss due to friction expressed as a fraction of the dynamic pressure at
outlet.

d. the force on the nozzle.
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SOLUTION

The velocity at exit when the inlet velocity is not negligible is
Q=A1Cq[(2Ap/p)/(x2 - 1)]03

r=A1/Ay = d12/d2 = (100/20)2 = 25

Cg=CyCe=0.97x1=0.97
A1 = (p x 0.12)/4 = 0.00785 m2

hence Q = 0.97x 0.00785 [(2 x 300 x 103/1000)/(252 - 1)]05
Q =0.00747 m3/s

The velocity at inlet = Q/A1 = 0.00747/0.00785 = 0.951 m/s
The velocity at outlet = Q/A> = 0.00747 x 4/(p x 0.022)=23.8 m/s

The dynamic pressure of the jet is puy2/2 = 1000 x 23.8 2/2 = 282.7 kPa.

Applying Bernoulli between the inlet (1) and outlet (2) using the pressure form we
have

p1 - p2 = pup2/2 - pu2/2 + pressure loss to friction

3 x 105 =(1000/2)(23.82 - 0.9512) + pressure loss

3x 105=2.827 x 105 + pressure loss

pressure loss = 17.3 kPa

Expressed as a fraction of the dynamic pressure of the jet this is 17.3/ 282.7 or
6.1%.

The force exerted on the water is given by
F=piA1 +-p2 Ay + muj; - mup

We must use gauge pressures to solve this problem because the atmosphere acts on
the outer surface of the nozzle. The mass flow is 7.47 kg/s.

F=300x 103x0.00785 -0+ 7.47(0.951 -23.8) =2.18 kKN

The figure is positive which indicates the force is accelerating the water out of the
nozzle. The force on the nozzle is the reaction to this and is opposite in direction.
Think of a fireman's hose. The force on the nozzle pushes it away from the water
like a rocket. The force to accelerate the water must be supplied by those holding it.
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6. JET PUMPS

Jet pumps are devices that suck up liquid by the use of a jet discharging into an annular
area as shown.

Fig.6.1 A Typical jet Pump.

The solution of jet pump problems requires the use of momentum as well as energy
considerations. First apply Bernoulli between A and D and assume no frictional losses.
Note that D is a annular area and up = 4Q/{p(d12-d2)} where d; is the diameter of the

large pipe and d, the diameter of the small pipe.
2 2

u u
hy+—2+z,=h, +—2+2
A 2g A D 2g D

Making A the datum and using gauge pressures we find hy =0 upa=0 zp =0
2

u
0=h, +-—L2+7z
D 2g D

2
uD
hy =--2-7,

29
From this the head at the point where pipes B and D meet is found.

Next apply the conservation of momentum between the points where B and D join and
the exit at C.

pBAB+ pQBUB tpDADT PQDUD =pcAct pQcuc
but pc = 0 gauge and pg = pp = p(BD) SO

PBD)A®BD)T PQBUB * PQDUD = pQcuc
where (BD) refers to the area of the large pipe and is the same as Ac.

Next apply conservation of mass pQB + pQp = pQc QB +Qp=Qc

With these equations it is possible to solve the velocity and flow rate in pipe B. The
resulting equation is:
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Q3|20 ot i L L]
Ag  Ac Ac p Ap Ac

aQg +bQy +c =0 This is a quadratic equation whence

_ ~b++/b? —4ac

2a

Qs
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SELF ASSESSMENT EXERCISE 3

Take the density of water to be 997 kg/m3 throughout unless otherwise stated.

1. A Venturi meter is 50 mm bore diameter at inlet and 10 mm bore diameter at the
throat. Oil of density 900 kg/m3 flows through it and a differential pressure head of
80 mm is produced. Given Cq = 0.92, determine the flow rate in kg/s.
(ans. 0.0815 kg/s).

2. A Venturi meter is 60 mm bore diameter at inlet and 20 mm bore diameter at the
throat. Water of density 1000 kg/m3 flows through it and a differential pressure
head of 150 mm is produced. Given Cq = 0.95, determine the flow rate in dm3/s.
(ans. 0.515 dm3/s).

3. Calculate the differential pressure expected from a Venturi meter when the flow
rate is 2 dm3/s of water. The area ratio is 4 and Cq is 0.94. The inlet c.s.a. is 900
mm2, (ans. 41.916 kPa).

4. Calculate the mass flow rate of water through a Venturi meter when the differential
pressure is 980 Pa given Cq = 0.93, the area ratio is 5 and the inlet c.s.a. is 1000
mm2, (ans. 0.266 kg/s).

5. Calculate the flow rate of water through an orifice meter with an area ratio of 4
given Cq is 0.62, the pipe area is 900 mm2 and the d.p. is 586 Pa. (ans. 0.156
dm3/3).

6. Water flows at a mass flow rate 0f 0.8 kg/s through a pipe of diameter 30 mm fitted
with a 15 mm diameter .sharp edged orifice.

There are pressure tappings (a) 60 mm upstream of the orifice, (b) 15 mm
downstream of the orifice and (c) 150 mm downstream of the orifice, recording
pressure pa, pp and pc respectively. Assuming a contraction coefficient Of 0.68,
evaluate

(1) the pressure difference (p, - pp) and hence the discharge coefficient.
(21.6 kPa, 0.67)

(i1)the pressure difference (py, - pc) and hence the diffuser efficiency.
(-6.4 kPa, 29.5%)

(ii1) the net force on the orifice plate.
(10.8 N)

State any assumption made in your analysis.
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7. The figure shows an ejector (or jet pump) which extracts 2 x 10-3 m3/s of water
from tank A which is situated 2.0 m below the centre-line of the ejector. The
diameter of the outer pipe of the ejector is 40 mm and water is supplied from a
reservoir to the thin-walled inner pipe which is of diameter 20 mm. The ejector
discharges to atmosphere at section C.

Evaluate the pressure p at section D, just downstream of the end of pipe B, the
velocity in pipe B and the required height of the free water level in the reservoir

supplying pipe B. (-21.8 kPa gauge, 12.922 m/s, 6.28 m).

It may be assumed that both supply pipes are loss free.

Figure 6.2

8. Discuss the use of orifice plates and venturi-meters for the measurement of flow
rates in pipes.

Water flows with a mean velocity of 0.6 m/s in a 50 mm diameter pipe fitted with a
sharp edged orifice of diameter 30 mm. Assuming the contraction coefficient is
0.64, find the pressure difference between tappings at the vena contracta and a few
diameters upstream of the orifice, and hence evaluate the discharge coefficient.
Estimate also the overall pressure loss caused by the orifice plate.

It may be assumed that there is no loss of energy upstream of the vena contracta.

9. Fig.28 shows an ejector pump BDC designed to lift 2 x 10-3 m3/s of water from an
open tank A, 3.0 m below the level of the centre-line of the pump. The pump
discharges to atmosphere at C.

The diameter of thin-walled inner pipe 12 mm and the internal diameter of the outer
pipe of the is 25 mm. Assuming that there is no energy loss in pipe AD and there is
no shear stress on the wall of pipe DC, calculate the pressure at point D and the
required velocity of the water in pipe BD.

(-43.3 kPa and 20.947 m/s)

Derive all the equations used and state your assumptions.
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FLUID MECHANICS
TUTORIAL No. 3

BOUNDARY LAYER THEORY

In order to complete this tutorial you should already have completed tutorial 1 and 2 in this
series. This tutorial examines boundary layer theory in some depth.

When you have completed this tutorial, you should be able to do the following.

o Discuss the drag on bluff objects including long cylinders and spheres.

0 Explain skin drag and form drag.

O Discuss the formation of wakes.

0 Explain the concept of momentum thickness and displacement thickness.

O Solve problems involving laminar and turbulent boundary layers.

Throughout there are worked examples, assignments and typical exam questions. You should
complete each assignment in order so that you progress from one level of knowledge to
another.

Let us start by examining how drag is created on objects.



1. DRAG

When a fluid flows around the outside of a body, it produces a force that tends to drag the
body in the direction of the flow. The drag acting on a moving object such as a ship or an
aeroplane must be overcome by the propulsion system. Drag takes two forms, skin friction
drag and form drag.

1.1 SKIN FRICTION DRAG

Skin friction drag is due to the viscous shearing that takes place between the surface and the
layer of fluid immediately above it. This occurs on surfaces of objects that are long in the
direction of flow compared to their height. Such bodies are called STREAMLINED. When a
fluid flows over a solid surface, the layer next to the surface may become attached to it (it
wets the surface). This is called the ‘no slip condition’. The layers of fluid above the surface
are moving so there must be shearing taking place between the layers of the fluid. The shear
stress acting between the wall and the first moving layer next to it is called the wall shear
stress and denoted Ty,

- U, _ The result is that the velocity of the fluid u increases
N 1 =jJ 1 with height y. The boundary layer thickness o is
Hi = ‘7 E taken as the distance required for the velocity to
g - E reach 99% of u, This layer is called the
E fe— 5 BOUNDARY LAYER and 9§ is the boundary layer
E = s thickness. Fig. 1.1 Shows how the velocity "u" varies
% g with height "y" for a typical boundary layer.
5 =

i N
velocity
Fig.1.1

In a pipe, this is the only form of drag and it results in a pressure and energy lost along the
length. A thin flat plate is an example of a streamlined object. Consider a stream of fluid
flowing with a uniform velocity u,. When the stream is interrupted by the plate (fig. 1.2), the
boundary layer forms on both sides. The diagram shows what happens on one side only.

undisturbed flow
. . Yo
ug : E— mean graph boundary layer
- skin drag
- — ¥
—_—

I I T laminar sub layer
regarded as straight
™ = e x line

‘lamjnar boundary layer » turbulent boundary layer
/

- -
transition zone
Fig. 1.2
The boundary layer thickness 6 grows with distance from the leading edge. At some distance
from the leading edge, it reaches a constant thickness. It is then called a FULLY
DEVELOPED BOUNDARY LAYER.




The Reynolds number for these cases is defined as: R, = PRex

x is the distance from the leading edge. At low Reynolds numbers, the boundary layer may be
laminar throughout the entire thickness. At higher Reynolds numbers, it is turbulent. This
means that at some distance from the leading edge the flow within the boundary layer
becomes turbulent. A turbulent boundary layer is very unsteady and the streamlines do not
remain parallel. The boundary layer shape represents an average of the velocity at any height.
There is a region between the laminar and turbulent section where transition takes place

The turbulent boundary layer exists on top of a thin laminar layer called the LAMINAR SUB
LAYER. The velocity gradient within this layer is linear as shown. A deeper analysis would
reveal that for long surfaces, the boundary layer is turbulent over most of the length. Many
equations have been developed to describe the shape of the laminar and turbulent boundary
layers and these may be used to estimate the skin friction drag.

Note that for this ideal example, it is assumed that the velocity is the undisturbed velocity u,
everywhere outside the boundary layer and that there is no acceleration and hence no change
in the static pressure acting on the surface. There is hence no drag force due to pressure
changes.

CALCULATING SKIN DRAG

The skin drag is due to the wall shear stress t,, and this acts on the surface area (wetted area).
The drag force is hence: R = 1,, x wetted area. The dynamic pressure is the pressure resulting

from the conversion of the kinetic energy of the stream into pressure and is defined by the

2

expression —

.The drag coefficient is defined as

Drag force

Cpr = .
dynamic pressure x wetted area

2R 3 27

pu; x wetted area - pu;

W

CDf =

Note that this is the same definition for the pipe friction coefficient C; and it is in fact the
same thing. It is used in the Darcy formula to calculate the pressure lost in pipes due to
friction. For a smooth surface, it can be shown that Cps= 0.074 (Re)x'”5

L
(Re)y is the Reynolds number based on the length. (R,), = Pl



WORKED EXAMPLE 1.1

Calculate the drag force on each side of a thin smooth plate 2 m long and 1 m wide with the
length parallel to a flow of fluid moving at 30 m/s. The density of the fluid is 800 kg/m’ and
the dynamic viscosity is 8 cP.

SOLUTION
u,L 800 x30x2
R,), =P =
0.008

=6x10°

1

Cpr =0.074x (6x10%) 5 =0.00326

2 2
Dynamic pressure = p1210 = 800 ); 30 =360 kPa
1,, = Cp¢ x dynamic pressure =0.00326 x 360 x 10° =1173.6 Pa

R=1, x Wetted Area=1173.6 x2x1=23472N

On a small area the drag is dR = t,, dA. If the body is not a thin plate and has an area inclined
at an angle O to the flow direction, the drag force in the direction of flow is 1, dA cos®.

Drag
dA T
f""‘" Pl
6 F cos
Fig.1.3

The drag force acting on the entire surface area is found by integrating over the entire area.
R= §rw cos 0 dA

Solving this equation requires more advanced studies concerning the boundary layer and
students should refer to the classic textbooks on this subject.

SELF ASSESSMENT EXERCISE No. 1

1. A smooth thin plate 5 m long and 1 m wide is placed in an air stream moving at 3 m/s
with its length parallel with the flow. Calculate the drag force on each side of the plate.
The density of the air is 1.2 kg/m’ and the kinematic viscosity is 1.6 x 10” m*/s.
(0.128 N)

2. A pipe bore diameter D and length L has fully developed laminar flow throughout the
entire length with a centre line velocity u,. Given that the drag coefficient is given as

D
Cpr = 16/Re where Re = PYo , show that the drag force on the inside of the pipe is

1!
given as R=8rpu,L and hence the pressure loss in the pipe due to skin friction is
pL = 32pu,L/D?




1.2 FORM DRAG and WAKES

Form or pressure drag applies to bodies that are tall in comparison to the length in the
direction of flow. Such bodies are called BLUFF BODIES.

Consider the case below that could for example, be the pier of a bridge in a river. The water
speeds up around the leading edges and the boundary layer quickly breaks away from the
surface. Water is sucked in from behind the pier in the opposite direction. The total effect is to
produce eddy currents or whirl pools that are shed in the wake. There is a build up of positive
pressure on the front and a negative pressure at the back. The pressure force resulting is the
form drag. When the breakaway or separation point is at the front corner, the drag is almost
entirely due to this effect but if the separation point moves along the side towards the back,
then a boundary layer forms and skin friction drag is also produced. In reality, the drag is

always a combination of skin friction and form drag. The degree of each depends upon the
shape of the body.

break away point

_Stagnation points walke

break away point

Fig.1.4
The next diagram typifies what happens when fluid flows around a bluff object. The fluid
speeds up around the front edge. Remember that the closer the streamlines, the faster the
velocity. The line representing the maximum velocity is shown but also remember that this is

the maximum at any point and this maximum value also increases as the stream lines get
closer together.

YYYYYY

line _
representing
WUimax

Fig.1.5



Two important effects affect the drag.

Outside the boundary layer, the velocity increases up to point 2 so the pressure acting on the
surface goes down. The boundary layer thickness 6 gets smaller until at point S it is reduced
to zero and the flow separates from the surface. At point 3, the pressure is negative. This
change in pressure is responsible for the form drag.

Inside the boundary layer, the velocity is reduced from u,. to zero and skin friction drag
results.

Uy =,
.
line of
U zero veloctty
points 1 point 2 pomtbS )
L . Zero boun '
maz velocity ncreasing Javer 7 pomnt _3
pressure decreasing ¥ negative pressure
boundary layer decreasing flow separates reversed flow
from surface
Fig.1.6

In problems involving liquids with a free surface, a negative pressure shows up as a drop in
level and the pressure build up on the front shows as a rise in level. If the object is totally
immersed, the pressure on the front rises and a vacuum is formed at the back. This results in a
pressure force opposing movement (form drag). The swirling flow forms vortices and the
wake is an area of great turbulence behind the object that takes some distance to settle down
and revert to the normal flow condition.

Here is an outline of the mathematical approach needed to solve the form drag.

Form drag is due to pressure changes only. The drag coefficient due to pressure only is
denoted Cp, and defined as

C Drag force

Dp = . .
dynamic pressure x projected area

i 2R

Dp — 2 .
pu, x projected area

The projected area is the area of the outline of the shape projected at right angles to the flow.
The pressure acting at any point on the surface is p. The force exerted by the pressure on a
small surface area is p dA. If the surface is inclined at an angle 0 to the general direction of
flow, the force is p cosO dA. The total force is found by integrating all over the surface.

R=§pcosBdA

The pressure distribution over the surface is often expressed in the form of a pressure
coefficient defined as follows.
_2(p-p,)

p 2
pu,

Do is the static pressure of the undisturbed fluid, u, is the velocity of the undisturbed fluid and

pug
2

C

is the dynamic pressure of the stream.



Consider any streamline that is affected by the surface. Applying Bernoulli between an
undisturbed point and another point on the surface, we have the following.

L PuG _ +£
Po > p 5
P, 2 2
-p,=—(u;-u
P-P, 2(0
P, 2 2
2l =(u: -u
_2(p-p,) _ (2(" )j_(ui-uz)_ u’
Cp_ 2 2 - 2 _1__2
pu() puO u() uO

In order to calculate the drag force, further knowledge about the velocity distribution over the
object would be needed and students are again recommended to study the classic textbooks on
this subject. The equation shows that if u<u, then the pressure is positive and if u>u, the
pressure is negative.

1.3 TOTAL DRAG

It has been explained that a body usually experiences both skin friction drag and form drag.
The total drag is the sum of both. This applies to acroplanes and ships as well as bluff objects
such as cylinders and spheres. The drag force on a body is very hard to predict by purely
theoretical methods. Much of the data about drag forces is based on experimental data and the
concept of a drag coefficient is widely used.

The DRAG COEFFICIENT is denoted Cp and is defined by the following expression.

C Resistanceforce

b Dynamicpressure x projected Area

2R
Ch=— :
pu; x projected Area




WORKED EXAMPLE 1.2

A cylinder 80 mm diameter and 200 mm long is placed in a stream of fluid flowing at
0.5 m/s. The axis of the cylinder is normal to the direction of flow. The density of the
fluid is 800 kg/m’. The drag force is measured and found to be 30 N.

Calculate the drag coefficient.

At a point on the surface the pressure is measured as 96 Pa above the ambient level.
Calculate the velocity at this point.

SOLUTION

Projected area = 0.08 x 0.2 =0.016 m’

R=30N

u, = 0.5 m/s

p = 800 kg/m’

dynamic pressure = pu,/2 = 800 x 0.5%/2 = 100 Pa

Resistance force 30

C =18.75

b Dynamic pressure x projected Area 100x0.016

P, 2 2
pP-p, =E(uo -u’)
800
T2
96 x 2
800

0.24=0.25-u’
u? =0.01

u=0.1m/s

96 (0.5 —u?)

=(0.5 —u?)




1.4 APPLICATION TO A CYLINDER

2R

pu’ x projected Area

The drag coefficient is defined as : C, = The projected Area is LD
where L is the length and D the diameter. The drag around long cylinders is more predictable
than for short cylinders and the following applies to long cylinders. Much research has been
pu,d
Tl
diameter of the cylinder. At very small velocities, (Re <0.5) the fluid sticks to the cylinder all
the way round and never separates from the cylinder. This produces a streamline pattern
similar to that of an ideal fluid. The drag coefficient is at its highest and is mainly due to skin
friction. The pressure distribution shows that the dynamic pressure is achieved at the front
stagnation point and vacuum equal to three dynamic pressures exists at the top and bottom
where the velocity is at its greatest.

. ey |
- s 10_

carried out into the relationship between drag and Reynolds number. Re = and d is the

>
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angle from font
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Fig.1.7

As the velocity increases the boundary layer breaks away and eddies are formed behind. The
drag becomes increasingly due to the pressure build up at the front and pressure drop at the
back.

2=Re=30

Fig.1.8



Further increases in the velocity cause the eddies to elongate and the drag coefficient becomes
nearly constant. The pressure distribution shows that ambient pressure exists at the rear of the

cylinder.
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Fig.1.9
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At a Reynolds number of around 90 the vortices break away alternatively from the top and
bottom of the cylinder producing a vortex street in the wake. The pressure distribution shows

a vacuum at the rear.
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Fig.1.10

Up to a Reynolds number of about 2 x 10°, the drag coefficient is constant with a value of

I
0° 180°

a.ngle from front

stagnation poitt

approximately 1. The drag is now almost entirely due to pressure. Up to this velocity, the
boundary layer has remained laminar but at higher velocities, flow within the boundary layer
becomes turbulent. The point of separation moves back producing a narrow wake and a

pronounced drop in the drag coefficient.

When the wake contains vortices shed alternately from the top and bottom, they produce
alternating forces on the structure. If the structure resonates with the frequency of the vortex
shedding, it may oscillate and produce catastrophic damage. This is a problem with tall
chimneys and suspension bridges. The vortex shedding may produce audible sound.

Fig. 1.12 shows an approximate relationship between Cp and R for a cylinder and a sphere.
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SELF ASSESSMENT EXERCISE No. 2

1. Calculate the drag force for a cylindrical chimney 0.9 m diameter and 50 m tall in a wind
blowing at 30 m/s given that the drag coefficient is 0.8.
The density of the air is 1.2 kg/m’®. (19.44 N)

2 Using the graph (fig.1.12) to find the drag coefficient, determine the drag force per metre
length acting on an overhead power line 30 mm diameter when the wind blows at 8 m/s.
The density of air may be taken as 1.25kg/m’ and the kinematic viscosity as
1.5 x 10° m%s. (1.8 N).

1.5 APPLICATION TO SPHERES

The relationship between drag and Reynolds number is roughly the same as for a cylinder but

d
it is more predictable. The Reynolds number is Re = P%.¢ where d is the diameter of the
n
sphere. The projected area of a sphere of diameter d is ¥ nd”. In this case, the expression for
S 8R
the drag coefficient is as follows. Cp =———
pu” x nd

At very small Reynolds numbers (less than 0.2) the flow stays attached to the sphere all the
way around and this is called Stokes flow. The drag is at its highest in this region.

As the velocity increases, the boundary layer separates at the rear stagnation point and moves
forward. A toroidal vortex is formed. For 0.2<Re<500 the flow is called Allen flow.

toroidal vortex

Fig.1.11

The breakaway or separation point reaches a stable position approximately 80° from the front
stagnation point and this happens when R. is about 1000. For 500<R. the flow is called
Newton flow. The drag coefficient remains constant at about 0.4. Depending on various
factors, when R, reaches 10° or larger, the boundary layer becomes totally turbulent and the
separation point moves back again forming a smaller wake and a sudden drop in the drag
coefficient to about 0.3. There are two empirical formulae in common use.

For 0.2 <R.< 10’ CD=£+L+0.4

R. 1+,R,

11




For R, <1000 C, :%[1+0.15Reo.687]

e

Fig. 1.12 shows this approximate relationship between Cp and Re.

10
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Fig.1.12

WORKED EXAMPLE 1.3

A sphere diameter 40 mm moves through a fluid of density 750 kg/m’ and dynamic
viscosity 50 cP with a velocity of 0.6 m/s. Note 1 ¢P =0.001 Ns/m’.

Calculate the drag on the sphere.

Use the graph to obtain the drag coefficient.

SOLUTION

_pud _ 750x 0.6 x 0.04

Re =360
u 0.05
from the graph C; =0.8
2 2
Cp = R Projected areaznd—zn 0.04 =1.2566x 107 m?

pu’ x projected Area

Cppu’ A 0.8x750x0.6°x1.2566x 10~
2 2

R=

=0.136 N

12




1.6 TERMINAL VELOCITY

When a body falls under the action of gravity, a point is reached, where the drag force is equal
and opposite to the force of gravity. When this condition is reached, the body stops
accelerating and the terminal velocity reached. Small particles settling in a liquid are usually
modelled as small spheres and the preceding work may be used to calculate the terminal
velocity of small bodies settling in a liquid. A good application of this is the falling sphere
viscometer described in earlier work.

For a body immersed in a liquid, the buoyant weight is W and this is equal to the viscous
resistance R when the terminal velocity is reached.

. o d’g(p, -
R =W = volume x gravity x density difference = w
ps = density of the sphere material
ps = density of fluid
d = sphere diameter

STOKES’ FLOW

For R.<0.2 the flow is called Stokes flow and Stokes showed that R = 3ndpu,
For a falling sphere viscometer, Stokes flow applies. Equating the drag force and the buoyant
weight we get

3 —
sy, =" EP: —p0)

6
. d’e(p, —py)
18u,
2 p—
The terminal velocity for Stokes flow is u, = d7elp, —pr) g(1p§ p:)
1l

This formula assumes a fluid of infinite width but in a falling sphere viscometer, the liquid is
squeezed between the sphere and the tube walls and additional viscous resistance is produced.
The Faxen correction factor F is used to correct the result.

WORKED EXAMPLE 1.4

The terminal velocity of a steel sphere falling in a liquid is 0.03 m/s. The sphere is 1 mm
diameter and the density of the steel is 7830 kg/m’. The density of the liquid is 800
kg/m®. Calculate the dynamic and kinematic viscosity of the liquid.

SOLUTION

Assuming Stokes’ flow the viscosity is found from the following equation.
_d’glp, —p)  0.001% x 9.81x (7830 -800)

18w, 18 x 0.03

no 0.1277

V=
p. 800

=0.1277 Ns/m? =127.7 cP

=0.0001596m* /s =159.6 cSt

prud  800x0.03x0.001

u 0.0547
As this is smaller than 0.2 the assumption of Stokes’ flow is correct.

Check the Reynolds number. R = =0.188

13




ALLEN FLOW

For 0.2 < R, < 500 the flow is called Allen flow and the following expression gives the
empirical relationship between drag and Reynolds number. Cp=18.5R, "

8R

2 2

=18.5R;*¢
peu; md

Equating for Cp gives the following result. C, =

nd’g(p, —pr)
6

Substitute R =

0.6
8d - d
CD — g(ps zpf)zlg.SR;(lG :18‘5(pfut j
(Uth H

-0.6
8dg(p, —p) _ ¢ 5(pfutdj
6p Uy H

From this equation the velocity u, may be found.

NEWTON FLOW

For 500 < R, < 10° Cp, takes on a constant value of 0.44.

: . . R
Equating for Cp gives the following. C, = _ SR =0.44

2 12
pru; md
3

nd’g(p, —p;)
6

Substitute R =

8dg(ps - pf) =044
6pfu?
B \/29.73dg(ps -p;)
1,1t =

P

When solving the terminal velocity, you should always check the value of the Reynolds
number to see if the criterion used is valid.

14



WORKED EXAMPLE 1.5

Small glass spheres are suspended in an up wards flow of water moving with a mean
velocity of 1 m/s. Calculate the diameter of the spheres. The density of glass is 2630
kg/m’. The density of water is 1000 kg/m® and the dynamic viscosity is 1 cP.

SOLUTION

First, try the Newton flow equation. This is the easiest.

\/29.73dg( ., —Pr)
u, =
Pt

_ e 12 x 1000
29.73g(p, —p;) 29.73x9.81x(2630-1000)

=0.0021m or 2.1mm

Check the Reynolds number.

_prud  1000x1x0.0021
¢ u 0.001
The assumption of Newton flow was correct so the answer is valid.

R =2103

WORKED EXAMPLE 1.6

Repeat the last question but this time with a velocity of 0.05 m/s. Determine the type of
flow that exists.

SOLUTION
If no assumptions are  made, we should use the  general
formula C, _24 + _° +0.4
R. 1+4R,
_peud  1000x0.05xd
¢ n 0.001

24 6
Cp=—+

- 104
R. 1+4R,
co_ 24 6

P 750000d 1+ +/50000d
6

S —— |
1+223.6d4%°

R =50000d

+04

C, =0.00048d ™" +

_ 8dg(p, —pr)  8dx9.81x(2630-1000)
6p,u’ 6x1000x 0.05*

5 o4

1+223.6d°°

=8528.16d

Cp

8528.16d =0.00048d " +

15




This should be solved by any method known to you such as plotting two functions and
finding the point of interception.

£1(d) =8528.16d
6

f2(d)=0.00048d ™" + ——————+0.4
1+223.6d"

The graph below gives an answer of d = 0.35 mm.

2

G
£F1(d)

Cp s
2
o —4 —4 —4 —4
i} 210 410 G610 a-10 .00l
i
0.35 mm
Fig. 1.13

_prud 1000 0.05x 0.00035

1) 0.001
This puts the flow in the Allen's flow section.

Checking the Reynolds’ number R,

=175
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ANOTHER METHOD OF SOLUTION

It has been shown previously that the drag coefficient for a sphere is given by the formula
8R
Cr=—p—3
7~ pu
formula into the form Cp R, as follows.
8R___pH° _8Rp, P BRp, 1

. R is the drag force. One method of solving problems is to arrange the

C, = X X = _—
P 7za’2pfu2 pf,u2 u’ ,of,uza’2 mu’  R?
8R
C,R? = pzf
o
If the sphere is falling and has reached its terminal velocity, R = buoyant weight.
wd’glp, - p,)
R=
6
,_md’glp, - p, B,
CDRe = 2
671
4d’gp \p. — p,
C R = gpf(; o) (4)
3u

The drag coefficient for a sphere is related to the Reynolds number as described previously.
There are two equations commonly used for this relationship as follows.

24 6

C,=—+———+04.ennn. B
R TIR ()
and

C, = % [+0.05R. " oo )

Either B or C may be used in the solution of problems. The general method is to solve R.Cp>
from equation A. Next compose a table of values of R., Cp, and R.Cp>. Plot R.Cp” vertically
and Re horizontally. Find the value of R, that gives the required value of R.Cp>. From this the
velocity may be deduced.

17



WORKED EXAMPLE 1.7

A sphere 1.5 mm diameter falls in water. The density of the sphere is 2500 kg/m’. The density
and dynamic viscosity of water is 997 kg/m’ and 0.89 x 10~ Ns/m’ respectively. The drag

24
coefficient is given by the formula C, :R—[1+O.15Reo'687]. Determine the terminal

e

velocity.
SOLUTION
,_4d’gp,(p, - p,) 4(0.0015)° x9.81x997(2500 — 997)
C,R? = L e — =83513
3u 3(0.89x107°)

24
Next compile a table using the formula C,, = e [1 +0.15Re”™ ]

e

Re 0.1 1 10 100 1000
Co 24.7 27.6 4.15 1.09 0.44
CpR.’ 2.47 27.6 415 109 438288

We are looking for a value of CpR.>= 83513 and it is apparent that this occurs when R, is
between 100 and 1000. By plotting or by narrowing down the figure by trial and error we find
that the correct value of R, is 356.

R. =356 = paud/p

356 =997 x ux 0.0015/0.89 x 10~

u=0.212 m/s and this is the terminal velocity.

18




SELF ASSESSMENT EXERCISE No. 3

1. a. Explain the term Stokes flow and terminal velocity.

b. Show that the terminal velocity of a spherical particle with Stokes flow is given by the
formula u = d’g(p; - ps)/18p

Go on to show that Cp=24/R,

2. Calculate the largest diameter sphere that can be lifted upwards by a vertical flow of
water moving at 1 m/s. The sphere is made of glass with a density of 2630 kg/m’. The
water has a density of 998 kg/m’ and a dynamic viscosity of 1 cP. (20.7 mm)

3. Using the same data for the sphere and water as in Q2, calculate the diameter of the
largest sphere that can be lifted upwards by a vertical flow of water moving at 0.5 m/s.
(5.95 mm).

4. Using the graph (fig. 1.12) to obtain the drag coefficient of a sphere, determine the drag
on a totally immersed sphere 0.2 m diameter moving at 0.3 m/s in sea water. The density
of the water is 1025 kg/m’ and the dynamic viscosity is 1.05 x 10~ Ns/m>. (0.639 N).

5. A glass sphere of diameter 1.5 mm and density 2 500 kg/m3 is allowed to fall through
water under the action of gravity. The density of the water is 1000 kg/m® and the
dynamic viscosity is 1 cP.

Calculate the terminal velocity assuming the drag coefficient is
Cp=24Re ' (1+ 0.15Re ") (Ans. 0.215 m/s

6. Similar to part of Q1 1990

A glass sphere of density 2 690 kg/m3 falls freely through water. Find the terminal
velocity for a 4 mm diameter sphere and a 0.4 mm diameter sphere.

The drag coefficient is Cp = 8F/{nd2pu2}
This coefficient is related to the Reynolds number as shown.

Re 15 20 25 30 35
C 3.14 2.61 2.33 2.04 1.87

D
The density and viscosity of the water is 997 kg/m3 and 0.89 x 10-3 N s/mZ2.
Answer 0.45 m/s and 0.06625 m/s.

7. Similar to part of Q4 1988.

A glass sphere of diameter 1.5 mm and density 2 500 kg/m3 is allowed to fall through
water under the action of gravity. Find the terminal velocity assuming the drag coefficient

is C, =24 Re-1(1+ 0.15R0.687)
(Ans. 0.215 m/s)
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8. Similar to Q1 1986

The force F on a sphere of diameter d moving at velocity um in a fluid is given by
F=C, {nd2pum2}/8

For Reynolds numbers less than 1 000, C,, is given by C = 24 Re-1(1+ 0.15R0.687)

Estimate the terminal velocity of a glass sphere 1 mm diameter and density 2 650 kg/m3
in water of density 997 kg/m3 and viscosity 0.89 x 10-3 N s/m2.

Answer 0.15 m/s
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2. BOUNDARY LAYERS

In this tutorial we will look at the shape of various types of boundary layers. We will look at
the mathematical equations for the shape of the boundary layer and use them to solve
problems.

You may recall that the definition of a BL is the thickness of that layer next to a surface in
which the velocity grows from zero to a maximum value (or so close to a maximum as to be
of no practical difference). This thickness is usually given the symbol o (small delta).

The boundary layer, once established may have a constant thickness but, for example, when a
flow meets the leading edge of a surface, the boundary layer will grow as shown (fig.2.1).

— =l

Fig.2.1

When the flow enters a pipe the BL builds up from all around the entrance and a cross section
shows the layer meets at the centre (fig.2.2)

H1

Fig.2.2

The symbol uj is used to designate the maximum velocity in the fully developed layer. The
fully developed layer may be laminar or turbulent depending on the Reynolds’ Number.

21



The velocity profile for a typical case is shown on fig.2.3.

u
¥ "'q 1 -

Fig.2.3

The shear stress between any two horizontal layers is t. For a Newtonian Fluid the
relationship between shear stress, dynamic viscosity (i) and rate of shear strain (du/dy) is
7= du/dy

At the wall the shear stress is called the WALL SHEAR STRESS, 1o and occurs at y = 0.

Note that the gradient du/dy is the rate of shear strain and it is steeper for turbulent flow than
for laminar flow giving a greater shear resistance.

The solution of problems is simplified by the concepts of DISPLACEMENT THICKNESS
AND MOMENTUM THICKNESS which we will now examine.

2.1. DISPLACEMENT THICKNESS &*

The flow rate within a boundary layer is less than that for a uniform flow of velocity u,. The
reduction in flow is equal to the area under the curve in fig.2.3. If we had a uniform flow
equal to that in the boundary layer, the surface would have to be displaced a distance &* in
order to produce the reduction. This distance is called the displacement thickness and it is
given by :

s
flow redution = I [u, —uly=u,6"
0
If this is equivalent to a flow of velocity u in a layer &* thick then :

* T u
o fl-rp

2.2 MOMENTUM THICKNESS 6

The momentum in a flow with a BL present is less than that in a uniform flow of the same
thickness. The momentum in a uniform layer at velocity uj and height h is phuj2. When a BL

exists this is reduced by puj20. Where 0 is the thickness of the uniform layer that contains
the equivalent to the reduction. Using the same reasoning as before we get :

bl

22



2.3. BOUNDARY LAYER LAWS

The velocity at any distance y above a surface is a function of the wall shear stress, the
dynamic viscosity and the density.

u :d)(ys To, P ,H)
If you are familiar with the method of dimensional analysis you may wish to show for
yourself that :

u(p/10)”2 = ¢{y(10)"2}

Generally the law governing the growth of a BL is of the form u = ¢(y) and the limits must be
that u = 0 at the wall and u = uj in the fully developed flow. There are many ways in which

this is expressed according to the Reynolds’ Number for the flow. The important boundary
conditions that are used in the formulation of boundary layer laws are:

1. The velocity is zero at the wall (u=0 @ y =0).

2. The velocity is a maximum at the top of the layer (u=u] @y = 9).

3. The gradient of the b.1. is zero at the top of the layer (du/dy =0 @ y = 9d).
4. The gradient is constant at the wall (du/dy=C @ y = 0).

5. Following from (4) d2u/dy2=0 @ y =0).

Let us start by considering LAMINAR BOUNDARY LAYERS.

23



2.3.1 LAMINAR BOUNDARY LAYERS

One of the laws which seem to work for laminar flow is u = u, sin(n y/23)

WORKED EXAMPLE No.2.1

Find the displacement thickness 8™ for a Laminar BL modelled by the equation
u = u, sin(r y/29)

o fionls)

o
7 26

0 T

Another way of expressing the shape of the laminar BL is with a power law. The next
example is typical of that used in the examination.

WORKED EXAMPLE No.2.2

The velocity distribution inside a laminar BL over a flat plate is described by the cubic law :
wu] =agy +aly +ayy2 +azy3

Show that the momentum thickness is 398/280

SOLUTION

Aty =0,u=0 so it follows that ap= 0

d*u/dy* =0 @y =0 so a,=0. Show for yourself that this is so.

The law is reduced to u/up =agy+ asy’
aty=8,u=u1so 1=aIS+33362
hence aj =(1-238")/

Now differentiate and ~ du/dy =uy(a;+3 asy’)
aty =9, du/dy is zero so 0 =a,+ 3a;8% so a|= 3a38°

Hence by equating a,;=3/25 and a;=-1/28’
Now we can write the velocity distribution as wu=3y/28 -(y/8)*/2

and du/dy =u,{3/25 + 3y*/25°}
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If we give the term y/6 the symbol 1 we may rewrite the equation as:
uw/u1=3n/2 - n3/2

The momentum thickness 0 is given by :

{l}{l—l}dy butdy =5 dn
U, U,

3 3
3Sn_m Uy 31y,
2 2 2 2

Integrating gives :

0

7

Oy~ O ——

between the limits =0 and n=1 this evaluates to

0 =395/280




WORKED EXAMPLE No.2.3

Show that 8/x=4.64R¢ ™" for the same case as before.

SOLUTION
We must first go back to the basic relationship. From the previous page
du/dy =u,{3/25 + 3y*/25°}
At the wall where y=0 the shear stress is
to=pdu/dy = pu; {3/28 + 3y*/28°} =(uu,/3) & [(3/28) +3y*/287]
Putting y/6=n we get :
To = (pu/8) 8 [(3/28) +38%/23]
To = (nu/8) [(3/2) +38%/2]
at the wall n=0 To = (uui/0) (3/2)...cviniene(2.1)

The friction coefficient Cf is always defined as

CE=10/(p u1*/2)ecccc (2.2)

It has been shown elsewhere that Cf= 2d6/dx. The student should search out this information
from test books.

Putting 6 = 3996/280 (from the last example) then
Cf=2d06/dx = (2x39/280) dé/dx .............. (2.3)

equating (2.2) and (2.3) gives

To=( pu;°)(39/280)dd/dx ............. (2.4)
equating (2.1) and (2.4) gives

(pulz)(39/280)d6/dx = (nu/d)(3/2)
hence (3 x 280)/(2 x 39)(udx)/pu) = ddd
Integrating 10.77(ux/ pui) =872 + C

Since 6 =0 at x =0 (the leading edge of the plate) then C=0

hence &= {21.54ux/puy } 2
dividing both sides by x gives 8/x = 4.64(u/pulx)"2 = 4.64Re""2
NB Rey= pulx/p and is based on length from the leading edge.

26




SELF ASSESSMENT EXERCISE No. 4

1. The BL over a plate is described by u/uj=sin(my/23). Show that the momentum thickness
is 0.1370.

2. The velocity profile in a laminar boundary layer on a flat plate is to be modelled by the
cubic expression u/u;=aptay + azszra3y3
where u is the velocity a distance y from the wall and u; is the main stream velocity.

Explain why a; and a, are zero and evaluate the constants a; and as in terms of the

boundary layer thickness 5.

Define the momentum thickness 6 and show that it equals 396/280

Hence evaluate the constant A in the expression

8/x = A (Rey) ™’

where x is the distance from the leading edge of the plate. It may be assumed without
proof that the friction factor C£=2 d0/dx

3. (a) The velocity profile in a laminar boundary layer is sometimes expressed in the form
w/u;=agta; (y/8)taxy/8) +a3 (y/8) +ay(y/5)*

where u; is the velocity outside the boundary layer and & is the boundary layer

thickness. Evaluate the coefficients a, to a, for the case when the pressure gradient
along the surface is zero.

(b)  Assuming a velocity profile u/u;=2(y/d) - (y/8)° obtain an expression for the
mass and momentum fluxes within the boundary layer and hence determine the

displacement and momentum thickness.

4. When a fluid flows over a flat surface and the flow is laminar, the boundary layer
profile may be represented by the equation

u/ul=2(n) - (n)2 where 1 = y/d

y is the height within the layer and & is the thickness of the layer. u is the velocity
within the layer and u] is the velocity of the main stream.

Show that this distribution satisfies the boundary conditions for the layer.

Show that the thickness of the layer varies with distance (x) from the leading edge by
the equation 8=5.48X(Rex)'0'5

It may be assumed that tg = pu12 do/dx
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Define the terms displacement thickness 6 * and momentum thickness 6.
Find the ratio of these quantities to the boundary layer thickness 6 if the velocity profile
within the boundary layer is given by

u/ui=sin(my/29)

Show, by means of a momentum balance, that the variation of the boundary layer

-0.5
thickness & with distance (x) from the leading edge is given by & = 4.8(Rey)

It may be assumed that 1o = pui” d6/dx

Estimate the boundary layer thickness at the trailing edge of a plane surface of length
0.1 m when air at STP is flowing parallel to it with a free stream velocity uj of 0.8 m/s.

It may be assumed without proof that the friction factor Ctis given by
Cr=2 do/dx

N.B. standard data p= 1.71 x 10-5 N s/m2. p = 1.29 kg/m3.

In a laminar flow of a fluid over a flat plate with zero pressure gradient an
approximation to the velocity profile is

u/uy=(3/2)(n) - (1/2)(n)’

n = y/dand u is the velocity at a distance y from the plate and u; is the mainstream

velocity. 6 is the boundary layer thickness.
Discuss whether this profile satisfies appropriate boundary conditions.

Show that the local skin-friction coefficient Cf is related to the Reynolds’ number
(Rex) based on distance x from the leading edge by the expression
Cf =A (Rey)™

and evaluate the constant A.

It may be assumed without proof that Cr=2 do/dx

and that 0 is the integral of (uw/uq)(1 - u/uj)dy between the limits 0 and &
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2.3.2 TURBULENT BOUNDARY LAYERS

When a fluid flows at high velocities, the boundary layer becomes turbulent and the gradient
at the wall becomes smaller so the wall shear stress is larger and the drag created on the
surface increases.

¥ Uq

F
F

Laminar Sub-layer

!

7.77777777777777777777_T

Fig. 2.4

Prandtl found that a law which fits the turbulent case well for Reynolds’ numbers below 107
is:

u=uj(y/s)"
This is called the 1/7™ law.

The gradient of the B.L. is du/dy = ulgl/ Ty 97

This indicates that at the wall where y=0, the gradient is infinite (horizontal). This is
obviously incorrect and is explained by the existence of a laminar sub-layer next to the wall.
In this layer the velocity grows very quickly from zero and merges with the turbulent layer.
The gradient is the same for both at the interface of laminar and turbulent flow. The drag on
the surface is due to the wall shear stress in the laminar sub-layer.
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WORKED EXAMPLE No.2.4

Show that the mean velocity in a pipe with fully developed turbulent flow is 49/60 of the
maximum velocity. Assume the 1/7th law.

For a pipe, the B.L. extends to the centre so 6 = radius = R. Consider an elementary ring of
flow.

dr=-dy

Fig.2.5

The velocity through the ring is u.
The volume flow rate through the ring is 2mrudr
The volume flow rate in the pipe is ~ Q = 2nfrudr

. 1/7
Since 3 = R then u=uy(y/R)

also r=R-y

/

-1/7 1/7
Q=2n] (R-y)udr=2n/uR ~ (R-y)y dy

717 87
Q=2 R '[Ry -y ]
-1/7 8/7 15/7
Q=2nuR " [(78)Ry - (115)y ']
2
Q =(49/60)7R "uy.

The mean velocity is defined by u,,=Q/nR

hence u,,=(49/60)u;
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24 FRICTION COEFFICIENT AND BOUNDARY LAYERS

Earlier it was explained that the friction coefficient Cf is the ratio of the wall shear stress to
the dynamic pressure so :

CE=2T0/(PUpy,) oo (2.4.1)
For smooth walled pipes, Blazius determined that Cf=0.079Re¢*% .....c..covvvvenae. (2.4.2)
Equating (2.4.1) and (2.4.2) gives : 210/(pum2) =0.079R¢ "%

Note that uy, is the mean velocity and uj is the maximum velocity.

Research shows that U,=0.8u,

Also Note that Re=pu1D/p and D = 23.

Hence 15=0.02125pu; *(W/pduy) *?..........n. (2.4.3)
2.5 FORCE BALANCE IN THE BOUNDARY LAYER

The student should refer to textbooks for finer details of the following work.

Consider again the growth of the B.L. as the fluid comes onto a flat surface. A stream line for
the flow is not parallel to the B.L. Now consider a control volume A, B, C, D.

stream line

boundary layer

&

777777777

& o

Fig.2.6

Balancing pressure force and shear force at the surface with momentum changes gives :

r, = p(%ﬁ; [t =, Judy + p(%)]:- [ —u, Judy......... (2.4.4)

0
Using equations (2.4.2), (2.4.3) and (2.4.4) gives  (4/5)8°*=0.231{wpu}"x =Re"*

The shear force on the surface is Fg= 10 x surface area

The surface skin friction coefficient is Cf=2Fg/(puj2) = 0.072Re"”
Experiments have shown that a more accurate figure is :  Cg= 0.074Re™"”
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SELF ASSESSMENT EXERCISE No. 5

1. Under what circumstances is the velocity profile in a pipe adequately represented by

1/7
the 1/7 th power law  uw/u;=(y/R) ~ where u is the velocity at distance y from the

wall, R is the pipe radius and uy is the centre-line velocity ?

The table shows the measured velocity profile in a pipe radius 30 mm. Show that these
data satisfy the 1/7 th power law and hence evaluate

(i) the centre-line velocity

(i1) the mean velocity um
(iii) the distance from the wall at which the velocity equals up,.

1.0 2.0 5.0 10.0 15.0 20.0 y (mm)
1.541.70 1.94 2.14 2.26 2.36 u (m/s)

1/7
2. (a) Discuss the limitations of the 1/7th power law u/u;=(y/R) for the velocity

profile in a circular pipe of radius R, indicating the range of Reynolds numbers for
which this law is applicable.

(b)  Show that the mean velocity is given by 49u;/60.

(©) Water flows at a volumetric flow rate of 1.1 x 10-3 m3/s in a tube of diameter
25 mm. Calculate the centre-line velocity and the distance from the wall at which the
velocity is equal to the mean velocity.

-0.25
(d)  Assuming that Cg=0.079(Re) evaluate the wall shear stress and hence
estimate the laminar sub-layer thickness.

1 =0.89 x 10-3 N s/m2. p=998 kg/m3.
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FLUID MECHANICS

TUTORIAL No.4

FLOW THROUGH POROUS PASSAGES

In this tutorial you will continue the work on laminar flow and develop
Poiseuille's equation to the form known as the Carman - Kozeny
equation. This equation is used to predict the flow rate through porous
passages such as filter, filter beds and fluidised beds in combustion
chambers.

On completion of this tutorial you should be able to do the following.
= Derive the Carman - Kozeny equation.

= Solve problems involving the flow of fluids through a
porous material.

In order to do this tutorial you must be familiar with Poiseuille's equation
for laminar flow and this is covered in tutorial 1.



FLOW THROUGH POROUS PASSAGES

The following are examples where porous flow occurs.

Ll

—
TrappEEL 2
Farticle ;

A filter element made of thick sintered particles. This might be a cylinder with radial

flow.

A sand bed filter for cleaning water. The water percolates down through the filter
though long tortuous passages. The depth of water on top of the filter governs the rate

at which the water is forced through.

tttd

AR

A layer of rock through which water, gas or oil might seep. This is similar to a radial
flow filter but on a much larger scale.



When a fluid passes through a porous material, it flows through long thin tortuous
passages of varying cross section. The problem is how to calculate the flow rate based
on nominal thickness of the layer. This was tackled by Kozeny and later by Carman.
The result is a formula, which gives a mean velocity of flow in the direction at right
angles to the layer plane in terms of its thickness and other parameters.

The passage between the particles is so small that the velocity in them is small and
the flow is well and truly laminar.

Poiseuille's Equation for laminar flow states Ap/l = -32 pu'/D2.

Kozeny modelled the layer as many small capillary

r 3 : .
tubes of diameter D making up a layer of cross
sectional area A. The actual cross sectional area for the
flow path is A'. The difference is the area of the solid
material.
The ratio is € = A'/A and this is known as the porosity

of the material. The volume flow rate through the layer
— ¥ g Q.

—+{l+—D
|. & .| Kozeny used the notion that Q = Au where u is the

mean velocity at right angles to the layer.

[

Figure 1
The volume flow rate is also Q= A'u' where u' is the mean velocity in the tube.
Equating u'=uA/A’
¢ = void fraction = A'/A. u'=u/e.

Carman modified this formula when he realised that the actual velocity inside the
tubes must be proportionally larger because the actual length is greater than the layer
thickness. It follows that u'= %

&
where | is the layer thickness and I' the mean length of the passages. Substituting this
in Poiseuille's Equation gives :

Ap 32l
[ &b’
rearranging % =— 312/; uzl
&

This is usually expressed as a pressure gradient in the direction of the mean flow (say
x) and it becomes :
dp _ 32puul’
dx D’




Ag= csa of the solid

A'= csa of the tubes
A =csa of the layer = A' + Asg.

A A
E=—=
A A+ A4,
Multiply top and bottom by thye length 1 and the areas become volumes so
E= ,Q
0'+0,
where Q' is the volume of the tubes and Qg is the volume of the solid.
0'=¢0'+0,)
0 -0-02 000l
0-0'=0,=0-0"5=0-0=0(-2)
0, =0(1-¢)
0-2 -0+,
(1-¢)
&0,
C0-9)
S = Surface Area of the tubes . Divide both sides by S g = 0,
S S(-¢)
. : , , naD’l'
Q' is made up of tubes diameter D and length I' so 0= 1
and S = nnDIl' where n is the number of tubes which cancels when these are
substituted into the formula. This resultsin: D = %
-

Next we consider the solid as made up of spherical particles of mean diameter dg.

S = surface area of tubes but also the surface area of the solid particles.

3
Hence Qszﬁds and S =7d’ and Q _d,
6 S 6
It follows that D= 2ad,
3(1-¢)

' 2
Substitute this into equation (1) and : a = —w
dx ld: e

2
Research has shown that (1'/1) is about 2.5 hence : Z’_p = —ISO’LZ#
X JE

This is the Carman- Kozeny.



WORKED EXAMPLE No.1

Water is filtered through a sand bed 150 mm thick. The depth of water on top of the
bed is 120 mm. The porosity € is 0.4 and the mean particle diameter is 0.25 mm. The
dynamic viscosity is 0.89 cP and the density is 998 kg/m’.

Calculate the flow rate per square metre of area.
SOLUTION

The pressure difference across the sand bed is assumed to be the head of water since
atmospheric pressure acts on top of the water and at the bottom of the bed.

' 120 mm

¥

&

150 tmm
r

First convert the head into pressure difference.

Ap = pg(h, —h;) ={0—-(998 x9.81 x 0.12)} =-1174.8 Pa.

The length of the bed (L) is 120 mm.

Assume that dp/dx = Ap/L The dynamic viscosity is 0.89 x 10~ Ns/m’.

Using the Carman- Kozeny equation where the pressure gradient is assumed to be
linear.

dp _ 180pu(l-g)’

dx dze’
dp 11748 _ 180x0.89x10° u(1-0.4)°
dx 0.12 0.25x10°x 0.4°

7832.3 =14418000u
u=0.543x10"m/s

Q =0.543x10"m" /s per square meter of area.




WORKED EXAMPLE No.2

Calculate the flow rate through a filter 70 mm outside diameter and 40 mm inside
diameter and 100 mm long given that the pressure on the outside is 20 kPa
greater than on the inside. The mean particle diameter d is 0.04 mm and the void

fraction is 0.3. The dynamic viscosity is 0.06 N s/m2.
SOLUTION

The flow is radial so -dp/dx = dp/dr since radius increases in the opposite sense
to x in the derivation. The equation may be written as :

dp  180uu(l-¢)’

dx dle’

r is the radius. Putting in values:

dp _180x0.06u(1-0.3)’

———=122.5x10"u
dr 0.00004°x0.3

Consider an elementary cylinder through which the oil flows. The velocity
normal to the surface is

o2 __ @
27Lr  2mx0.1xr

=1.5910r""

hence:
dp=122.5x109%x1.591Qr-1 dr=194.8975Qr-l dr

Integrating between the outside and inside radius yields:

R
p= 194.89an( Rﬂ}

i

p = 20000 = 194.89an(;—3)

0=183.3x10°m’ /s =183.3mm’ / s




SELF ASSESSMENT EXCERCISE No.1

Q.1

Outline briefly the derivation of the Carman-Kozeny equation.
dp _ 180uu(l-¢)’

dl de’
dp/dl is the pressure gradient, p is the fluid viscosity, u is the superficial velocity,
ds is the particle diameter and ¢ is the void fraction.

A cartridge filter consists of an annular piece of material of length 150 mm and

internal diameter and external diameters 10 mm and 20 mm. Water at 250C flows
radially inwards under the influence of a pressure difference of 0.1 bar.

Determine the volumetric flow rate. (21.53 cm3/s)

For the filter material take d = 0.05 mm and € = 0.35.
n=0.89 x 10-3 N s/m2 and p=997 kg/m3.

Q.2

(a) Discuss the assumptions leading to the equation of horizontal viscous flow

2
through a packed bed ap = —w

dL die
where Ap is the pressure drop across a bed of depth L, void fraction € and
effective particle diameter d. u is the approach velocity and p is the viscosity of]

the fluid.

(b) Water percolates downwards through a sand filter of thickness 15 mm,
consisting of sand grains of effective diameter 0.3 mm and void fraction 0.45.
The depth of the effectively stagnant clear water above the filter is 20 mm and the
pressure at the base of the filter is atmospheric. Calculate the volumetric flow rate

per m2 of filter. (2.2 dm3/s)

(Note the density and viscosity of water are given in the instructions on all exams
papers)
n=0.89 x 10-3 N s/m2 and p= 997 kg/m3




Q3.

Oil is extracted from a horizontal oil-bearing stratum of thickness 15 m into a
vertical bore hole of radius 0.18 m. Find the rate of extraction of the oil if the
pressure in the bore-hole is 250 bar and the pressure 300 m from the bore hole is
350 bar.

Take d=0.05 mm, &= 0.30 and p = 5.0 x 10~ N s/m2.




FLUID MECHANICS

TUTORIAL No.5

POTENTIAL FLOW

In this tutorid you will study the flow of ideal fluids. On completion you should be able
to do the following.

= Define the stream function.

» Definethe velocity potentid.

» Understand the flow of an ideal fluid around along cylinder.

» Understand the main points concerning vortices.

An ided fluid has no viscosity (inviscid) and is incompressible. No such fluid exists but
these assumptions make it possible to produce models for the flow of fluids in and
around solid boundaries such as long cylinders. In particular, the concepts of
POTENTIAL FLOW and STREAM FUNCTION give us useful mathematical models to
study these phenomena.
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1 STREAM FUNCTION

Condder the streamlines representing a 2 dimensiond flow of a perfect fluid.

Figure 1

Flux is defined as the volume flow rate per metre depth norma to the page. The stream function is defined as
the flux across the line O -P. The symbol used isy (ps). Since there is no flow rate normd to astream line,
then it follows that the stream function is the same between O and any point P, P or P' on the same stream
line. In other words, the stream line represents a constant vaue of the stream function.

It is eeder to understand y in terms of smdl changes. Consider a short line of length ds perpendicular to a
gream line. Let the velocity across this line have a mean vaue of v'. The flux crossng this line is hence vids and

thisisthe smdl change in the sream function dy . It follows that dy =v'ds
Y+ dy
f 3
‘i,i"l » ds
¥ Uf'r
Figure 2

In thisanalys's, the stream function is positive when it crosses the line in an anti- clockwise direction (right to left
on the diagram). This is quite arbitrary with some publications usng clockwise as positive, others usng anti-
clockwise.
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The stream function may be expressed with Cartesian or polar co-ordinates. The convention for velocity is that
we use v for velocity in the y direction and u for velocity in the x direction. Consder a smdl flux entering a
triangular area as shown. The fluid is incompressible so the volume per unit depth entering the area must be
equd to that leaving. It follows thet for aflux in the direction shown

dy +udy=vdx anddy =v'ds
¥a \\\\1EEH
\u N| "~-I-‘r+I:j""I"r
U
i chy \i ds,\v.

|t

¥
1
e X
Figure 3
If the stream lineis horizontd V' is velocity u and dsis dy hence u=-dy /dy
If the sream isverticd then v'isv and dsis dx hence v = dy /dx

When polar co-ordinates are used the flow directions are radia and tangentid.

If the flow isradid and g = O, then v' becomes v, and dsisr dg.

-
rdg
If the flow istangentia and g = 900 then v' becomes v, and dsis dr hence
7
Todr

Figure4

The sgn convention agrees with the stream function being pogtive in adirection from right to | eft.
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2VELOCITY POTENTIAL

The veocity potentid hasasymboal f . It is best explained as follows.

Consder aline dong which the velocity v' varies. Over a short length ds the velocity potentid varies by of .
Hence df =vds or V' =d /ds The veocity potentiad may be thought of as the product of velocity and
length in the same direction. It follows that

f=ao'ds
Some text books use a Sgn convention opposite to this and again thisis arbitrary.

If the lineis horizonta V' is velocity u and dsis dx hence u= %
If thelineis vertical then v/ isv and dsis dy hence v=a
dy
If theflow isradid then V' isvR and dsisdr hence Vg =2f—
;
If the flow i tangential then ' isvT and dsisr dq hence v =%

The sign convention is pogitive for increasing radius and pogtive for anti- clockwise rotation.

Since V' is zero perpendicular to a stream line it follows that lines of constant f run perpendicular to the stream
lines. If these lines are superimposed on a flow we have aflow net.

Congder aflow with linesof conganty and f as shown.

¢

Hgure 5
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When we compare the velocity equationsin terms of the stream function and the velocity potential we find :

3UNIFORM FLOW

If the flow has a congtant velocity u in the x direction and a uniform

¥ depth of 1 m then, the stream function is obtained from equation 1
+ andis y =-wy

—_—»

R From equation 3,

-  u

— df _ d(-uy) _ d(-ursmq):ucosq

—* dr rdg rdg

L 4
Figure 6

4. SOURCE AND SINK

A line source is a single point Im deegp from which fluid appears and flows away radidly. A linesnk isasngle

point 1m deep a which flow disappears.
The flow rate through any circle centred on the
source or SNk must be the same  View on top a dl radii. All
radii are stream lines. of a source

STREAM FUNCTION
Consider a source a point A with aflow emerging 1 m deep at arate of Q m3/s. Atradiusr the radia velocity
is Qlarea = Q/2pr = vg. FHux outwards is taken as pogtive. Some texts use the opposite sign convention.

At radiusr the stream function is defined as dy =vgrds
dsisatiny arc. dy =(Q/2pr)ds

a D.JDUNN



Note that text books and examiners often use m for the strength of the source and this hasthe same meaning as
Q. A snk isthe exact opposite of asource

dy =-(Q/2pr)dsforasnk. ds=rde
r
The arc subtends an angledq and ds=r dq de : r
A
Figure8
dy = irdq = gdq for asource. dy =- &rdq =- gdq for asnk
2pr 2p 2pr 2p
For afinite angle g these become Y =%q for a source.
Y =- gq for agnk.
X
VELOCITY POTENTIAL
Now congder alength in the radid direction.
_ dr
ds=dr
At radiusr the velocity potentid is defined as =]
df =v,dr 8
A
Figure 9
This becomes df :%dr for asource
df =- &dr for asnk.
2pr
To find the expression for alength of oneradius, we integrate with respect torr.
f :glnr for asource
2p
f=- gInr forasnk.
2p

From the preceding it may be deduced that the streamline are radid lines and the lines of congtant f are
concentric circles.
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5 DOUBLET

A doublet is formed when an equd
snk ae brought close together.
source and sink of equa strength placed
regpectively. The sream function for
relativeto A and B are respectively

v, =22

= —(, for the source

Yp=- gqlfor the Snk
2p 1

YP=YB+YA=%(q2'q1) A b

source and a

Consider

a

a A and B

point

Asb® 0,b*> ® 0and the tan of the angle becomes the same ashe angle itsdf in radians.

Figure 10
Referring to the diagram
__y __y
tang, = +IO,tanq2 5
tanqg, - tanq,
tan(a, - )= T2 o @ng,
X-b)- yix+Db
an(g, - q,)= L Bl ybxeD)
1+
x% - b?
__ 2by
tan(a, - ql)—m
2by
(a, - ql)zxz—_'_yz
y = Qe 2by U
 2pg Ex +y2 2l

When the source and sink are brought close together
DOUBLET but b remainsfinite.
_ __ By
Let B =(Qb/p) Y = Xty
Sncey =rsng andx2 +y2=r2 then

Brsng _Bsnq
Y = > =

r r

y = 0isthe greamline across which thereis no flux

circle so it can be used to represent a cylinder.

a D.JDUNN
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6. COMBINATION OF UNIFORM FLOW AND SOURCE OR SINK

For this development, consder the case for the source at the origin of the X —y co-ordinates with a uniform
flow of veocity u from left to right. The development for a sink in a uniform flow follows the same principles.
The uniform flow encounters the flux from the source producing a pattern as shown. At large vaues of x the
flow has become uniform again with velocity u. The flux from the source is Q. this divides equaly to the top
and bottom. At point s there is a stagnation point where the radiad velocity from the source is equa and
opposite of the uniform velocity u.

The radid veocity is Q/2pr. Equating to u we have r = Q/2pu and thisis the distance from the origin to the
gtagnation point.

For uniformflow Y ; =-uy ForthesourceY ;= Qg/2p. ThecombinedvdueisY =-uy + Qqg/2p

The flux between the origin and the stagnation point S is hdf the flow from the source. Hence, the flux is Q/2
and the angle q is p radian (180°). The dividing streamline emanating from S is the zero sreamline Y = 0.
Since no flux crosses this streamling, the dividing streamline could be a solid boundary. When the flow is
uniform, we have:

Y =0=-uy+Qq/2p =-uy + Qp/2p y=-uy+ Q2 y=Q/2u

y is the distance from the x axis to the zero stream line where the flow is uniform (at large vaues of x). The
thickness of the uniform stream emerging from the sourceist = 2y.
Hence t =Q/u.

/ Dividing
/—streamline

=0

Dividing
strearmling

=002

FHgure 12
PRESSURE
Congder points S and A. At S there is a pressure ps and no velocity. At point A there is a velocity v, and
pressure pa. Applying Bernoulli between these points, we have:
Ps=Pa+T1 VAR
Ps- Pa =T VA2
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To solve the pressure difference we need to know the velocity. At point A we can solve this as follows. The
velocity isthe resultant velocity of the uniform flow u and the radid veocity from the source vr.

VA
YR

-
n

Figure 13
VA2 = l.12 + VR2
Thesreamlineat point AisY =0hence0=-uy + Qu/2p hencey = Qg/2pu
At thispoint q=p/2(90°) soy = Q/4u
Thisisthe disance to point A dong they axis.
Vr = Q/2pr. Theradius at point A is Q/4u hence vr = 2u/p
vaZ = U + (2ulp)? = U {1 +4/p?}
Ps- Pa =T Va22=(r#2) {1 +4/p?}

WORKED EXAMPLE No.1

A uniform flow of fluid with a dengity of 800 kg/n is from left to right with aveocity u =2 m/s It is
combined with a source of strength Q = 8 n¥/s a the origin. Caculate:

=

The distance to the stagnation point.

The width of the flow stream emanating from the source when it has reached a uniform Sate,

3. The pressure difference between the stagnation point and the point where the zero streamline crossesthey
axis.

N

SOLUTION

From the preceding work

Distance to stagnation point = Q/2pu = 8/(2p x 2) = 2/p metres
t=Qu=8/2=4m

Ps- Pa = (rU7/2) {1 +4/p?

P - Pa = (800 x 22/2){1 + 4/p?}

Ps - Pa = 1600(1.405) = 2248 N/n?
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If asnk isplaced at the origin, the flow paitern islike this.

2

Dividing N\
S

t - s y=g

- = K

Dividing " ﬁ %

The andydsissmilar and yieds the same result.

7. ELOW AROUND A LONG CYLINDER

When anided fluid flows around along cylinder, the stream lines and velocity potentias form the same pattern

as adoublet placed in a congtant uniform flow. It follows that we may use a doublet to study the flow pattern

around a cylinder. The result of combining adoublet with auniform flow at velocity u is shown below.

I | [ ] | I
D

| T 1 1 T
Figure 15
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Consder a doublet at the origin with a uniform flow
right. The stream function for point p is obtained by
functions for adoublet and a uniform flow.

For adoublet is y =Banghk
For auniform flow y =-uy.
For the combined flow isy = Bdng/r- uy

4

left to
the

from
adding

¥

Figure 16

Where B = (Qb/p) From the diagram we have y = r Sng @d subgtituting this into the stream function gives

_ Bdangq . _aB 0.
Y = -ursng =¢—- ur<angq
r er %]
dYy e B 0.
— =C¢—-- uidn
dr grz 2 g ©)
Y:Ed—s-urgcosq (6)
er a

The equation isusudly given in theform

Y =g§- Argcosq where A =u
er

7]

The stream functions may be converted into velocity potentials by use of equations 3 and 5 or 4 and 6 as

follows.

Equation 4

a D.JDUNN
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11

- gd_B Ar?drcosq :ri

ar I dr
- geEz+A9drcosq =df
er 2

(?E+Argcosq =f
er 2



At any given point in the flow with co-ordinatesr,q the velocity has aradid and tangentia component. The true
velocity vy isthe vector sum of both which, being at aright angle to each other, is found from Pythagoras as

— 2 2
Vq _"'VR +Vv:

From equation 3 and 4 we can show that

iR* U
VR=-U’R—2-1’OOSC] ............ (7)
Y
iR*> U,
V; =-Uj— +1lydng............ (8
17 b

R istheradius of the cylinder. From these equations we may find the true velocity a any point in the flow.

WORKED EXAMPLE No. 2

The velocity potentid for an ided fluid flowing around along cylinder is given by

iB U

{—+ Arycosqg =f

e Ay

The cylinder has aradius R and is placed in a uniform flow of velocity u, which affects the velocity near to
the cylinder. Determine the congtants A and B and determine where the maximum velocity occurs.

SOLUTION

The vaues of the congtants depend upon the quadrant sdlected to solve the boundary conditions. Thisis
because the sign of the tangentia velocity and radid velocity are different in each quadrant. Which ever one
is used, the find result isthe same. Let us sdlect the quadrant from 900 to 1800°.

At alarge distance from the cylinder ard at the 900 position the velocity is from left to right so at this point
V; = -U. From equétion 4 we have

df
Vi =— — 1
rdg YT
f-1B LAl 0o
=[—* Arycosq
() %
sz-liE+Arusinq
rir %
vT:-%%+Ausinq
1r %

a D.JDUNN
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Putting r = infinity and q = 900 and remembering that +vr is anticlockwise +u is l€ft to right, we have
Ve =-u=- 1rE+A%an—-{O+A}xl
|
Hence v, = -A =-u 0 A = u asexpected from earlier work.

At angle 1800 with r = R, the velocity is only radid in directions and is zero because it is arrested.

From equetion 3 we have Vg = a 8e E + A—cosq

dr
Puttingr = Rand v, = 0 and q = 180 we have

O:§£2+A9(—1)
e

0= EEEZ-A—
%]
B 2
PutA=u 0=—-u B=uUR
R

Substituting for B = uR? and A = u we have

2

iB 9] 1uUR
f ={—+Arycosg =i
L
At the surface of the cylinder r = R the velocity potentid is

i
+ urgcosq

f :{uR+uR}cosq = 2uRcosq

The tangentiad velocity on the surface of the cylinder is then

Vy =i=-|lEz+Aus'nq
rdg Tr %
TurR? | U

Vy = - +uysng
ORE

V; =-2usng

Thisisamaximum a g 2 900 where the Streamlines are closest together so the maximum velocity is 2u on
the top and bottom of the cylinder.

a D.JDUNN
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WORKED EXAMPLE No.3

The potentid for flow around acylinder of radius ais given by
a’ l‘J
x? + y

where X and y are the Cartesan co-ordinates with the origin a the middie. Derive an expresson for the
sreamfunctiony .

f = ux§1+

SOLUTION

First convert from Cartesian to polar co-ordinates.
X2 + y2 = r2 X=r COS:]

f =ur cosqgl
e
a

Y

Now change back to Cartesian co-ordinates

é a’ é a’ u
Y =ura anqg =u

Sy e

4 D.JDUNN
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8. PRESSURE DISTRIBUTION AROUND

The veocity of the main stream flow is u and the pressure is p'. When it flows over the surface of the cylinder
the pressure is p because of the change in velocity. The pressure changeisp - p'.

The dynamic pressure for astream isdefined as 1 L2/2

The pressure digtribution is usualy shown in the dimensionless form

2(p- p')/(rud)

For an infinitely long cylinder placed in a stream of mean velocity u we gpply Bernoulli's equation between a

point well away from the stream and a point on the surface. At the surface the velocity is entirely tangentia so :
P+ rud/2=p+ rv.22

From the work previous this becomes

p+ ru2/2=p+ r(usng)2/2
p-p = 12 - (r12)(4u?sn2q) = (r u2/2)(1 - 4n2q)
(p- P)(rwd/2)=1-4€nZq

If this function is plotted againg angle we find that the digtributio n has a maximum vaue of 1.0 at the front and
back, and aminimum vaue of -3 at the Sides.

(p-plou2)

1.0
\ ) /W
>

-3.0

Figure 17

a D.JDUNN
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9. THE FLOW OF REAL INCOMPRESSIBLE FLUIDSAROUND A CYLINDER

Thisis covered in detall in tutorid 3. When the fluid isred, it has viscogity and whereiit flows over asurface a
boundary layer is formed. Remember a boundary layer is the thickness of the layer in which the velocity grows
from zero a the surface to amaximum in the main stream.

When the fluid flows around a cylinder, the tangentia velocity reaches a theoretica maximum on the top edge.
This means the vel ocity increases around the leading edge. The flow may be laminar or turbulent depending on
conditions. If it remains laminar, then the boundary layer gets thinner as shown below. A point may be reached
where the layer thickness is reduced to zero and then it actually becomes reversed with eddies forming as
shown. At this point the boundary layer separates from the surface and awake is formed.

O

Figure 18

Research shows that the drag coefficient reduces with increased stream veocity and then remains constant
when the boundary layer achieves separation. If the mainstream velocity is further increased, turbulent flow sets
in around the cylinder and this produces a marked drop in the drag. This is shown below on the graph of Cp
agang Reynolds's number. The point where the sudden drop occurs is a a critical vaue of Reynolds's
number of 5 x10P.

‘o

L

;U“'

1'04 55 10°
Figure 19

The drag coefficient isdefined as:  Cp = Drag Forcelr A(u2/2)

where A isthe areanorma to the flow in cases such asthis.

The student should read up details of boundary layer formation, wakes and separation as this work is only a
brief description of what occurs.

a D.JDUNN
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WORKED EXAMPLE No.4

Water flows around a cylinder 80 mm radius. At large distances from the cylinder, the velocity is 7.5 nv/s
in the x direction and the pressure is 1 bar. Find the velocity and pressure at the point x =-90 mmand y =
20 mm. The velocity and stream functions are as given in the last example,

SOLUTION

Vi, = UR2/r2 - 1] coxyy

v, =U[1+R2/r sinq

changing the co-ordinates into angle we have
q = tar 1(y/x) = 167.50

R=0.08 m u=75ms
r=02+y2)V2=9219mm

Vi, = 7.5[0.082/0.0922 - 1] c0s167.50
v, = 1.785m/s

v, = 7.5[1 + 0.082/0.0922 ] sin167.50
v, =2.85m/s

The true velocity is the vector sum of these two so
v = (1.7852 + 2.852)1/2 = 3.363 m/s

Applying Bernoulli between the maingtream flow and this point we have
1 x 105/r g + 7.52/2g = pir g + 3.3632/2g

p=122.47 kPa

a D.JDUNN
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SELF ASSESSMENT EXCERCISE No.1

1.a Show that the potentia function f = A(r + B/r)cosq represents the flow of an ided fluid around along
cylinder. Evduate the congants A and B if the cylinder is 40 mm radius and the velocity of the main
flow is3m/s. (A =3 m/sand B = 0.0016)

b. Obtain expressons for the tangentia and radid velocities and hence the stream function y .

c. Evduate the largest velocity in the directions parald and perpendicular to the flow direction. (6 m/s for
tangentia veocity)

d. A smdl neutrdly buoyant particle is released into the stream at r = 100 mm and g = 1500. Determine
the distance at the closest gpproach to the cylinder. (66.18 mm)

2.a. Show that the potentid function f = (Ar + B/r)cosq givesthe flow of anided fluid around a cylinder.
Determine the congtants A and B if the velocity of the main stream is u and the cylinder isradius R.

b. Find the pressure distribution around the cylinder expressed in the form
(p- P)/(r W/2) asafunction of angle.

c. Sketch the relationship derived above and compare it with the actua pressure profiles that occur up to
aReynolds number of 5 x 10P.

3. Show that in the region y>0 the potentid function
f =alnx@ + (y-¢)2 ] + aln [x2 + (y+c)2] gives the 2 dimensiona flow patern associated with a
source distance ¢ above a solid flat plane at y=0.

b. Obtain expressons for the velocity adjacert to the plane & y = 0. Find the pressure distribution along
this plane.

c. Derive an expresson for the stream function f .
4, A uniform flow hasasink placed init a the origin of the Cartesan co-ordinates. The stream function of
theunifoomflow andsnkare  y ;=Uy and y ,=Bq
Write out the combined stream function in Cartesian co-ordinates.

Given U=0.001 m/s and B= -0.04 m?/3 per m thickness, derive the velocity potentid.

Determine the width of the flux into the Snk a a large distance upstream.
(Ans. 80p m)

a D.JDUNN
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10. VORTICES

10.1 CIRCULATION

Congder a gream line that forms a closed loop. The velocity of the streamline a any point is tangentia to the
radius of curvature R. the radius is rotating a angular velocity w. Now congder a smadl length of that

sreamlineds.

v

Figure 20

Thecirculdionisdefined assK = v, ds and the integration is around the entire |oop.

Subdtituting v =wR ds=Rdq
K = &vR2dq Thelimitsare 0and 2p
K = 2pwR2

Interms of v K=2pv.R

10.2 VORTICITY
Vorticity isdefinedas G= a7 dJA where A isthe area of the rotating dement.

The area of the dement shown in the diagram isasmdl sector of arc ds and angle dg.
aa=29pre =294
2p

2
dg
A= R —
o} 2
2
d
G:OIVF:d(?:ZW at any point.
Oy

It should be remembered in this smplistic approach that w may vary with angle.

a D.JDUNN
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10.3 VORTICES

Congder acylindrica mass rotating about a vertical axis. The streamlines form concentric circles. The angular
velocity of the dreamlines are the same at dl radii for aforced vortex , but varies with radius for a free vortex.

Condder asmdl annular dement between two streamlines. The streamlines are so close that the circumference
of each isthe same and length 2pr. Let the depth be dh, asmal part of the actua depth.

i dr
ptdp | n4du
—- - '
T

Figure 21

The vdocity of the outer Sreamlineisu + du and the inner sreamlineis u. The pressure a the inner sreamline
is p and a the outer streamline isp + dp.

Themass of thedementisr 2pr dhdr

The centrifugal force acting on the massisr 2pr dh dr W/

It must be the centrifugd force acting on the element that gives rise to the change in pressure dp. It follows that

dp2prdh=r2prdndr W/r and dpr = wdrir

Changing pressureinto head dp=rgdh so dh/dr= L?/gr

The kinetic head a the inner streamline is L2/2g

Differentiating w.r.t. radius we get u duw/(g dr)

The total energy may be represented as a Head H where H = Totd Energy/mg

The rate of change of energy head with radius is dH/dr. It follows that this must be the sum of the rate of
change of pressure and kinetic heads so

dH/dr = W/gr + u du/(g dr)

a D.JDUNN
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10.3.1 FREE VORTEX

A free vortex is one with no energy added nor removed so dH/dr = 0. It is dso irrotationa which means that
dthough the streamlines are cirde and the individud molecules orbit the axis of the vortex, they do not spin.
This may be demongrated practicdly with a vorticity meter thet is a float with a cross on it. The cross can be
Seen to orbit the axis but not spin as shown.

FHgure 22

Sincethetota head H isthe same at dl radii it follows the dH/dr = 0. The equation reduces to
u'r +du/dr=0
dr/r + duiv =0
Integrating Inu+Inr=Condant
In (ur) = congtant
ur=C
Note that a vortex is positive for anti-clockwise rotation. C is the strength of the free vortex with unitsof m2/s

10.3.2 STREAM FUNCTION FOR A FREE VORTEX

The tangentia velocity was shown to be linked to the stream function by

dy = v dr
Substituting v, = C/r
dy =Cdr/r
Suppose the vortex has an inner radius of aand an outer radius of R.

Y=Cadal/r= CIn(R/@

10.3.3 VELOCITY POTENTIAL FOR A FREE VORTEX

The velocity potentia was defined in the equation df =v_r dq
Subdtituting v, = Clr and integrating.

f = o(C/rdq
Over thelimitsOto q we have

f = Cq

a D.JDUNN
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10.34 SURFACE PROFILE OF A FREE VORTEX

It was shown earlier that dhdr = LP/gr where histhe depth. Substituting u=C/r we get
dh/dr = Cgr®
dh=C?g dr/g
Integrating between asmdl radiusr and large radius R we get
h, — hy = (C¥2g)(UR? — 1/r?)

Plotting h againgt r produces a shape like this.

Hgure 23
10.35 FORCED VORTEX

A forced vortex is one in which the whole cylindrica mass rotates a one angular velocity w. It was shown
earlier that dH/dr = L?/gr + u du/(g dr) where hiisthe depth. Subgtituting u = wr and noting du/dr =w we have

dH/dr = (wr)2/gr + wPr /g
dH/dr = 2w2rig

Integrating without limits yieds

H=w2ré/g +A
H was adso given by
H=h+ /29 =h+w2rZ/2g
Equating we have
h=w2r2i2g + A
Atradiusr  h =w2r2/2g + A
AtradiusR h=w2RZ2/2g + A

hp - hy =(W2/2g)( R2- r2)

a D.JDUNN
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This produces a parabolic surface profile like this.

Fgure 24

WORKED EXAMPLE No.5

A free vortex of drength C is placed in a uniform flow of veocity u. Derive the stream function and
velocity potentid for the combined flow.

SOLUTION

The derivation of the stream function and velocity potentid for a free vortex is given previoudy as
Y =CIn(r/ andf=Cqg

The corresponding functions for a uniform flow are

Y =-uy=-urdnq and f = urcosq
Combining the functions we get

Y =CIn(r/d- ursnq
f =Cq + ur cosq

a D.JDUNN
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WORKED EXAMPL E No.6

The strength of a free vortex is 2 mé/s and it is placed in a uniform flow of 3 m/sin the x direction. Calculate
the pressure difference between the main stream and a point a x= 0.5 and y=0.5. The density of thefluid is
997 kg/ms.

SOLUTION

The velocity of the combined flow at this point is Vo Thisthe vector sum of theradia and tangentid velocities
S0

iy 2 12
Vg = {v, + VRZ}

C=2 u=3
v, =df /dr =ucosq
v, =dY /dr=Clr - usnq

AtpointA q=90° R=05 vR=0 hencev. =7 m/s andv,, =7m/s

AtpointB q=00 R=05 vgr=3m/s hencev, =4m/sand v g =5m's
The maingream pressure is p and the velocity is u.

Apply Bernoulli between the main stream and point A .
p+ ru2/2=pA+ rv. .22
gA

Apply Bernoulli between the main stream and point B .
P+ rui2=py+ rv 2R

The pressure differenceis then
Py - Py = (F/2{v 42~ v, 2} =-11964 Pascal

a D.JDUNN
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WORKED EXAMPLE 7

A rectangular channel 1 m deep carries 2 /s of water around a 90° bend with an inner radius of 2 m and
outer radius of 4 m. Treating the around the bend as part of a free vortex, determine the differencein levels
between the inner and outer edge.

SOLUTION

Free vortex ur = C nt/s
y =CIn(Rf)

y = Fux = Flow/depth = 2 n?/s and this must be the same across any radia line on the bend.
Putingr=2mandR=4m

Cln(4/2) =2 henceC=2.885

y =2885In(R/r)

The surface profile of afree vortex is h, —hy = (C%/2g)(1/r2 — 1/r,?)

Let theingde leve of the bend be 0 so hy isthe change in leve over the bend.

h, = {(2.885)%/20)} (1/2? — 1/4%) = 0.08 m
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SELF ASSESSMENT EXERCISE No.2

1. Ddfinethefollowing terms.
Stream function.
Vdocity potentid function.
Streamline
Stream tube

Circuletion
Vorticity.

2. Afreevortex of with circulation K = 2p vrR is placed in auniform flow of veloaity u.
Derive the stream function and velocity potentia for the combined flow.

The circulation is 7 mé/s and it is placed in a uniform flow of 3 nVs in the x direction. Cdculate the
pressure difference between a point at x= 0.5 and y=0.5.

The density of the fluid is 1000 kg/m3.

(Ans. 6695 Pascal)
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APPLIED FLUID MECHANICS

TUTORIAL No.6

DIMENSIONAL ANALYSIS

When you have completed this tutorial you should be able to do the following.

©D. J. Dunn

Explain the basic system of dimensions.

Find the relationship between variables affecting a phenomenon.
Define and use dimensionless numbers.

Solve problems by the use of model tests.

Solve typical exam questions.



1. BASIC DIMENSIONS

All quantities used in engineering can be reduced to six basic dimensions. These are
the dimensions of

Mass

Length

Time

Temperature
Electric Current
Luminous Intensity

“—o A4z

The last two are not used in fluid mechanics and temperature is only used sometimes.

All engineering quantities can be defined in terms of the four basic dimensions M,L,T
and 6. We could use the S.I. units of kilogrammes, metres, seconds and Kelvins, or
any other system of units, but if we stick to M,L,T and 0 we free ourselves of any
constraints to a particular system of measurements.

Let's now explain the above with an example. Consider the quantity density. The S.1.
units are kg/m’ and the imperial units are 1b/in’. In our system the units would be
Mass/Length® or M/L’. It will be easier in the work ahead if we revert to the inverse

.o ) o 3
indice notation and write it as ML .

Other engineering quantities need a little more thought when writing out the basic
MLTO dimensions. The most important of these is the unit of force or the Newton in
the S.I. system. Engineers have opted to define force as that which is needed to
accelerate a mass such that 1 N is needed to accelerate 1 kg at 1 m/s”. From this we
find that the Newton is a derived unit equal to 1 kg m/ s”. Tn our system the dimensions

of force become MLT . This must be considered when writing down the dimensions
of anything containing force.

Another unit that produces problems is that of angle. Angle is a ratio of two sides of a
triangle and so has no units nor dimensions at all. This also applies to revolutions
which are angular measurements. Strain is also a ratio and has no units nor
dimensions. Angle and strain are in fact examples of dimensionless quantities that will
be considered in detail later.
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WORKED EXAMPLE No. 1

Write down the basic dimensions of pressure p.
SOLUTION
Pressure is defined as p = Force/Area

The S.L unit of pressure is the Pascal which is the name for 1N/m”.
Since force is MLT-? and area is L? then the basic dimensions of pressure are
ML'T-?
When solving problems it is useful to use a notation to indicate the MLT dimensions
of a quantity and in this case we would write

[p]=ML"T~

WORKED EXAMPLE No.2

Deduce the basic dimensions of dynamic viscosity.
SOLUTION
Dynamic viscosity was defined in an earlier tutorial from the formula t= pdu/dy

T, is the shear stress, du/dy is the velocity gradient and p is the dynamic viscosity.
From this we have u =1 dy/du

Shear stress is force/area.
.. ) 2
The basic dimensions of force are MLT
.. ) 2
The basic dimensions of area are L.

. . . 1.2
The basic dimensions of shear stress are ML T .
The basic dimensions of distance y are L.

The basic dimensions of velocity v are LT .
It follows that the basic dimension of dy/du (a differential coefficient) is T.

The basic dimensions of dynamic viscosity are hence ( ML T_z)(T) -ML'T .

[w=ML" T
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2. LIST OF QUANTITIES AND DIMENSIONS FOR REFERENCE.

AREA
VOLUME

VELOCITY
ACCELERATION
ROTATIONAL SPEED
FREQUENCY

ANGULAR VELOCITY
ANGULAR ACCELERATION
FORCE

ENERGY

POWER

DENSITY

DYNAMIC VISCOSITY
KINEMATIC VISCOSITY
PRESSURE

SPECIFIC HEAT CAPACITY
TORQUE

BULK MODULUS

©D. J. Dunn

(LENGTH)2

(LENGTH)3

LENGTH/TIME
LENGTH/(TIME?2)
REVOLUTIONS/TIME
CYCLES/TIME
ANGLE/TIME
ANGLE/(TIME)2

MASS X ACCELERATION
FORCE X DISTANCE
ENERGY/TIME
MASS/VOLUME
STRESS/VELOCITY GRADIENT
DYN. VISCOSITY/DENSITY
FORCE/AREA
ENERGY/(MASS X TEMP)
FORCE X LENGTH
PRESSURE/STRAIN



3. HOMOGENEOUS EQUATIONS

All equations must be homogeneous. Consider the equation F =3+ T/R
F is force, T is torque and R is radius. Rearranging we have 3 =F - T/R

Examine the units. F is Newton. T is Newton metre and R is metre.

hence 3=F (N)-T/R (N m)/m)
3=F(N)- T/R(N)

It follows that the number 3 must represent 3 Newton. It also follows that the unit of F
and T/R must both be Newton. If this was not so, the equation would be nonsense. In
other words all the components of an equation that add together must have the same
units. You cannot add dissimilar quantities. For example you cannot say that 5 apples
+ 6 pears = 11 plums. This is clearly nonsense. When all parts of an equation that add
together have the same dimensions, then the equation is homogeneous.

WORKED EXAMPLE No.3

Show that the equation Power = Force x velocity is homogeneous in both S.I. units
and basic dimensions.

SOLUTION
The equation to be checked is P=Fv

The S.I. Unit of power (P) is the Watt. The Watt is a Joule per second. A Joule is a
Newton metre of energy. Hence a Watt is 1 N m/s.

The S.I. unit of force (F) is the Newton and of velocity (v) is the metre/second.
The units of F v are hence N m/s.

It follows that both sides of the equation have S.I. units of N m/s so the equation is
homogeneous.

Writing out the MLT dimensions of each term we have

[P]=ML’T”
[v]=LT"
[F]=MLT”
Substituting into the equation we have ML’ T® =MLT” LT '=ML’T”

Hence the equation is homogeneous.
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4. INDECIAL EQUATIONS

When a phenomenon occurs, such as a swinging pendulum as shown in figure 3.44we
observe the variables that effect each other. In this case we observe that the frequency,
(f) of the pendulum is affected by the length (1) and the value of gravity (g). We may
say that frequency is a function of 1 and g. In equation form this is as follows.

f=¢(l,g) where ¢ is the function sign.
When we remove the function sign we must put in a constant because there is an

unknown number and we must allocate unknown indices to 1 and g because we do
know not what if any they are. The equation is written as follows.

f=Clagb
C is a constant and has no units. a and b are unknown indices.
This form of relating variables is called an indecial equation. The important point here

is that because we know the units or dimensions of all the variables, we can solve the
unknown indices.

WORKED EXAMPLE No.4

Solve the relationship between f, 1 and g for the simple pendulum.

Fig.1
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SOLUTION

First write down the indecial form of the equation (covered overleaf).

f=Clagb
Next write down the basic dimensions of all the variables.
[f]=T
=L
[g]=LT"

Next substitute the dimensions in place of the variables.

=LYy T’y
: ) 1 la b, 2b
Next tidy up the equation. T=L LT

Since the equation must be homogeneous then the power of each dimension must
be the same on the left and right side of the equation. If a dimension does not
appear at all then it is implied that it exists to the power of zero. We may write
them in until we get use to it. The equation is written as follows.

ML = L LT\
Next we equate powers of each dimension. First equate powers of Time.
-1=-2b
b=1/2
Next equate powers of Length.

LOZLlaLb
O=1la+b hencea=-b=-1/2

M =M yields nothing in this case.

Now substitute the values of a and b back into the original equation and we have
the following.

f=C1” g*
f=C(g/)”

The frequency of a pendulum may be derived from basic mechanics and shown to
be

f=(1/2m)(g/N) "
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If we did not know how to find C = (72 ) from basic mechanics, then we know
that if we conducted an experiment and measured the values f for various values
of 1 and g, we could find C by plotting a graph of f against (g/l) *. This is the
importance of dimensional analysis to fluid mechanics. We are able to determine
the basic relationships and then conduct experiments and determine the remaining
unknown constants. We are able to plot graphs because we know what to plot
against what.

SELF ASSESSMENT EXERCISE No.1

1. Tt is observed that the velocity 'v' of a liquid leaving a nozzle depends upon the
pressure drop 'p' and the density 'p'. Show that the relationship between them is of

the form
1

¢

2. It is observed that the speed of a sound in 'a' in a liquid depends upon the density

'p" and the bulk modulus 'K'. Show that the relationship between them is
1

)

3. It is observed that the frequency of oscillation of a guitar string 'f' depends upon
the mass 'm', the length 'l' and tension 'F'. Show that the relationship between

them is
1
=0
ml
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5. DIMENSIONLESS NUMBERS

We will now consider cases where the number of unknown indices to be solved,
exceed the number of equations to solve them. This leads into the use of
dimensionless numbers.

Consider that typically a problem uses only the three dimensions M, L and T. This
will yield 3 simultaneous equations in the solution. If the number of variables in the
equation gives 4 indices say a, b, ¢ and d, then one of them cannot be resolved and the
others may only be found in terms of it.

In general there are n unknown indices and m variables. There will be m-n unknown
indices. This is best shown through a worked example.

WORKED EXAMPLE No. $5

The pressure drop per unit length 'p' due to friction in a pipe depends upon the
diameter 'D', the mean velocity 'v', the density 'p' and the dynamic viscosity 'u'. Find
the relationship between these variables.

SOLUTION
p=function(D vpp) = K D* v’ p¢ p¢
p is pressure per metre

[p] = ML>T*
[D]=L
[v]=LT"
[p]=ML"
[u] =ML'T"

ML2T? =1* (LT (ML) ML) ¢
ML—ZT-Z :La+b—3c—d MC*d T-b-d

The problem is now deciding which index not to solve. The best way is to use
experience gained from doing problems. Viscosity is the quantity that causes viscous
friction so the index associated with it (d) is the one to identify. We will resolve a, b
and c in terms of d.

TIME 2=-b-d hence b=2-d is as far as we can
resolve

MASS l=c+d hencec=1-d

LENGTH -2=a +b-3c -d

2=a+(2-d)-3(1-d)—-d hencea= -1-d
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Next put these back into the original formula.
p= K pld 2 pl-d Hd

Next group the quantities with same power together as follows :

2_-1 -1 -1 -1.d
p=K{pvD } {upp v D}

Remember that p was pressure drop per unit length so the pressure loss over a length
L is

P=KL{pv'D'} {up v'D'}’
We have two unknown constants K and d. The usefulness of dimensional analysis is
that it tells us the form of the equation so we can deduce how to present experimental
data. With suitable experiments we could now find K and d.

Note that this equation matches up with Poiseuille's equation which gives the
relationship as :

p=32ulLv D’
It may be deduced that K =32 and d =1 (laminar flow only)
The term {pvDp-1} has no units. If you check it out all the units will cancel. This is
a DIMENSIONLESS NUMBER, and it is named after Reynolds.

Reynolds Number is denoted Re The whole equation can be put into a dimensionless
form as follows.

-1 -2 1 -1 -1_-1.d
{pp L vD}=K{up v D}
41 21 .
{pp L v D} = function (Rg)

. . . . A2 0, . .
This is a dimensionless equation. The term {pp L v D } is also a dimensionless
number.

Let us now examine another similar problem.
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WORKED EXAMPLE No.6

Consider a sphere moving through an viscous fluid completely submerged. The
resistance to motion R depends upon the diameter D, the velocity v, the density p and
the dynamic viscosity p. Find the equation that relates the variables.

SOLUTION
R = function(Dv pp) = K Da vb pc pd

First write out the MLT dimensions.

[R]= ML'T’
[D]=L ML'T? =La(@LT-1)b (ML) eMmL'T™)d
[V] _ LT—I MLIT—Z -L at+b-3c-d M c+d T -b-d
3
[p] =ML
[W]=ML"T"

Viscosity is the quantity which causes viscous friction so the index associated
with it ( d) is the one to identify. We will resolve a,b and ¢ in terms of d as

before.

TIME -2=-b-d hence b=2-d is as far as we can resolve b
MASS I=c+d hencec=1-d

LENGTH I=a +b-3c -d

l=a+(2-d)-3(1-d)-d hencea=2-d
Next put these back into the original formula.

R= K D2-d V2-d pl-d “d
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Next group the quantities with same power together as follows :

R=K{pv2D2} {p p-lv-1D-1}d
R{szDZ}-l =K {u p—lv-lD-l}d

The term {pvDp-1} is the Reynolds Number Re and the term R{pv2D2}" is
called the Newton Number Ne. Hence the relationship between the variables may
be written as follows.

R{pv’D?*}"! = function {pvD p'}

Ne = function (Re)

Once the basic relationship between the variables has been determined, experiments
can be conducted to find the parameters in the equation. For the case of the sphere in
an incompressible fluid we have shown that

Ne = function (Re)
Or put another way ~ Ne = K (Re)n

where K is a constant of proportionality and n is an unknown index (equivalent to -d
in the earlier lines). In logarithmic form the equation is

log(Ne) = log (K)+ nlog(Re)

This is a straight line graph from which log K and n are taken. Without dimensional
analysis we would not have known how to present the information and plot it. The
procedure now would be to conduct an experiment and plot log(Ne) against log(Re).
From the graph we would then determine K and n.
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6. BUCKINGHAM'S TII (Pi) THEORY

Many people prefer to find the dimensionless numbers by intuitive methods.
Buckingham's theory is based on the knowledge that if there are m basic dimensions
and n variables, then there are m - n dimensionless numbers. Consider worked
example No.6 again. We had the basic equation

R = function (D v p p)

There are 5 quantities and there will be 3 basic dimensions ML and T. This means that
there will be 2 dimensionless numbers 11 and I12. These numbers are found by
choosing two prime quantities (R and p).

I17 is the group formed between pand D v p
17 1s the group formed between R and D v p

First taking p. Experience tells us that this will be the Reynolds number but suppose
we don't know this.

The dimensions of p are ML'T
The dimensions of D v p must be arranged to be the same.
},I, — Hl Da Vb p C

M'L'T! =111 (L)* (LT")® (ML?)*

Time -1=-b b=1
Mass c=1
Length -l=a+b-3c
-l=a+1-3 a=1
w=I; D'v' p! I, =-F-
Dvp

The second number must be formed by combining R with p,v and D
R=1Ip D*V* p°©

MLT” =TTy (L)a (LT )bML>)e

Time -2=-b b=2
Mass c=1
Length 1=a+b-3c
l=a+2 -3 a=2
R=II) D*V* p'! m, =~
2 pV2D2

The dimensionless equation is 112 = f(I111)
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WORKED EXAMPLE No.7

The resistance to motion 'R' for a sphere of diameter 'D' moving at constant
velocity 'v' through a compressible fluid is dependant upon the density 'p' and the
bulk modulus 'K'. The resistance is primarily due to the compression of the fluid
in front of the sphere. Show that the dimensionless relationship between these
quantities is Ng = function (My)

SOLUTION
R = function(Dv pK) = C Da yvb pc Kd

There are 3 dimensions and 5 quantities so there will be 5 —3 = 2 dimensionless
numbers. Identify that the one dimensionless group will be formed with R and the
other with K.

I17 is the group formed between K and D v p
17 is the group formed between R and D v p

K =11, Da vbpc R = II, Da vb pc
[K]=ML" T" [R]= MLT-2
[D]=L [D]=L
[v]=LT" [v]=LT"
3 -3

[p] =ML [p] =ML
ML'T? =L @LT)’ (ML) MLT® =L* (LT (ML)
ML-IT-2 =La+b-3c Mc T-b MLIT-Z =La+b-3c Mc T-b
Time -2=-b b=2 Time -2=-b b=2
Mass c=1 Mass c=1
Length-1=a+b -3¢ Length 1=a+b-3¢c
-1=a+2 -3 a=0 1=a+2 -3 a=2
K=TIIp D°V* p' R=TI] D’v’ p'
I, = Lz I, = %

pv pv'D

It was shown earlier that the speed of sound in an elastic medium is given by the
following formula. a=(k/p)”

It follows that (k/p) = a and so I, = (a/v)’

The ratio v/a is called the Mach number (Ma) so (Ma)™

IT, is the Newton Number Ne.

The equation may be written as IT; = ¢II Ne or Ne= ¢(Map)
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SELF ASSESSMENT EXERCISE No.2

1.

The resistance to motion 'R' for a sphere of diameter 'D' moving at constant
velocity 'v' on the surface of a liquid is due to the density 'p' and the surface
waves produced by the acceleration of gravity 'g'. Show that the dimensionless
equation linking these quantities is Ne = function(Fr)

Fig. 3

2
\%

Fr is the Froude number and is givenby F, = D
g

Here is a useful tip. It is the power of g that cannot be found.

The Torque 'T' required to rotate a disc in a viscous fluid depends upon the

diameter 'D' , the speed of rotation 'N' the density 'p' and the dynamic viscosity
'"u'. Show that the dimensionless equation linking these quantities is :

(TD N p'} = function {pND" p'}
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MORE DIFFICULT PROBLEMS

The problems so far seen have one unknown index in the solution. When there are
two (or more) unknown indexes, the procedure is the same as before. A group of
quantities must be formed for each unknown index left in the penultimate part of the
solution.

SELF ASSESSMENT EXERCISE No.3

1. The resistance to motion 'R' of a sphere travelling through a fluid which is both
viscous and compressible, depends upon the diameter 'D' , the velocity 'v' , the
density 'p' , the dynamic viscosity 'u' and the bulk modulus 'K'. Show that the
complete relationship between these quantities is :

Ne = function{Re } {Ma}
where Ne = R p_1 v:Dp?
Re = pv Dp’

My =v/a and a= (k/p)o'5
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7 MODEL TESTING

When we test a model in order to predict the performance of the real thing, the results
are only valid when the forces acting on the model are in the same ratio to each other
as they are on the real thing. When this occurs we have DYNAMIC SIMILARITY.

It will be shown that in order to have dynamic similarity, the model must also be a
true scale model, in other words we must have GEOMETRIC SIMILARITY.

7.1 DYNAMIC SIMILARITY

We have already seen that certain dimensionless numbers occur in problems of fluid
mechanics. Each of these is associated with a particular kind of force.

The Newton Number Ne is associated with total resistance.

The Reynolds Number Rg is associated with viscous resistance.

The Mach Number Mj, is associated with compression wave resistance.
The Froude Number Fy is associated with surface wave resistance.

There are others and all dimensionless numbers can take various forms. In order to
obtain dynamic similarity, these dimensionless numbers must have the same values on
the model and the real thing. Consider for example the resistance to motion of a
sphere due to viscosity and compressibility of the fluid. The dimensionless equation
is:

Ne = ¢(Re)(Ma)

To ensure that the viscous, compression and resistance forces are in the same ratio to
each other on the model and on the object, then the three numbers must be the same
on both. This is often difficult or impossible to obtain when there are more than three
numbers for reasons which will become apparent.

7.2 GEOMETRIC SIMILARITY

In much of the forgoing work, the work has been about a sphere of diameter D so that
only one actual length dimension was needed to define both the shape and size of the
object. If we tried the same analysis for a submarine or an aeroplane, we should
include all the linear dimensions necessary to define the shape and this would be
enormous. Consider the following problem that needs two linear dimensions and it is
the one we looked at previously in a slightly different way.

The pressure drop p in a pipe depends upon the diameter D, the length 1, the density p
and the viscosity p. Dimensional analysis shows that :

4515

©D. J. Dunn 17



p/(pvz) is a form of the Newton number and (pvD/u) is a form of the Reynolds
number. It could have been arranged for Reynolds number to include I instead of D.

Because we needed two linear dimensions D and 1, we now have another
dimensionless number (I/D) that is the ratio of the two. In a model test this must be
made the same as for the object and if the ratio is the same then geometric similarity
exists.

If many such linear dimensions exist in a problem, then many dimensionless numbers
will be created which are all the possible ratios of any one with all the others. To
avoid all this work, we usually just assume a characteristic length. This is valid when
geometric similarity exists as will become apparent.

We may express our equation as :
[
Ne = ¢| — |[Re
¢( dj( )
Removing the function sign gives :

Ne=K (éJ(Re)n where K is the constant of proportionality.

If we make the value of Re the same on the model and the real object and if we have
geometric similarity , then since the function is the same for both (K and n) then it
follows that the Newton number must be the same also. In other words since

Ne,y . = K(éj(Re)"objm =Ne, ., = K(é)(}{e)”mdd

Then {Ne} object ={Ne } model

From this the resisting force may be predicted. Note that if we had many linear
dimensions and many ratios like 1/D, then they would also cancel so it is not necessary
to include them, just a characteristic length. Let us finish this problem now as a
worked example.
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WORKED EXAMPLE No.8

The pipe in the previous analysis is 200 m long and 0.5 m diameter and must
carry water with a mean velocity of 0.2 m/s. In order to predict the pressure drop,
a model is made to a scale of 1/10. Calculate the velocity at which water must
flow in the model in order to obtain dynamic similarity.

SOLUTION

For this section we must obtain dynamic similarity by equating the Reynolds
numbers. Hence :

(pvD/wW)model = (PvD/Wobject

The density and viscosity will be the same in both since the same water is used so
(vD)model = (VD)object

V model X D/10 =2 x D hence vmodel = 2 m/s

When the model is tested at the velocity, the pressure drop is found to be 100kPa.
Predict the pressure drop in the real pipe.

Since Re is now the same and 1/D is the same for both cases then the Newton
number is the same so

2 2
p/(pv )model =p/(pV pipe

Again density and viscosity cancel so we have
100/2° = p/0.2°

p = 1 kPa on the full size pipe.
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WORKED EXAMPLE No.9a

The resistance to motion R of a hydrofoil depends upon the characteristic length
1, the velocity v, the density p and the acceleration of gravity g.

It may be shown that Ne= f(Fy) where Ne = R/(pvzlz) and Fr = V/(gl)l/2

In order to predict the resistance of a hydrofoil, a model is made to a scale of
1/20. The actual hydrofoil must move at 0.8 m/s over water. Calculate the
velocity of the model that gives dynamic similarity on the same water.

SOLUTION

For dynamic similarity the Froude numbers must be made the same.
12 1/2 .

v/(g) " model =Vv/(gl) (hydrofoil)

V()" model = v/(1)"”(hydrofoil)

vmodel x (20/1)"* =0.8 1"

vmodel =0.8 /20"

vmodel =0.179 m/s

©D. J. Dunn 20




WORKED EXAMPLE No.9b

The model is tested at 0.179 m/s and the resistance to motion was found to be
2.2N. Predict the resistance of the hydrofoil at 0.8 m/s.

SOLUTION

Since the Froude number is the same and the function is the same then the
Newton number must be the same for both.

2.2 2.2
R/(pV 1 )model=w(pv 1 )hydrofoil

Since the density is the same then {2.2x 202/(0.179 1)2}2 {IU(VI)2

R=17570 N
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SELF ASSESSMENT EXERCISE No.4

1. (a) The viscous torque produced on a disc rotating in a liquid depends upon the
characteristic dimension D, the speed of rotation N, the density p and the
dynamic viscosity p. Show that :

2.5 2
{T/(pN'D")} =f(pND"/p)

(b) In order to predict the torque on a disc 0.5 m diameter which rotates in oil at
200 rev/min, a model is made to a scale of 1/5. The model is rotated in water.
Calculate the speed of rotation for the model which produces dynamic similarity.
For the oil the density is 750 kg/m3 and the dynamic viscosity is 0.2 Ns/m’.

For water the density is 1000 kg/m3 and the dynamic viscosity is 0.001 Ns/m2.

(The answer is 18.75 rev/min)

(c) When the model is tested at 18.75 rev/min the torque was 0.02 Nm. Predict
the torque on the full size disc at 200 rev/min. (Ans 5 333 N)

2. The resistance to motion of a submarine due to viscous resistance is given by :

{R/(pv2D2)} =f(pvD/n) where D is the characteristic dimension.

The submarine moves at 8 m/s through sea water. In order to predict its
resistance, a model is made to a scale of 1/100 and tested in fresh water.
Determine the velocity at which the model should be tested. (690.7 m/s)

The density of sea water is 1036 kg/m3

The density of fresh water is 1000 kg/m3

The viscosity of sea water is 0.0012 N s/m’.

The viscosity of fresh water is 0.001 N s/m’.

When run at the calculated speed, the model resistance was 200 N. Predict the
resistance of the submarine. (278 N).
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3. The resistance of an aeroplane is due to, viscosity and compressibility of the
fluid. Show that:

{RA(pv'D")} =f(Ma) (Re)

An aeroplane is to fly at an altitude of 30 km at Mach 2.0. A model is to be made
to a suitable scale and tested at a suitable velocity at ground level. Determine the
velocity of the model that gives dynamic similarity for the Mach number and then
using this velocity determine the scale which makes dynamic similarity in the
Reynolds number. (680.6 m/s and 1/61.86)

The properties of air are

sea level a=340.3 m/s n=1.7897 x 10~ p=1225keg/m’
30 km a=301.7 m/s u=1.4745x 10" p=0.0184 kg/m’

When built and tested at the correct speed, the resistance of the model was 50 N.
Predict the resistance of the aeroplane. (2 259 N).

4. The force on a body of length 3 m placed in an air stream at 1 bar and moving at
60 m/s is to be found by testing a scale model. The model is 0.3 m long and
placed in high pressure air moving at 30 m/s. Assuming the same temperature and

viscosity, determine the air pressure which produced dynamic similarity.

The force on the model is found to be 500 N. Predict the force on the actual body.
(Ans. 20 bar and 10 kN).

5. Show by dimensional analysis that the velocity profile near the wall of a pipe
.. . + +
containing turbulent flow is of the form u =f(y )

where u' = u(p/ro)l/2 and y+ = }’(PTO)M/ [

When water flows through a smooth walled pipe 60 mm bore diameter at 0.8 m/s,
the velocity profile is u = 2.51n(y+) +5.5

Find the velocity 10 mm from the wall.
The friction coefficient is C,= 0.079 Rg "~ -

Answer 0.85 m/s
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FLUID MECHANICS

TUTORIAL No.7

FLUID FORCES

When you have completed this tutorial you should be able to

Solve forces due to pressure difference.

e  Solve problems due to momentum changes.

e  Solve problems involving pressure and momentum changes.
e  Solve forces on pipe bends.

e  Solve problems on stationary vanes.

e  Construct blade vector diagrams for moving vanes.

e  Calculate the momentum changes over a moving vane.

Let's start by examining forces due to pressure changes.
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1. PRESSURE FORCES

Consider a duct as shown in fig.1. First identify the control volume on which to conduct a
force balance. The inner passage is filled with fluid with pressure p; at inlet and p, at outlet.
There will be forces on the outer surface of the volume due to atmospheric pressure. If the
pressures of the fluid are measured relative to atmosphere (i.e. use gauge pressures) then these
forces need not be calculated and the resultant force on the volume is due to that of the fluid
only. The approach to be used here is to find the forces in both the x and y directions and then

combine them to find the resultant force.
Fp
Ppyg

(@), Tpzp

Fer )

Ppy1

Pl

Fig. 1
The force normal to the plane of the bore is pA.

At the inlet (1) the force is Fp,= p,A,
At the outlet (2) the force is Fp, = p,A,

These forces must be resolved vertically and horizontally to give the following.
Fpx1 = Fp1 cos 01 (to the right)
Fpx2 = Fp1cos 02 (to the left)

The total horizontal force F, =Fpx; - Fpx;,

prl = Fp1 sin 0, (up)

Fpy, =Fp,sin 0, (down)
The total vertical force F,, =Fpy, - Fpy,
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WORKED EXAMPLE No. 1

A nozzle has an inlet area of 0.005 m? and it discharges into the atmosphere. The inlet gauge
pressure is 3 bar. Calculate the resultant force on the nozzle.

F 3
— \
Aq|P :: +—n r‘.ﬁ.&
1_llr —_— -— ¥ P
—
b
Fig.2

SOLUTION

Since the areas are only in the vertical plane, there is no vertical force. F,=0
Using gauge pressures, the pressure force at exit is zero.  Fpxe =0

Fox1 = 3 X 105 x 0.005 = 1500 N
F,= 1500 -0 =1500 N to the right.

WORKED EXAMPLE No.2

Ctlet
The nozzle shown has an inlet area of 0.002 m? i’ﬁﬂo‘j
and an outlet area of 0.0005 m?. The inlet gauge
pressure is 300 kPa and the outlet gauge pressure is 200 kPa.
Calculate the horizontal and vertical forces on the nozzle.

Fig.3
Inlet
—
SOLUTION
Fp,= 300 X 103 x 0.002 = 600 N
Fpx,= 600N

prlzo N since the plane is vertical.
Fp, =200 x 103 x 0.0005 = 100 N
Fpx, = 100 x cos 600 =50 N

Fpy, = 100 x sin 600 = 86.67 N
Total Horizontal force F,, =600 - 50 = 550 N
Total vertical force F,=0-86.67N=-86.67N
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2. MOMENTUM FORCES

When a fluid speeds up or slows down, inertial forces come into play. Such forces may be
produced by either a change in the magnitude or the direction of the velocity since either
change in this vector quantity produces acceleration.

For this section, we will ignore pressure forces and just study the forces due to velocity
changes.

2.1 NEWTON'S 2nd LAW OF MOTION

This states that the change in momentum of a mass is equal to the impulse given to it.
Impulse = Force x time
Momentum = mass X velocity
Change in momentum = Amv

Newton’s second law may be written as Amv = Ft

Rearrange to make F the subject. Amvit=F

Since Av/t = acceleration ‘a’ we get the usual form of the law  F =ma

The mass flow rate is m/t and at any given moment this is dm/dt or m' and for a constant flow
rate, only the velocity changes.

In fluids we usually express the second law in the following form. F = (m/t) Av = m'Av
m'Av is the rate of change of momentum so the second law may be restated as
F = Rate of change of momentum

F is the impulsive force resulting from the change. Av is a vector quantity.

2.2 APPLICATION TO PIPE BENDS

Consider a pipe bend as before and use the idea of a control volume.

V) —»

Eend Wector Diagram Force Eesclution

Fig.4
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First find the vector change in velocity using trigonometry.
1

0 g+ (vcos0—v,

V,C0S0 — Vv,
Alternatively Av could be found by drawing the diagram to scale and measuring it.

tan® =

If we had no change in magnitude then v, = v, = v then Av=v {2(1 - cosB)}*

The momentum force acting on the fluid is Fmjy = m'Av

The force is a vector quantity which must be in the direction of Av. Every force has an equal
and opposite reaction so there must be a force on the bend equal and opposite to the force on
the fluid. This force could be resolved vertically and horizontally such that

FH = Fmcos® and F\ = Fmsin®

This theory may be applied to turbines and pump blade theory as well as to pipe bends.

SELF ASSESSMENT EXERCISE No.1

1. A pipe bends through an angle of 900 in the vertical plane. At the inlet it has a cross
sectional area of 0.003 m2 and a gauge pressure of 500 kPa. At exit it has an area of 0.001
m2 and a gauge pressure of 200 kPa.

Calculate the vertical and horizontal forces due to the pressure only.
(Answers 200 N and 1500 N).

2. A pipe bends through an angle of 450 in the vertical plane. At the inlet it has a cross
sectional area of 0.002 m2 and a gauge pressure of 800 kPa. At exit it has an area of 0.0008
m2 and a gauge pressure of 300 kPa.

Calculate the vertical and horizontal forces due to the pressure only.
(Answers 169.7 N and 1430 N).

3. Calculate the momentum force acting on a bend of 1300 that carries 2 kg/s of water at
16m/s velocity.

Determine the vertical and horizontal components. (Answers 24.5 N and 52.6 N)

4. Calculate the momentum force on a 1800 bend that carries 5 kg/s of water. The pipe is 50

mm bore diameter throughout. The density is 1000 kg/m3.
(Answer 25.46 N)

5. A horizontal pipe bend reduces from 300 mm bore diameter at inlet to 150 mm diameter
at outlet. The bend is swept through 500 from its initial direction.
The flow rate is 0.05 m3/s and the density is 1000 kg/m3. Calculate the momentum force
on the bend and resolve it into two perpendicular directions relative to the initial
direction.
(Answers 108.1 N and 55.46 N).
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3. COMBINED PRESSURE AND MOMENTUM FORCES

Now we will look at problems involving forces due to pressure changes and momentum
changes at the same time. This is best done with a worked example since we have covered the
theory already.

WORKED EXAMPLE No.3

A pipe bend has a cross sectional area of 0.01 m2 at inlet and 0.0025 m2 at outlet. It bends
900 from its initial direction. The velocity is 4 m/s at inlet with a pressure of 100 kPa gauge.

The density is 1000 kg/m3. Calculate the forces acting parallel and perpendicular to the initial
direction.

|

vz

Fig. 5
SOLUTION

v = 4m/s. Since pAivi = pAyv; then v = 16 m/s
We need the pressure at exit. This is done by applying Bernoulli between (1) and (2) as
follows.
p1+ % pvy° = pa + Yo pVy°
100 x 10+ ¥ 1000 x 4% = p, + 1000 x % 16°
p2 = 0 kPa gauge
Now find the pressure forces.

prl = p]_A]_ =1200 N

Fpy, = P2A2 = 0 N Next solve the momentum forces.
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4 mfs

16 mfs
iR Fp,

Fig.6
m' = pAv = 40 kg/s
Av = (4% + 16%)* = 16.49 m/s
Fm=mAv =659.7 N
¢ = tan-1(16/4) = 75.960

RESOLVE

Fmy =659.7 sin 75.96 = 640 N
Fmx = 659.7 cos 75.96 = 160 N

Total forces in x direction = 1200 + 160 = 1360 N
Total forces in y direction =0 + 640 = 640 N

ALTERNATIVE SOLUTION

Many people prefer to solve the complete problems by solving pressure and momentum
forces in the x or y directions as follows.

x direction m'vy + p1A1 = Fx = 1200 N
y direction m'vy + p2A2; = Fy = 640 N

When the bend is other than 900 this has to be used more carefully because there is an x
component at exit also.
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4. APPLICATIONS TO STATIONARY VANES

When a jet of fluid strikes a stationary vane, the vane decelerates the fluid in a given
direction. Even if the speed of the fluid is unchanged, a change in direction produces changes
in the velocity vectors and hence momentum forces are produced. The resulting force on the
vane being struck by the fluid is an impulsive force. Since the fluid is at atmospheric pressure
at all times after leaving the nozzle, there are no forces due to pressure change.

41 FLATPLATE NORMAL TO JET

Consider first a jet of liquid from a nozzle striking a flat plate as shown in figure 7.

!
_F\vl_' F
/

'

Fig.7

The velocity of the jet leaving the nozzle is v,. The jet is decelerated to zero velocity in the

original direction. Usually the liquid flows off sideways with equal velocity in all radial
directions with no splashing occurring. The fluid is accelerated from zero in the radial
directions but since the flow is equally divided no resultant force is produced in the radial
directions. This means the only force on the plate is the one produced normal to the plate.
This is found as follows.

m' = mass flow rate.

Initial velocity = v,.

Final velocity in the original direction = v2 = 0.
Change in velocity =Av = v, —vi=-v;

Force = m'Av = -mv;

This is the force required to produce the momentum changes in the fluid. The force on the
plate must be equal and opposite so

F=m'v,= pAV1
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WORKED EXAMPLE No.4

A nozzle has an exit diameter of 15 mm and discharges water into the atmosphere. The gauge
pressure behind the nozzle is 400 kPa. The coefficient of velocity is 0.98 and there is no
contraction of the jet. The jet hits a stationary flat plate normal to its direction. Determine the

force on the plate. The density of the water is 1000 kg/m3. Assume the velocity of approach
into the nozzle is negligible.
SOLUTION
The velocity of the jet is vi = Cy(2Ap/p)”~
v1 = 0.98 (2x 400 000/1000) * = 27.72 m/s
The nozzle exit area A = rt x 0.015°/4 = 176.7 x 10" m>.
The mass flow rate is pAv; = 1000 x 176.7 x 10-6 x 27.72 = 4.898 kg/s.

The force on the vane = 4.898 x 27.72 =135.8 N

42 FELATPLATE AT ANGLE TOJET

If the plate is at an angle as shown in fig. 8 then the fluid is not completely decelerated in the
original direction but the radial flow is still equal in all radial directions. All the momentum
normal to the plate is destroyed. It is easier to consider the momentum changes normal to the
plate rather than normal to the jet.

Fig.8
Initial velocity normal to plate = v, cos6.
Final velocity normal to plate = 0.
Force normal to plate = m'Av =0 - pA v, cosé.
This is the force acting on the fluid so the force on the plate is

m' v; cos@ or pA vi® cosb.

If the horizontal and vertical components of this force are required then the force must be
resolved.
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WORKED EXAMPLE No. 5

A jet of water has a velocity of 20 m/s and flows at 2 kg/s. The jet strikes a stationary flat

plate. The normal direction to the plate is inclined at 300 to the jet. Determine the force on the
plate in the direction of the jet.

SOLUTION
30
-
Fy

Fig.9

The force normal to the plate is mv; cosf= 2 x 20cos 30° = 34.64 N.

The force in the direction of the jet is found by resolving.

Fy = F/cos30° = 34.64/cos 30° = 40 N
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4.3 CURVED VANES

When a jet hits a curved vane, it

is usual to arrange for it to arrive T~
on the vane at the same angle as _

the vane. The jet is then diverted
from with no splashing by the
curve of the vane. If there is no
friction present, then only the
direction of the jet is changed,
not its speed.

Fig.10

This is the same problem as a pipe bend with
uniform size. v, is numerically equal to v,. 1

¥

Fig.11 2
M

If the deflection angle is 6 as shown in figs.10
and 11 then the impulsive force is

F=m'Av =m'v,{2(1 - cose)}”2
The direction of the force on the fluid is in the direction of Av and the direction of the force
on the vane is opposite. The force may be resolved to find the forces acting horizontally

and/or vertically.

It is often necessary to solve the horizontal force and vy u
this is done as follows.

Fig.12 <

N\
180 -@  Vpco0s(180 -8)

Initial horizontal velocity = vy = vy

Final horizontal velocity = v,,, = -v, cos (180 - 0) = v, cos 6
Change in horizontal velocity = Avy;

Since v, = v this becomes Avh= {v, c0sO - v; } =vi1{coso - 1}
Horizontal force on fluid = m'vy{cos6 - 1}

The horizontal force on the vane is opposite so

Horizontal force = m'Avy = m'vi{1 - cos6}

©D.J.Dunn freestudy.co.uk 11



WORKED EXAMPLE No.6

A jet of water travels horizontally at 16 m/s with a flow rate of 2 kg/s. It is deflected 1300 by
a curved vane. Calculate resulting force on the vane in the horizontal direction.

SOLUTION

The resulting force on the vane is F=m'v;{2(1 - cose)%
F=2x 16 {2(1 -cos 1300)} “ =58 N

The horizontal force is

=m'v1{coso - 1}

2 X 16 x (1 - cos130)
52.6 N

Fy
Fy
Fy

SELF ASSESSMENT EXERCISE No. 2

Assume the density of water is 1000 kg/m3 throughout.

1. A pipe bends through 900 from its initial direction as shown in fig.13. The pipe reduces
in diameter such that the velocity at point (2) is 1.5 times the velocity at point (1). The
pipe is 200 mm diameter at point (1) and the static pressure is 100 kPa. The volume

flow rate is 0.2 m3/s. Assume there is no friction. Calculate the following.
a) The static pressure at (2).
b) The velocity at (2).
¢) The horizontal and vertical forces on the bend Fy and Fy,.

d) The total resultant force on the bend.
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2. A nozzle produces a jet of water. The gauge pressure behind the nozzle is 2 MPa. The
exit diameter is 100 mm. The coefficient of velocity is 0.97 and there is no contraction of

the jet. The approach velocity is negligible. The jet of water is deflected 1650 from its
initial direction by a stationary vane. Calculate the resultant force on the nozzle and on
the vane due to momentum changes only.

(Answers 29.5 kN and 58.5 kN).

3. A stationary vane deflects 5 kg/s of water 500 from its initial direction. The jet velocity is
13 m/s. Draw the vector diagram to scale showing the velocity change. Deduce by either
scaling or calculation the change in velocity and go on to calculate the force on the vane
in the original direction of the jet.

(Answer 49.8 N).

4. A jet of water travelling with a velocity of 25 m/s and flow rate 0.4 kg/s is deflected 1500
from its initial direction by a stationary vane. Calculate the force on the vane acting
parallel to and perpendicular to the initial direction.

(Answers 18.66 N and 5 N)

5. A jet of water discharges from a nozzle 30 mm diameter with a flow rate of 15 dm3/s into
the atmosphere. The inlet to the nozzle is 100 mm diameter. There is no friction nor
contraction of the jet. Calculate the following.

I. The jet velocity.(21.22 m/s)
ii. The gauge pressure at inlet. (223.2 kPa)
iii. The force on the nozzle. (2039 N)

The jet strikes a flat stationary plate normal to it. Determine the force on the plate.
(312 N)
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5.  MOVING VANES

When a vane moves away from the jet as shown on fig.14, the mass flow arriving on the vane
is reduced because some of the mass leaving the nozzle is producing a growing column of
fluid between the jet and the nozzle. This is what happens in turbines where the vanes are part
of a revolving wheel. We need only consider the simplest case of movement in a straight line
in the direction of the jet.

5.1 MOVING FLAT PLATE

| |
i

Fig.14

The velocity of the jet is v and the velocity of the vane is u. If you were on the plate, the
velocity of the fluid arriving would be v - u. This is the relative velocity, that is, relative to the
plate. The mass flow rate arriving on the plate is then

m" = pA(v-u)

The initial direction of the fluid is the direction of the jet. However, due to movement of the
plate, the velocity of the fluid as it leaves the edge is not at 900 to the initial direction. In
order to understand this we must consider the fluid as it flows off the plate. Just before it
leaves the plate it is still travelling forward with the plate at velocity u. When it leaves the
plate it will have a true velocity that is a combination of its radial velocity and u. The result is
that it appears to come off the plate at a forward angle as shown.

We are only likely to be interested in the force in the direction of movement so we only
require the change in velocity of the fluid in this direction.

The initial forward velocity of the fluid = v

The final forward velocity of the fluid = u

The change in forward velocity = v-u

The force on the plate = m'pv =m' (v-u)

Since m' = pA(v-u) then the force on the plate is
F = pA(v-u)2
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5.2 MOVING CURVED VANE

Turbine vanes are normally curved and the fluid joins it at the same angle as the vane as
shown in fig.15.

The velocity of the fluid leaving the nozzle is v,. This is a true or absolute velocity as
observed by anyone standing still on the ground. The fluid arrives on the vane with relative
velocity vi-u as before. This is a relative velocity

as observed by someone moving with the vane. If u
there is no friction then the velocity of the fluid
over the surface of the vane will be v;-u at all
points. At the tip where the fluid leaves the vane,
it will have two velocities. The fluid will be
flowing at vi-u over the vane but also at velocity u
in the forward direction. The true velocity v, at
exit must be the vector sum of these two.

&
¥

Fig.16
If we only require the force acting on the vane in the direction of movement then we must
find the horizontal component of v,. Because this direction is the direction in which the vane
is whirling about the centre of the wheel, it is called the velocity of whirl v,,. The velocity v,
is also in the direction of whirling so it follows that v; = vy;.

Vw, may be found by drawing the vector diagram (fig.16) to scale or by using trigonometry.
In this case you may care to show for yourself that Ve = U + (Vi-u)(cos0)

The horizontal force on the vane becomes Fy=m'(vw1-vw2) = m' (v1-vw2)

You may care to show for yourself that this simplifies down to Fh = m'(v1-u)(1-cos6)

This force moves at the same velocity as the vane. The power developed by a force is the
product of force and velocity. This is called the Diagram Power (D.P.) and the diagram power
developed by a simple turbine blade is D.P. = m'u(v1-u)(1-cos6)

This work involving the force on a moving vane is the basis of turbine problems and the
geometry of the case considered is that of a simple water turbine known as a Pelton Wheel.
You are not required to do this in the exam. It is unlikely that the examination will require you
to calculate the force on the moving plate but the question in self assessment exercise 5 does
require you to calculate the exit velocity vs.
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WORKED EXAMPLE No.7

A simple turbine vane as shown in fig.15 moves at 40 m/s and has a deflection angle of
1500. The jet velocity from the nozzle is 70 m/s and flows at 1.7 kg/s.

Calculate the absolute velocity of the water leaving the vane and the diagram power.
SOLUTION

Drawing the vector diagram (fig.16) to scale, you may show that v, = 20.5 m/s. This may
also be deduced by trigonometry. The angle at which the water leaves the vane may be

measured from the diagram or deduced by trigonometry and is 46.90 to the original jet
direction.

D.P. = m'u(v1-u)(1+cosB) = 1.7 x 40(70-40)(1 - cos 150) = 3807 Watts

SELF ASSESSMENT EXERCISE No.3

1. A vane moving at 30 m/s has a deflection angle of 900. The water jet moves at 50 m/s
with a flow of 2.5 kg/s. Calculate the diagram power assuming that all the mass strikes
the vane.

(Answer 1.5 kW).

2. Figure 10 shows a jet of water 40 mm diameter flowing at 45 m/s onto a curved fixed

vane. The deflection angle is 1500. There is no friction. Determine the magnitude and
direction of the resultant force on the vane. (4916 N)

The vane is allowed to move away from the nozzle in the same direction as the jet at a
velocity of 18 m/s. Draw the vector diagram for the velocity at exit from the vane and
determine the magnitude and direction of the velocity at exit from the vane. (14.53 m/s)
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FLUID MECHANICS

TUTORIAL No.8A

WATER TURBINES

When you have completed this tutorial you should be able to

e Explain the significance of specific speed to turbine selection.
e  Explain the general principles of

Pelton Wheels

Kaplan Turbines

Francis Turbine

e  Construct blade vector diagrams for moving vanes for a Pelton
Wheels and a Francis Turbine

e  Deduce formulae for power and efficiency for turbines.

e Solve numerical problems for a Pelton Wheels and a Francis
Turbine
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1. INTRODUCTION

A water turbine is a device for converting water (fluid) power into shaft (mechanical) power.
A pump is a device for converting shaft power into water power.

Two basic categories of machines are the rotary type and the reciprocating type.
Reciprocating motors are quite common in power hydraulics but the rotary principle is
universally used for large power devices such as on hydroelectric systems.

Large pumps are usually of the rotary type but reciprocating pumps are used for smaller
applications.

1.1 THE SPECIFIC SPEED FOR VARIOUS TYPES OF TURBINES

The power 'P' of any rotary hydraulic machine (pump or motor) depends upon the density 'p',
the speed 'N', the characteristic diameter 'D', the head change 'AH', the volume flow rate 'Q’
and the gravitational constant 'g'. The general equation is:

P=1(p, N, D, AH, Q, 9)

It is normal to consider gAH as one quantity. P =f{p, N, D, (gAH),Q}

There are 6 quantities and 3 dimensions so there are three dimensionless groups IT;, IT,and
I13. First form a group with P and pND.
P =¢(pND)=I,p*N°D*
MIL2T 3 = (M3 (12 f (Dtf
Mass 1=a Time -3=-Db b=3 Length 2=-3a+c=-3+Cc c=5
P=1I1,p'N°D® I, = % = Power Coefficient
p N°D
Next repeat the process between Q and pND
Q=¢(pND)=I1,p*N"D*
e = a1 (o'
Time -1=-b b=1 Mass O=a Length 3=-3a+c c=3

Q=I,p°N'D? I, = N(I?)S = Flow Coefficient

Next repeat the process between gAH and pND
(9 AH) = ¢(pND) = I1;p*N"D°

MOL2T2 = (ML (T (ot

Mass O=a Time -2=-b b=2 Length 2=-3a+c c=2
Q =I1,p°N?D? I, = NSDZ = Head Coefficient
. o P Q Y gAH j
Finally the complete equation is =
y P 9 pN3D? (P(NDZ J( N2D?
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SPECIFIC SPEED Ns

The specific speed is a parameter used for pumps and turbines to determine the best design to
match a given pumped system. The formula may be derived from consideration of the pump
geometry or by dimensional analysis. The latter will be used here.

o ne7 o
pN3D® ?\'ND? A NZD?

The three dimensionless numbers represent the Power coefficient, the flow coefficient and the
Head coefficient respectively. Now consider a family of geometrically similar machines
operating at dynamically similar conditions. For this to be the case the coefficients must have
the same values for each size. Let the 3 coefficients be ITq, I'T2 and I3 such that

1 1
3 2
oN°D ND NII, N2D N2IL,
1 1 1 1
Equating _Q P _[9AH 1(gAH |2 Q°
NI, NT1, N{ I, 11
T3N3
11 F
2 2 2 e
(AIH)Z = 1}31 = constant %=N3
Q3N3 Hggz KQS
3
172 s r 1
2 4 2 = 2
—(AH)l =N= (AlH)l NQ ;=K 2=constant  Nj - NQT 3
KQ? K2Qz  (AH)* (AH)*

Ns is a dimensionless parameter that and the units used are normally rev/min for speed, m3/s
for flow rate and metres for head. Other units are often used and care should be taken when
quoting Ns values.

It follows that for a given speed, the specific speed is large for large flows and low heads and
small for small flows and large heads. The important value is the one that corresponds to the
conditions that produce the greatest efficiency. The diagram illustrates how the design affects
the specific speed.

~ Radial Francis Mixed Axial
Ns for various types of turbines amd pumps
| B 1 | |
15 30 50 oo 125 150 650

Qwd/s Nrevinin Hm

Figure 1
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2. GENERAL PRINCIPLES OF TURBINES.

WATER POWER

This is the fluid power supplied to the machine in the form of pressure and volume.
Expressed in terms of pressure head the formula is W.P. = mgAH

M is the mass flow rate in kg/s and AH is the pressure head difference over the turbine in
metres. Remember that Ap = pgAH

Expressed in terms of pressure the formula is W.P. = QAp
Q is the volume flow rate in m*/s. Ap is the pressure drop over the turbine in N/m? or Pascals.

SHAFT POWER

This is the mechanical, power output of the turbine shaft. The well known formula is
S.P. =2aNT
Where T is the torque in Nm and N is the speed of rotation in rev/s

DIAGRAM POWER

This is the power produced by the force of the water acting on the rotor. It is reduced by
losses before appearing as shaft power. The formula for D.P. depends upon the design of the
turbine and involves analysis of the velocity vector diagrams.

HYDRAULIC EFFICIENCY

This is the efficiency with which water power is converted into diagram power and is given

by
Mpye= D-P/W.P.

MECHANICAL EFFICIENCY

This is the efficiency with which the diagram power is converted into shaft power. The
difference is the mechanical power loss.
Nimeen= S-P-/D.P.

OVERALL EFFICIENCY

This is the efficiency relating fluid power input to shaft power output.
Noa= S:P./W.P.

It is worth noting at this point that when we come to examine pumps, all the above
expressions are inverted because the energy flow is reversed in direction.

The water power is converted into shaft power by the force produced when the vanes deflect

the direction of the water. There are two basic principles in the process, IMPULSE and
REACTION.
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IMPULSE occurs when the direction of the fluid is changed with no pressure change. It
follows that the magnitude of the velocity remains unchanged.

REACTION occurs when the water is accelerated or decelerated over the vanes. A force is
needed to do this and the reaction to this force acts on the vanes.

Impulsive and reaction forces are determined by examining the = > U1
changes in velocity (magnitude and direction) when the water 0 1
flows over the vane. The following is a typical analysis.

The vane is part of a rotor and rotates about some centre point.
Depending on the geometrical layout, the inlet and outlet may or

may not be moving at the same velocity and on the same circle. @y
In order to do a general study, consider the case where the inlet /
and outlet rotate on two different diameters and hence have
different velocities.

Fig.2

u; is the velocity of the blade at inlet and u, is the velocity of the blade at outlet. Both have
tangential directions.w; is the relative velocity at inlet and ; is the relative velocity at outlet.

The water on the blade has two velocity components. It is moving tangentially at velocity u
and over the surface at velocity . The absolute velocity of the water is the vector sum of
these two and is denoted v. At any point on the vane v=wm +u

At inlet, this rule does not apply unless the direction of v; is made such that the vector
addition is true. At any other angle, the velocities will not add up and the result is chaos with

energy being lost as the water finds its vy

way onto the vane surface. The perfect g, " 81
entry is called "SHOCKLESS - L,
ENTRY" and the entry angle 1 must E‘I &y &1 vy
be correct. This angle is only correct s |

for a given value of v1.

Fig.3
INLET DIAGRAM

For a given or fixed value of u; and v;, shockless entry will occur only if the vane angle o is
correct or the delivery angle B, is correct. In order to solve momentum forces on the vane and
deduce the flow rates, we are interested in two components of v;. These are the components in
the direction of the vane movement denoted
Vw (meaning velocity of whirl) and the
direction at right angles to it vg (meaning uy <31

/
radial velocity but it is not always radial in : 81 v $
direction depending on the wheel design). “1 VRI1
The suffix (1) indicates the entry point. A Y1 '

typical vector triangle is shown.

Vwl

g Wl
‘- ,|
-

Fig.4
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OUTLET DIAGRAM

At outlet, the absolute velocity of the water has to be the vector resultant of u and o and the
direction is unconstrained so it must come off the wheel at the angle resulting. Suffix (2)
refers to the outlet point. A typical vector triangle is shown.

L5]

Fig. 5
DIAGRAM POWER

Diagram power is the theoretical power of the wheel based on momentum changes in the
fluid. The force on the vane due to the change in velocity of the fluid is F = mAv and these
forces are vector quantities. m is the mass flow rate. The force that propels the wheel is the
force developed in the direction of movement (whirl direction). In order to deduce this force,
we should only consider the velocity changes in the whirl direction (direction of rotation)
Avy,. The power of the force is always the product of force and velocity. The velocity of the
force is the velocity of the vane (u). If this velocity is different at inlet and outlet it can be
shown that the resulting power is given by

D.P. = m Avy = M (UgViw1 — Uz Viy2)
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3. PELTON WHEEL

Fig. 6 Pelton Wheel With Case Removed

Pelton wheels are mainly used with high pressure heads such as in mountain hydroelectric
schemes. The diagram shows a layout for a Pelton wheel with two nozzles.

S ) 8500

777, 4000 - . S 0 — . -

7 |
\
|
|

S
A
<

s

ffffffffffff

ESCHER WYSS WT35

77800 i

H R
R A . 2o e = PRIV

Fig.7 Schematic Diagram Of Pelton Wheel With Two Nozzles
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3.1 GENERAL THEORY

The Pelton Wheel is an impulse turbine. The fluid power is converted into Kinetic energy in
the nozzles. The total pressure drop occurs in the nozzle. The resulting jet of water is directed
tangentially at buckets on the wheel producing impulsive force on them. The buckets are
small compared to the wheel and so they have a single velocity u=nND

D is the mean diameter of rotation for the buckets.

The theoretical velocity issuing from the nozzle is given by
1/2 1/2
vi= (2gH)  or v,= (2p/p)
Allowing for friction in the nozzle this becomes / /
1/2 1/2
v,=C,(29H)  orv,=C (2p/p)

H is the gauge pressure head behind the nozzle, p the gauge pressure and cy the coefficient of
velocity and this is usually close to unity.

The mass flow rate from the nozzle is
0 0
m = C¢ pAv1 = CcpACy(2gH) = Cd pA(2gH)

Cc is the coefficient of contraction (normally unity because the nozzles are designed not to
have a contraction).

Cd is the coefficient of discharge and Cd = C¢Cy

In order to produce no axial force on the wheel, the flow is divided equally by the shape of the
bucket. This produces a zero net change in momentum in the axial direction.

7

)

Vi—»
00) 0
\Vz
Fig.8 Fig. 9
Layout of Pelton Wheel with One Nozzle Cross Section Through Bucket
The water is deflected over each half of the bucket by u
an angle of 0 degrees. Since the change in momentum 1 ™1
is the same for both halves of the flow, we need only r -
consider the vector diagram for one half. The initial Vi
velocity is v; and the bucket velocity u; is in the same
direction. The relative velocity of the water at inlet (in v
the middle) is w; and is also in the same direction so | Wl N
the vector diagram is a straight line.
Fig. 10
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If the water is not slowed down as it passes over the bucket surface, the relative velocity m;
will be the same as ;. In reality friction slows it

down slightly and we define a blade friction u2

coefficient as K = m/m

The exact angle at which the water leaves the sides
of the bucket depends upon the other velocities but
as always the vectors must add up so that Vw2l
Note that u, = u; = u since the bucket has a uniform

velocity everywhere.

The vector diagram at exit is as shown.

It is normal to use w1 and u as common to
both diagrams and combine them as shown. u

L)

Since uy = u; = u the diagram power becomes [ B
1.?2 mz

Examining the combined vector diagram
shows that Avyy = o,- ®,C0s0 h

¥

Fig. 12
Hence D.P.= mu(w, - ®,c086) but ®, = ko,
D.P.= muw,(1 - kcosB) but , = v;-u

D.P.= mu(v,-u)( 1- kcosb)

WORKED EXAMPLE No. 1

A Pelton wheel is supplied with 1.2 kg/s of water at 20 m/s. The buckets rotate on a mean
diameter of 250 mm at 800 rev/min. The deflection angle is 1650 and friction is

negligible. Determine the diagram power. Draw the vector diagram to scale and
determine Avyy.

SOLUTION

u=nND/60 =7 x 800 x 0.25/60 = 10.47 m/s

D.P = mu(v1-u)( 1- kcos6)

D.P = 1.2 x 10.47 X (20 - 10.47)(1 - cos 165) = 235 Watts

You should now draw the vector diagram to scale and show that Avyy= 18.5 m/s
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3.2 CONDITION FOR MAXIMUM POWER

If the equation for diagram power is used
to plot D.P against u, the graph is as e 4
shown below. a

Clearly the power is zero when the buckets
are stationary and zero when the buckets
move so fast that the water cannot catch
up with them and strike them. In between

is a velocity which gives maximum power. AU
This may be found from max and min theory.
Fig. 13
d(D.P.) _d{mu(v, —u)1-keoso)}  d(D.P.) _ d{m(uv1 —u? Xl— kcose)}
du du du du
d(zup) =m(v; —2u)1-kcosh)
For a maximum value m(v, —2u Y1 —kcosd)=0 Hence for maximum power v, = 2u

3.3 SPECIFIC SPEED Ns FOR PELTON WHEELS

You may have already covered the theory for specific speed in dimensional analysis but for
those who have not, here is a brief review.

Specific speed is a parameter which enables a designer to select the best pump or turbine for a
given system. It enables the most efficient matching of the machine to the head and flow rate

available. One definition of specific speed for a turbine is : Ng = NQUZ(H) a0

N is the speed in rev/min, Q is the volume flow rate in m’/s and H is the available head in
metres. The equation may be developed for a Pelton Wheel as follows.

u =nND/60 = K,ND D = mean wheel diameter N = u/(K1D)
u = bucket velocity vj= KZH”2 H = head behind the nozzle
Vj = nozzle velocity Now for a fixed speed wheel, u = K,;v; Hence
1 1
_ K3V _ K;K,H?2 _ K,H?2
K,D K,D D
2 2 1 1
Q=Av, :%vj d = nozzlediameter Q :%KZH2 =K d?H2
Substituting all in the formula for Ns we get N, = k%

The value of k has to be deduced from the data of the wheel and nozzle. Note that Ns is
1

NP2

sometimes defined in terms of water power as N, = -
p?(gH)s

N

This is just an alternative formula and the same result can be easily obtained other ways. You
will need the substitution P =pQgH
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SELF ASSESSMENT EXERCISE No. 1

1. The buckets of a Pelton wheel revolve on a mean diameter of 1.5 m at 1500 rev/min. The
jet velocity is 1.8 times the bucket velocity. Calculate the water flow rate required to
produce a power output of 2MW. The mechanical efficiency is 80% and the blade friction
coefficient is 0.97. The deflection angle is 1650.

(Ans. 116.3 kg/s)

2. Calculate the diagram power for a Pelton Wheel 2m mean diameter revolving at 3000
rev/min with a deflection angle of 1700 under the action of two nozzles , each supplying
10 kg/s of water with a velocity twice the bucket velocity. The blade friction coefficient
is 0.98.
(Ans. 3.88 MW)

If the coefficient of velocity is 0.97, calculate the pressure behind the nozzles.
(Ans 209.8 MPa)

3. A Pelton Wheel is 1.7 m mean diameter and runs at maximum power. It is supplied from
two nozzles. The gauge pressure head behind each nozzle is 180 metres of water. Other
data for the wheel is :

Coefficient of Discharge Cq = 0.99
Coefficient of velocity Cy = 0.995

Deflection angle = 1650.
Blade friction coefficient = 0.98
Mechanical efficiency = 87% Nozzle diameters = 30 mm

Calculate the following.

i. The jet velocity (59.13 m/s)

ii. The mass flow rate (41.586 kg/s)

iii The water power ( 73.432 kW)

iv. The diagram power ( 70.759 kW)

v. The diagram efficiency (96.36%)

vi. The overall efficiency (83.8%)

vii. The wheel speed in rev/min (332 rev/min)
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4. Explain the significance and use of 'specific speed’ Ns = NP”Z/{pl/z(gH)SM}
Explain why in the case of a Pelton wheel with several nozzles, P is the power per nozzle.
Explain why a Francis Wheel is likely to be preferred to a Pelton wheel when site
conditions suggest that either could be used.
Calculate the specific speed of a Pelton Wheel given the following.

d = nozzle diameter.

D = Wheel diameter.
u = optimum blade speed = 0.46 v1

V1= jet speed.
n=88% Cy = coefficient of velocity = 0.98

Answer Ns=11.9d/D
5. Explain the usefulness of specific speed in the selection of pumps and turbines.

A turbine is to run at 150 rev/min under a head difference of 22 m and an expected flow
rate of 85 m’/s.

A scale model is made and tested with a flow rate of 0.1 m3/s and a head difference of 5
m. Determine the scale and speed of the model in order to obtain valid results.

When tested at the speed calculated, the power was 4.5 kW. Predict the power and
efficiency of the full size turbine.

Answers 0.05 scale 16.17 MW and 88%.
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4.  KAPLAN TURBINE

The Kaplan turbine is a pure reaction turbine.
The main point concerning this is that all the
flow energy and pressure is expended over the
" rotor and not in the supply nozzles. The picture
= shows the rotor of a large Kaplan turbine. They
- are most suited to low pressure heads and large
flow rates such as on dams and tidal barrage
schemes.

~ The diagram below shows the layout of a large
hydroelectric generator in a dam.

Fig.14 Picture and schematic of a Kaplan Turbine
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5. ERANCIS WHEEL

The Francis wheel is an example of a mixed impulse and reaction turbine. They are adaptable
to varying heads and flows and may be run in reverse as a pump such as on a pumped storage
scheme. The diagram shows the layout of a vertical axis Francis wheel.

N

Fig.15

The Francis Wheel is an inward flow device with the water entering
around the periphery and moving to the centre before exhausting.
The rotor is contained in a casing that spreads the flow and pressure
evenly around the periphery.

The impulse part comes about because guide vanes are used to
produce an initial velocity v1 that is directed at the rotor.

Pressure drop occurs in the guide vanes and the velocity is vi = k
(AH)” where AH is the head drop in the guide vanes.

Fig.16
The angle of the guide vanes is adjustable so that the inlet angle B1 is correct for shockless
entry.

. D
The shape of the rotor is such that > 1 >

the vanes are taller at the centre than

Dy
at the ends. This gives control over F 3
the radial velocity component and hz| § ‘ -
usually this is constant from inlet to ¥y
outlet. The volume flow rate is
usually expressed in terms of radial

velocity and circumferential area. Fig.17
Vg = radial velocity A = circumferential area =D h k
Q=vgnDh k h = height of the vane.

k is a factor which allows for the area taken up by the thickness of the vanes on the
circumference. If vy is constant then since Q is the same at all circumferences,
D1h1=D2h2.
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VECTOR DIAGRAMS

L
V]_\ u]_ ﬁ]_ ul r 1
— = ml “V
m}‘* Y1 _!r_Rl
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(ﬂ?/
B uZ B U2 [y
N vl
v R2
2
v wz L 4

Vw2 L*

Fig. 18

The diagram shows how the vector diagrams are constructed for the inlet and outlet.

Remember the rule is that the vectors add up so that u+v =

If u is drawn horizontal as shown, then Vyy is the horizontal component of v and VR is the

radial component (vertical).

MORE DETAILED EXAMINATION OF VECTOR DIAGRAM

Applying the sine rule to the inlet triangle we find

Vi _ Uy

sin(180—a,)  sin{l80—p, —(180—a, )}

Vi _ u, _ ulsin(al) ................. (1)
sino,)  sin(a, —B;) sin(a; —B,)

_ Vrl
Also v, = sin(p,) (2) Vi =VatanBy . (3)
u,sin(a, ) _ Vi
equate (1) and (2) sin(al —131) = sin(Bl)
_ u,sin(a, sin(B, ) _ u,sin(a, sin(B, )
= sin(al —31) ........... 4 equate (3)and (4) v, = sin(al —Bl)tanﬁl

If all the angles are known, then v,; may be found as a fraction of u;.

DIAGRAM POWER

Because u is different at inlet and outlet we express the diagram power as :
D.P. = m A(uvy)=m (U1Vw1 — UxVip)

The kinetic energy represented by v, is energy lost in the exhausted water. For maximum
efficiency, this should be reduced to a minimum and this occurs when the water leaves
radially with no whirl so that vy, = 0. This is produced by designing the exit angle to suit the
speed of the wheel. The water would leave down the centre hole with some swirl in it. The
direction of the swirl depends upon the direction of v, but if the flow leaves radially, there is

no swirl and less kinetic energy. Ideally then,

D.P.=mu; vw1

©D.J.Dunn freestudy.co.uk
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WATER POWER

The water power supplied to the wheel is mgAH where AH is the head difference between

inlet and outlet.

HYDRAULIC EFFICIENCY
The maximum value with no swirl at exitis ~ mMnyg = D.P./W.P. = u1v wi/gpH

OVERALL EFFICIENCY
No/a= Shaft Power/Water Power

No/a = 2xrNT/mgAH

LOSSES

The hydraulic losses are the difference between the water power and diagram power.

Loss = mgAH - mugv,,= mghy  h. = AH -uyv,,/9 AH - hy = uv,,/9

WORKED EXAMPLE No. 2

The following data is for a Francis Wheel.
Radial velocity is constant ~ No whirl at exit.

Flow rate 0.189 m3/s
D1=0.6 m D2=0.4m k =0.85 h1=50 mm
a1=1100 N=562 rev/min

Head difference from inlet to outlet is 32 m. Entry is shockless. Calculate
I. the guide vane angle
ii. the diagram power
iii. the hydraulic efficiency
iv. the outlet vane angle
v. the blade height at outlet.

SOLUTION

u1=nND1 = 17.655 m/s vr1= Q/(xD1h1K)= 0.189/(r X 0.6 x 0.05 X 0.85) = 2.35 m/s

“1 uy=17.655 uy=11.77
\ 0/t oy =235
vy R ) rre L/i
Yl
Fig. 19

vw1 and 1 may be found by scaling or by trigonometry.
vw1=16.47m/s 1=8.120 up=nND2 = 11.77 m/s
a2= tan-1(2.35/11.77) = 11.290

D.P. = mu1vw1=189 (17.655 x 16.47) = 54 957 Watts
W.P.= mgAH =189 x 9.81 x 32 = 59 331 Watts

Npyg = 94 957/59 331 = 92.6%

since v,, = vr2 then D1h1 = D2 h2

h, =0.6 x 0.05/0.4 =0.075m

©D.J.Dunn freestudy.co.uk
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WORKED EXAMPLE No. 3

The runner (rotor) of a Francis turbine has a blade configuration as shown. The outer diameter
is 0.4 m and the inner diameter is 0.25 m. The vanes are 65 mm high at inlet and 100 mm at
outlet. The supply head is 20 m and the losses in the guide vanes and runner are equivalent to
0.4 m. The water exhausts from the middle at atmospheric pressure. Entry is shockless and
there is no whirl at exit. Neglecting the blade thickness, determine :

I. the speed of rotation.

ii. the flow rate.

iii. the output power given a mecanical efficiency of 88%.
iv. the overall efficiency.

V. The outlet vane angle.

Fig.20
SOLUTION
U1 Vi = u,sin(a, Jsin(B,)
a” 20" " sin(a, —By Jtanp,
o . .
Ed-] 100 .,I,-1 VWl _ UlS|n(120)S|n(20) _ 0826u1

sin(100)tan(20)
Fig.21

The inlet vector diagram is as shown. Values can be found by drawing to scale.
Since all angles are known but no flow rate, find vy, in terms of u;
AH - h. = u1v,,/9
20-0.4=19.6 =u1v,,/g
19.6 = 0.826 u;%/g
u; =15.26 m/s
U = TCND1/60
N = 15.26 x 60/(nx0.4) = 728.5 rev/min
v, = ulsi_n(al)sin( ) _ 15.2esi_n(120)sin(2o) _ 4.580m/s
sin(a, — ;) sin(100, )

©D.J.Dunn freestudy.co.uk 17




Q =V X tD1h; = 12.6 X T x 0.4 X 0.065 = 0.375 m*/s
m = 375 kg/s

Vw1 = 0.826 u; = 12.6 m/s
Diagram Power = m u; V1 =375 x 15.26 X 12.6 = 72.1 KW
Output power = 0.88 x 72.1 = 63.45 kW

OUTLET TRIANGLE 12

u, = tND,/60 = 7t X 728.5 x 0.25/60 = 9.54m/s

Q = Vi X tD2h " Vs
0.375=vp xntx0.25x0.1

Vi = 4.775 m/s = v, if no whirl.
tan o, =4.775/9.54 = 0.5

o =26.6°. Fig. 22

SELF ASSESSMENT EXERCISE No. 2

1. The following data is for a Francis Wheel
Radial velocity is constant
No whirl at exit.

Flow rate=0.4 m3/s
D1=0.4m

D2=0.15m

k =0.95

a1=900

N=1000 rev/min

Head at inlet =56 m

head at entry to rotor = 26 m
head at exit=0m

Entry is shockless.

Calculate . the inlet velocity v1  (24.26 m/s)

ii. the guide vane angle (30.30)

iii. the vane height at inlet and outlet (27.3 mm, 72.9 mm)
iv. the diagram power (175.4 MW)

v. the hydraulic efficiency (80%)

2. Aradial flow turbine has a rotor 400 mm diameter and runs at 600 rev/min. The vanes are
30 mm high at the outer edge. The vanes are inclined at 420 to the tangent to the inner
edge. The flow rate is 0.5 m3/s and leaves the rotor radially. Determine

I. the inlet velocity as it leaves the guide vanes. (19.81 m/s)

ii. the inlet vane angle. (80.80)
iii. the power developed. (92.5 kW)
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3. The runner (rotor) of a Francis turbine has a blade configuration as shown. The outer
diameter is 0.45 m and the inner diameter is 0.3 m. The vanes are 62.5 mm high at inlet
and 100 mm at outlet. The supply head is 18 m and the losses in the guide vanes and
runner are equivalent to 0.36 m. The water exhausts from the middle at atmospheric
pressure. Entry is shockless and there is no whirl at exit. Neglecting the blade thickness,
determine :

i The speed of rotation. (1691 rev/min)

ii.  The flow rate. (1.056 m®/s)

iii. The output power given a mechanical efficiency of 90%. (182.2 MW)
iv. The overall efficiency. (88.2%)

V. The outlet vane angle. (22.97°)
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FLUID MECHANICS

TUTORIAL No.8B

CENTRIFUGAL PUMPS

When you have completed this tutorial you should be able to

e  Derive the dimensionless parameters of a pump
e Flow Coefficient
e Head Coefficient
e Power Coefficient
e Specific Speed.
e Explain how to match a pump to system requirements.
e  Explain the general principles of Centrifugal Pumps.
e  Construct blade vector diagrams for Centrifugal Pumps.

e  Deduce formulae for power and efficiency and Head.

e  Solve numerical problems for Centrifugal Pumps.
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1. DIMENSIONAL ANALYSIS

The power 'P' of any rotary hydraulic pump depends upon the density 'p' , the speed 'N', the
characteristic diameter 'D', the head change 'AH', the volume flow rate 'Q' and the gravitational
constant 'g'. The general equation is:

P=1(p, N, D, AH, Q, 9)

It is normal to consider gAH as one quantity. P =f{p, N, D, (gQAH),Q}

There are 6 quantities and 3 dimensions so there are three dimensionless groups IT;, IT,and ITs. First

form a group with P and pND.

P =(pND)=I1,p*N°D¢

MIL2T2 = (ML f (2 f (ot

Mass 1l=a

Time -3=-Db b=3

Length 2=-3a+c=-3+c c=5

P=11,p'N°D® I, = % = Power Coefficient
p N°D

Next repeat the process between Q and pND

Q=¢(pND)=,p*N°D°

M3 T = (M2 (T2 f (Dt f

Time -1=-b b=1

Mass 0O=a

Length 3=-3a+c c=3

Q=1,p°N'D? I, = N([g)3 = Flow Coefficient

Next repeat the process between gAH and pND

(9 AH) = ¢(pND)=T13p*N°D°

MOL2 T2 = (ML (T (Dt

Mass O=a Time -2=-b b=2 Length 2=-3a+c c=2

NSDZ = Head Coefficient

Q=I;p°N’D? IT; =

. .. P Q g AH
Finally the complete equation is = ( )( j
pN°D® * ND?® A N?D?
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SPECIFIC SPEED Ns

The specific speed is a parameter used for pumps and turbines to determine the best design to match
a given pumped system. The formula may be derived from consideration of the pump geometry or

by dimensional analysis. The latter will be used here. IZ 5= (p( Q 5 j( ngsz
pN3D ND? A N?D
The three dimensionless numbers represent the power coefficient, the flow coefficient and the head

coefficient respectively. Now consider a family of geometrically similar machines operating at
dynamically similar conditions. For this to be the case the coefficients must have the same values

for each size. Let the 3 coefficients be I'T1, IT2 and I13 such that

1 1

3 2

le% I, = Q3 D= 9 H3=% D= ngH
oN°D ND NII, NZD NZIT,

1 1
Equating ( Q ]3:(9AH JZ
NII, NI,
1 1
1(gaH)2 Q3
Nl )

11
T3N3
11
2 H2
(AlH)z = 131 = constant
Q3N3 H%gZ
1

o 2
(AH)? _ N3
1
KQ:3
3
112 3 1 L
2 4 2 _=
—(AH)l =N-= (AlH)l NQ ;=K 2 =constant
KQ§ KEQE (AH)Z
1
2
This constant is called the Specific Speed Ns= NQ 3
(AH)*

Ns is a dimensionless parameter that and the units used are normally rev/min for speed, m3/s for
flow rate and metres for head. Other units are often used and care should be taken when quoting Ns
values.

It follows that for a given speed, the specific speed is large for large flows and low heads and small
for small flows and large heads. The important value is the one that corresponds to the conditions
that produce the greatest efficiency.
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2. MATCHING PUMPS TO SYSTEM REQUIREMENTS

The diagram shows a typical relationship between the head and flow of a given CF pump at a given
speed.

Ffficiency

- F 3
Head & Head / Efficiency

Optimal Point

+ B

¥

Flow
Figure 1

The Ns value may be calculated using the flow and head corresponding to the maximum efficiency
at point A.

SELECTING PUMP SIZE

The problem is that the optimal point of any given pump is unlikely to correspond to the system
requirements for example at point B. What we should do ideally is find a geometrically similar
pump that will produce the required head and flow at the optimal point.

The geometrically similar pump will run under dynamically similar conditions so it follows that the
specific speed Ns is the same for both pumps at the optimal point. The procedure is to first calculate

the specific speed of the pump using the flow and head at the optimal conditions.
1

N, = NaQaZ
Hp4
Suppose point B is the required operating point defined by the system.
1
N, = NB—Q352 Equating, we can calculate Ng, the speed of the geometrically similar pump.
Hgs

We still don’t know the size of the pump that will produce the head and flow at B. Since the head
and flow coefficients are the same then:-

1/3
. .. N
Equating Flow Coefficients we get Dy = DA(QB—AJ

QaNg
. - N, | Hg
Equating head coefficients we get we get Dy =—> [—
I\IB HA

If the forgoing is correct then both will give the same answer.
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WORKED EXAMPLE No. 1

A centrifugal pump is required to produce a flow of water at a rate of 0.0160 m®/s against a
total head of 30.5 m. The operating characteristic of a pump at a speed of 1430 rev/min
and a rotor diameter of 125 mm is as follows.

Efficiency 0 48 66 66 45 %
Qa 0 0.0148 0.0295 0.0441 0.059 m®/s
Ha 68.6 72 68.6 53.4 22.8 m

Determine the correct size of pump and its speed to produce the required head and flow.
SOLUTION
Plot the data for the pump and determine that the optimal head and flow are 65 m and

0.036m%/s
g0

50 \\\
40 / =

a0
20 / N :
/ 1430 yevinm
10
I:I * 1 1 1 1 1 1

0 0.m 0.0z 0.03 0.04 005 0.0& 0oy

=11.85

1
NAQa2z _1430x0.036"
Az _

Calculate Ns at point A N, = T

Hua

Calculate the Speed for a geometrically similar pump at the required conditions.
3

— 3/4
Hpe _1185x305% _ . o . .

1 1/2
Q.2 0.016
Next calculate the diameter of this pump.
173 1/3
D, =D, QeNa | _ 5(0.016x1430j —_101mm
ANg 0.036 x1216

or DB:DA& He _ 195, 1430 1305 1011y
Ng | Ha 1216\ 6

Answer:- we need a pump 101 mm diameter running at 1216 rev/min.
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RUNNING WITH THE WRONG SIZE

In reality we are unlikely to find a pump exactly the right size so we are forced to use the nearest we
can get and adjust the speed to obtain the required flow and head. Let B be the required operating
point and A the optimal point for the wrong size pump. We make the flow and head coefficients the
same for B and some other point C on the operating curve. The diameters cancel because they are

the same.
Q Q N
2 3 < 3 QB =QC_B

. N _—
Substitute —2- = &to eliminate the speed
A Qa

2
s
B

This is a family of parabolic curves starting at
the origin. If we take the operating point B we
can determine point C as the point where it
intersects the operating curve at speed A.

The important point is that the efficiency curve
is unaffected so at point B the efficiency is not

optimal.

2
N.2D.> N.2D.’ ® NG
C C C C C
Head & tond Efficiency
etl / Efficiency
E A
{’_‘
B
Flow )
Figure 2

WORKED EXAMPLE No. 2

If only the 125 mm pump in WE 1 is available, what speed must it be run at to obtain the
required head and flow? What is the efficiency and input power to the pump?

SOLUTION

B is the operating point so we must calculate Hc and Q¢

2 2
HC:HB(%j :30.5(—QC J =119141Q¢

. 0.016

This must be plotted to determine Q¢
From the plot Hc =74 m
Qc = 0.025 m®/s

Equate flow coefficients to find the speed

at B
Qs Qc 0.016 0.025
NgDg® NcDCG° Ng 1430

Ng = 915 rev/min

120

G0

40

20

(14 T T
u] 0.m 0.0z

Check by repeating the process with the head coefficient.
0Ms _ 9Ha  NyoN, e 1430 222~ 918 revimin
Ng'Dg" NA"Da Ha 74

The efficiency at this point is 63% Water Power = mgH =16 x 9.81 x 30.5 =4787 W

Power Input = WP/m = 4787/0.63 =7598 W

T T T T
0.03 0.04 0.05 0.06 0.07

©D.J.Dunn freestudy.co.uk




WORKED EXAMPLE No.3

A pump draws water from a tank and delivers it to another with the surface 8 m above that of
the lower tank. The delivery pipe is 30 m long, 100 bore diameter and has a friction coefficient
of 0.003. The pump impeller is 500 mm diameter and revolves at 600 rev/min. The pump is
geometrically similar to another pump with an impeller 550 mm diameter which gave the data
below when running at 900 rev/min.

AH(m) 37 41 44 45 42 36 28
Qm3/s) 0 0016 0.32 0.048 0.064 0.08 0.096

Determine the flow rate and developed head for the pump used.
SOLUTION

First determine the head flow characteristic for the system.

AH = developed head of the pump = 8 + 4fLu2/2gd + minor losses
No details are provided about minor losses so only the loss at exit may be found.

hL = 4fLu2/2gd + u2/2g
AH = = 8 + 4fLu2/2gd + u2/2g

u=4Q/nd2=127.3Q
AH = 8 + 4x 0.003 x 30 000(127.3Q)2/(2g x 0.1) + (127.3Q)2/2g
AH = 8 + 3800Q2

Produce a table and plot AH against Q for the system.
AH(m) 8 8.38 14.08 32.3 46
Q(m3/s) 0 0.01 0.04 0.08 0.1

Plot the system head and pump head against flow and find the matching point.
This is at H = 34.5 and Q = 0.084 m*/s

Next determine the head - flow characteristic for the pump actually used by assuming dynamic
and geometric similarity.

Flow Coefficient Q/ND3 = constant

Q2 =Q2 (N1/N2)(D13/D23) Q2 =(600/900) (500/550)3= 0.5 Q1
AH/(ND)2 = constant
AH2 = AH1(N2D2/N1D1)2 AH2= AH1{600 x 500/900 x 550}2 = 0.367 AH1

Produce a table for the pump using the coefficients and data for the first pump.

AH2 (m) 13,58 15.05 16.15 16.51 15.41 13.21 10.28
Q2(m3/s) 0 0.08 0.016 0.024 0.032 0.04 0.048

Plot this graph along with the system graph and pick off the matching point.

©D.J.Dunn freestudy.co.uk 7




Head m

50
ASystem
A0 //
7
30 /’
ff
20 A
et [ A
L5 10 PUMp
3
Flow dm'/s
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38
Figure 3

Ans. 13.5 m head and 38 dm3/s flow rate.
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SELF ASSESSMENT EXERCISE No.1

1. A centrifugal pump must produce a head of 15 m with a flow rate of 40 dm3/s and shaft speed
of 725 rev/min. The pump must be geometrically similar to either pump A or pump B whose
characteristics are shown in the table below.

Which of the two designs will give the highest efficiency and what impeller diameter should be
used ?

PumpA D=025m N =1 000 rev/min

Q (dm3/s) 8 11 15 19
H (m) 8.1 7.9 7.3 6.1
n% 48 55 62 56

PumpB D=055m N =900 rev/min

Q (dm3/s) 6 8 9 11
H (m) 42 36 33 27
n% 55 65 66 58

Answer Pump B with D=0.455m
2. Define the Head and flow Coefficients for a pump.
Oil is pumped through a pipe 750 m long and 0.15 bore diameter. The outlet is 4 m below the

oil level in the supply tank. The pump has an impeller diameter of 508 mm which runs at 600
rev/min. Calculate the flow rate of oil and the power consumed by the pump. It may be

assumed Cf:O.079(Re)_O'25. The density of the oil is 950 kg/m3 and the dynamic viscosity is 5 X
-3
10" N s/m2.

The data for a geometrically similar pump is shown below.

D=0.552m N =900 rev/min

Q (m3/min) 0 1.14 2.27 3.41 455  5.68 6.86
H (m) 341 372 39.9 40.5 38.1 329 25.9
n% 0 22 41 56 67 72 65

Answer 2 m3/min and 7.89 kWatts
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3. GENERAL THEORY

A Centrifugal pump is a Francis turbine running backwards.
water between the rotor vanes experiences centrifugal force
flows radially outwards from the middle to the outside. As it
flows, it gains kinetic energy and when thrown off the outer
of the rotor, the kinetic energy must be converted into flow
energy. The use of vanes similar to those in the Francis
wheel helps. The correct design of the casing is also vital to
ensure efficient low friction conversion from velocity to
pressure. The water enters the middle of the rotor without
swirling so we know w1 is always zero for a c.f. pump.
that in all the following work, the inlet is suffix 1 and is at
inside of the rotor. The outlet is suffix 2 and is the outer edge
rotor.

Fig. 1 Basic Design

The
and

edge

Note

the
of the

The increase in momentum through the rotor is found as always by drawing the vector diagrams. At

inlet v1 is radial and equal to vr1

SO V is zero. This is so
wl Vw2
regardless of the vane angle but R

there is only one angle which

v
produces shockless entry and this 2 VR2
must be used at the design speed. a Pz
2
Outlet

At outlet, the shape of the vector
diagram is greatly affected by the
angle. The diagram below shows
typical vector diagram when the
is swept backwards (referred to
vane velocity u).

Fig. 2
vw2 may be found by scaling
from the diagram. We can also apply trigonometry to the diagram as follows.

\'

— =U, —
tanoa, ~ A,tan(a,) ° wkD,t,tan(a,)
tis the height of the vane and k is the correction factor for the blade thickness.
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3.1. DIAGRAM POWER D.P.= mAuvy

since usually w1 is zero this becomes D.P.= mu,vyy,

3.2. WATER POWER W.P. = mgAh
Ah is the pressure head rise over the pump.

3.3. MANOMETRIC HEAD Ahm

This is the head that would result if all the energy given to the water is converted into pressure head.
It is found by equating the diagram power and water power.

UV, U Q
mu.V. . = maA Ah. =—2"w2 _ 22}, X
2V 9AQ m g g { 2 Aztan(az)}
3.4. MANOMETRIC EFFICIENCY mm

_ WaterPower mgAh  mgAh  Ah
Diagram Power mu,v,, mgAh_ Ah_

Nm

3.5. SHAFT POWER S.P.=2nNT

_ Water Power

3.6. OVERALL EFFICIENCY =
Shaft Power

770/a

mv3

2
Note the energy lost is mainly in the casing and is usually expressed as a fraction of the K.E. at exit.

3.7. KINETIC ENERGY AT ROTOR OUTLET K.E.=

3.8. NO FLOW CONDITION

There are two cases where you might want to calculate the head produced under no flow condition.
One is when the outlet is blocked say by closing a valve, and the other is when the speed is just
sufficient for flow to commence.

Under normal operating conditions the developed head is given by the following equation.

u,v u
Ah: 2 W2:_2{u2_ Q }
g Atan(o, )
When the outlet valve is closed the flow is zero. The developed head is given by the following
2
equation.  Ah :ug—z{u2 —0}=ug—2
When the speed is reduced until the head is just sufficient to produce flow and overcome the static

head, the radial velocity vy, is zero and the fluid has a velocity u, as it is carried around with the

u3

rotor. The kinetic energy of the fluid is and this is converted into head equal to the static head.

2 h
It follows that hy :;—2. Substituting u, = ENGEZ we find that N :83.5\/[?.
9
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WORKED EXAMPLE No.4

A centrifugal pump has the following data :

Rotor inlet diameter D1 =40 mm
Rotor outlet diameter D2 =100 mm
Inlet vane height h1 =60 mm
Outlet vane height h2 =20 mm
Speed N =1420 rev/min
Flow rate Q =0.0022 m3/s

Blade thickness coefficient  k =0.95
The flow enters radially without shock.

The blades are swept forward at 300 at exit.
The developed head is 5 m and the power input to the shaft is 170 Watts.

Determine the following.
I.  The inlet vane angle
ii. The diagram power
iii. The manometric head
iv. The manometric efficiency
v. The overall efficiency.
vi. The head produced when the outlet valve is shut.
vii. The speed at which pumping commences for a static head of 5 m.

SOLUTION

u,= nND, = 2.97 m/s

u,= tND, = 7.435 m/s

vr,=Q/knD;h,= 0.307 m/s

vr2=Q/knD,h,= 0.368 m/s

Since the flow enters radially v, = vy,= 0.307 m/s and vyy1 =0

From the inlet vector diagram the angle of the vane that produces no shock is found as follows:
tano, = 0.307/2.97 hence o, = 5.90.

™
,/;_;-:""'ﬂ}ﬁ 3"’;1
o 1’) Uy

Fig. 41
Inlet vector diagram
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From the outlet vector diagram we find :

W 0
" '\2 30

P

v T -.368
M ¥ VrE o

F
b

Fig. 42

Outlet vector diagram

v, = 7.435 + 0.368/tan 300 = 8.07 m/s
D.P.= mu,vy,
D.P.=2.2 x 7.435x 8.07 = 132 Watts

W.P. =mgAh =2.2 x 9.81 x 5 = 107.9 Watts

Ahm = W.P./D.P.= 107.9/132 = 81.7%

Ahm = u,vwy,/g = 7.435 x 8.07/9.81 =6.12 m

Am = Ah/Ahm = 5/6.12 = 81.7%
Nofa = W.P./S.P. = 107.9/170 = 63.5%

u; 7.435°

When the outlet valve is closed the static head is Ah = = =5.63m

g 981

h
The speed at which flow commences is N =83.5 \/E = 83.5£ =1867 rev/min
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SELF ASSESSMENT EXERCISE No. 2

1. The rotor of a centrifugal pump is 100 mm diameter and runs at 1 450 rev/min. It is 10 mm

deep at the outer edge and swept back at 300. The inlet flow is radial. the vanes take up 10% of
the outlet area. 25% of the outlet velocity head is lost in the volute chamber. Estimate the shut

off head and developed head when 8 dm3/s is pumped. (5.87 m and 1.89 m)

2. The rotor of a centrifugal pump is 170 mm diameter and runs at 1 450 rev/min. It is 15 mm
deep at the outer edge and swept back at 300. The inlet flow is radial. the vanes take up 10% of
the outlet area. 65% of the outlet velocity head is lost in the volute chamber. The pump delivers
15 dm3/s of water.

Calculate
I. The head produced. (9.23 m)
ii. The efficiency. (75.4%)
iii. The power consumed. (1.8 kW)
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FLUID MECHANICS

TUTORIAL 8C

PUMPED PIPED SYSTEMS

On completion of this tutorial you should be able to do the following.

= Examine the conditions that produce cavitation.

= Calculate pressure surges due to flow changes.

= Calculate the stress in pipes due to pressure changes.
= Describe how pressure surges are damped.

= Describe how pressure oscillations occur in pipes.

Let's start by examining the meaning of specific speed of pumps.



1. SPECIFIC SPEED Ns

The specific speed is a parameter used for pumps and turbines to determine the best design to match
a given pumped system. The formula may be derived from consideration of the pump geometry or
by dimensional analysis. The derivation is covered in the next tutorial. The specific speed is defined
as

1
2
N, = NQT

s 3

(AH)*
Traditionally the units used are rev/min for speed, m3/s for flow rate and metres for head. The value
that corresponds to the most efficient operating point of the pump or turbine is the one of greatest
importance.

1.2. DYNAMIC HEAD AND SUCTION HEAD

Consider a pump delivering liquid from a tank on the suction side into a tank on the outlet side
through a pipe.

- _—_ Fy

positive
lift

¥
&
suction lift
21

¥

Figure 1
Dynamic head = hq
hq = positive lift + head loss
Suction head = hgyc = suction lift + head loss

The head loss could include loss at entry, loss in fittings and bends as well as pipe friction.
hsuc = z1 + hf1 +v12/2g

1.3. CAVITATION

When a liquid cavitates, it turns into a vapour and then suddenly changes back into a liquid with a
load cracking sound. The bubbles of vapour cause damage to the metalwork by eroding it away.
The main reason for cavitation is due to the local pressure falling below the vapour pressure of the
liquid. The vapour pressure is raised with temperature and is more likely to occur in hot liquids. In
pumps and turbines, the drop in pressure is often due to the wake set up behind the impeller. The
system design is also important to prevent a vacuum forming due to restrictions on the suction side
of the pump or negative heads on the outlet side of the turbine. An important parameter used for
determining the likelihood of cavitation in pumps is the Nett Positive Suction Head.
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1.4, NET POSITIVE SUCTION HEAD (N.P.S.H.)

The Net Positive Suction Head is the amount by which the absolute pressure on the suction side is
larger than the vapour pressure (saturation pressure) of the liquid.

NPSH = absolute inlet head - vapour pressure head
Absolute inlet head = pa/pg - hs
where pg= atmospheric pressure and hs= ps/pg
The vapour pressure varies with temperature and for water is found in thermodynamic temperatures

under the heading ps. (for saturation pressure).
Vapour pressure as a head is ps/pg

NPSH = (pa/pg - hsuc ) - ps/pg
NPSH = (Pa - Ps)/pg - hsuc

WORKED EXAMPLE No.1

A water pump has a suction lift of 5 m. The friction head in the suction pipe is 0.3m. The
kinetic head is negligible. The water temperature is 160C. Atmospheric pressure is 1.011 bar
(10.31 m water). Determine the NPSH .

SOLUTION

hsuc=5+0.3=53m

ps = 0.01817 bar (from tables)

NPSH = (1.011 - 0.01817) x 105/(1000 x 9.81) - 5.3
NPSH = 4.821 metres of water

atmospheric pressure

10.31
m ry

vacuum
53m

pump inlet pressure 4
absolute NPSH
head 4821 m
h.01 m

v saturation pressure
ZET0 T 0.0187 baror 0.189 m
Figure 2
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1.5. CAVITATION PARAMETER

A further useful parameter is the cavitation parameter . This is defined as
¢ = NPSH/h¢g

Values at which cavitation occur are sometimes quoted by manufacturers but as a rough guide they
are related to the specific speed and typical values are

o = 0.05 when Ng = 1000
o = 1.0 when Ng = 8000

WORKED EXAMPLE No.2

If 6 = 0.4 for the previous example find the minimum delivery head which prevents cavitation.
SOLUTION

0.4 =4.821/hg hence hg =12.05 m.

SELF ASSESSMENT EXERCISE No. 1

1. A pump has a suction pipe and a delivery pipe. The head required to pass water through them
varies with flow rate as shown.

head m

16 —] hy

12

8§ —

1] | | flow m3fs

suc

Figure 3
The pump must deliver 3 m3/s at 2 000 rev/min. Determine the specific speed.
The vapour pressure is 0.025 bar and atmospheric pressure is 1.025 bar. Calculate the NPSH

and the cavitation parameter.
Answers NPSH=4.19m ¢ =0.323
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2. Define the term "Nett Positive Suction Head" and explain its significance in pump operation.
1.2 kg/s of acetone is to be pumped from a tank at 1 bar pressure. The acetone is at 400C and
the pump is 1.5 m below the surface. The suction pipe is 25 mm bore diameter. Calculate the
NPSH at the pump inlet.

Losses in the suction pipe are equal to three velocity heads.
The vapour pressure of acetone is 55 kPa. The density is 780 kg/m3.
Answer 5.37 m
3. A centrifugal pump delivers fluid from one vessel to another distant vessel. The flow is

controlled with a valve. Sketch and justify appropriate positions for the pump and valve when
the fluid is a) a liquid and b) a gas.

Let's move on to examine the transient pressure changes in pipes when the fluid is accelerated
or decelerated.
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2. WATERHAMMER

In this section, we will examine the causes of water hammer. The sudden acceleration or
deceleration of fluids in pipes is accompanied by corresponding changes in pressure that can be
extremely large. In the extreme, the pressure surge can split the pipe. The phenomenon is often
accompanied by load hammer noises, hence the name.

First, we must examine the Bulk Modulus (K) and the derivation
of the acoustic velocity in an elastic fluid.

2.1 BULK MODULUS (K)

Bulk modulus was discussed in Chapter 1 and defined as follows.
K = Change in pressure ~ VAp _ Vop
Volumetric strain AV 8V

V is volume and p is pressure. The following work shows how
this may be changed to the form K = pdp/dp

>

. ) &N —e= |q—2-»
Consider a volume V; that is compressed to volume V; by a vy
small increase in pressure dp. The reduction in volume is dV.

The initial density is p and this increases by op

Figure 4
The mass of 8V is IM=p3dV . (2.1)
The initial mass of V, is MI=pV2 e, (2.2)
The final mass of V3 is M2 =(p+3p) Vaurroerennnn. (2.3)

The increase in mass is due to the mass of 6V being compressed into the volume V2.
Hence (2.1) = (2.3) - (2.2)

p OV =(p+38p) Vz2-pVa=p Vot p Vo- pV,
pSVZSp V,

p 8V = 8p (Vi- 8V)

p 8V = V1dp - 8p 8V

The product of two small quantities (6p 6V) is infinitesimally small so it may be ignored.

poV =V, dp
oV _dp
V, p
i - P substitute this into the formula for K
3V  op
K - Vép :p_Sp
oV op

In the limit as 3V — 0, we may revert to calculus notation.

Hence K = pdp/dp

© D.J.DUNN freestudy.co.uk 6



2.2 SPEED OF SOUND IN AN ELASTIC MEDIUM

Most students don’t need to know the derivation of the formula for the speed of sound but for those
who are interested, here it is.

Consider a pipe of cross sectional area A full of fluid. Suppose a piston is pushed into the end with
a velocity u m/s. Due to the compressibility of the fluid, further along the pipe at distance L, the
fluid is still stationary. It has taken t seconds to achieve this position. The velocity of the interface is
hence a = L/t m/s. In the same time the piston has moved x metres so u = x/t.

Figure 5

The moving fluid has been accelerated from rest to velocity a. The inertia force needed to do this is
in the form of pressure so the moving fluid is at a higher pressure than the static fluid and the
interface is hence a pressure wave travelling along the pipe at velocity a.

The volume Ax has been compacted into the length L. The initial density of the fluid is p.

The mass compacted into length L is dm = pAx.

substitute x = ut dm=pAut...... (2.4)

The density of the compacted fluid has increased by dp so the mass in the length L has increased
by dmn=ALdp

Substitute L = at dm=Aatdp.....(2.5)
Equate (3.10. 4) and (3.10.5) pAut=Aatdp a=upldp........... (2.6)
The force to accelerate the fluid from rest to a m/s is given by Newton's 2nd law

F = mass x acceleration = A dp

mass = pAL acceleration = u/t Adp=pALult
dp=pLult
Substitute L =atthendp=p au a=(dp/up) ...ccccoervennnnn 2.7)

The velocity of the pressure wave a is by definition the acoustic velocity. Multiplying (2.8) by (2.7)
gives a2.

Hence a2=(up/dp)(dp/up) a=(dp/dp)* (2.9)

Previously it was shown that K =p dp/dp a=(Kl/p)*
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Students who have studied fundamental thermodynamics will understand the following extension of
the theory to gases. The following section is not needed by those following the basic module.

Two important gas constants are the adiabatic index y and the characteristic gas constant R. For a
gas, the pressure change is adiabatic and if dp is small then the adiabatic law applies.

pV' = Constant
Dividing through by m’ we get p(V/m)’ = constant/m’ = constant p/p’ =C

Differentiating we get dp/dp = C (yp'™) )
dp/dp = (p/p)(yp")
dp/dp = py/p

From (2.8) it follows that a=(pylp)”
From the gas law we have pV = mRT

p=(M/V)RT

p=pRT
The velocity of a sound wave is that of a weak pressure wave. If the pressure change is large then
dp/dp is not a constant and the velocity would be that of a shock wave which is larger than the
acoustic velocity.
For air y = 1.4 and R = 287 J/kg K. Hence at 20°C (293 K) the acoustic velocity in air is as follows.
a=(YRT)" = (1.4 x 287 x 293)* = 343 m/s

2.3 PRESSURE SURGES DUE TO GRADUAL VALVE CLOSURE

Consider a pipe line with a fluid flowing at a steady velocity of u m/s. A stop valve is gradually
closed thus decelerating the fluid uniformly from u to zero in t seconds.

L

Figure 6

Volume of fluid = AL

Mass of fluid = pAL

Deceleration = u/t

Inertia force required F = mass x deceleration = pAL u/t

To provide this force the pressure of the fluid rises by Ap and the force is A Ap.
Equating forces we have A Ap = pAL ult
Ap = pL u/t
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2.4 PRESSURE SURGES DUE TO SUDDEN VALVE CLOSURE

If the valve is closed suddenly then as t is very small the pressure rise is very large. In reality, a
valve cannot close instantly but very rapid closure produces very large pressures. When this occurs,
the compressibility of the fluid and the elasticity of the pipe is an important factor in reducing the
rise in pressure. First, we will consider the pipe as rigid.

—wumfs [| static &l

amjst—
Figure 7

When the fluid stops suddenly at the valve, the fluid further up the pipe is still moving and
compacting into the static fluid. An interface between moving and static fluid (a shock wave)
travels up the pipe at the acoustic velocity. This is given by the equation:

a= (K/p)¥2 K = Vdp/dV

If we assume that the change in volume is directly proportional to the change in pressure then we
may change this to finite changes such that

K =V 5p/sV 5V= Vp/K

The mean pressure rise is dp/2

The strain energy stored by the compression = dp 6V/2
The change in Kinetic energy = %> mu2

Equating for energy conservation we get

mu?/2 = 8p 8V/2= (8p)V(8p)/2K mu? = V/(8p) /K
mKu?/V = (8p)?

(8p) 2= (MV)K u? = p K u?

8p = u(Kp)72

Since a’ = K/p then K = a%p 8p = u(@p?)%2
Then dp=uap
For a large finite change, this becomes Ap=aup

SELF ASSESSMENT EXERCISE No. 2

The density of water is 1000 kg/m3 and the bulk modulus is 4 GPa throughout.
1. A pipe 50 m long carries water at 1.5 m/s. Calculate the pressure rise produced when

a) the valve is closed uniformly in 3 seconds. (25 kPa)
b) when it is shut suddenly. (3 MPa)

2. A pipe 2000 m long carries water at 0.8 m/s. A valve is closed. Calculate the pressure rise
when

a) it is closed uniformly in 10 seconds. (160 kPa)
b) it is suddenly closed. (1.6 MPa)
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2.5 THE EFFECT OF ELASTICITY IN THE PIPE

A pressure surge in an elastic pipe will cause the pipe to swell and some of the energy will be
absorbed by straining the pipe wall. This reduces the rise in pressure. The more elastic the wall is,
the less the pressure rise will be. Consider the case shown.

&
Y

Figure 8
Kinetic Energy lost by fluid = % mu?
The mass of fluid is pAL so substituting K.E. = % pALU?

Strain Energy of fluid = Ap’AL/2K (from last section)

Now consider the strain energy of the pipe wall.
The strain energy of an elastic material with a
direct stress o is given by

S.E. = (6%/2E) x volume of material
The pipe may be regarded as a thin cylinder and
suitable references will show that stress stretching
it around the circumference is given by the
following formula. Figure 9
o = ApD/2t
Volume of metal = xDtL

Ap DJZX nDtL _ (Ap)’ DAL

2t 2E 2tE
Equating KE lost to the total S.E. gained yields

Hence S.E.:(

2 2tE 2K

. _(apf'D _ (ap) :(Ap)z{ D, 1}

u? = —+=
P € K

pALu?  (Ap)’DAL .\ (Ap)* AL

tE K

The solution is usually given in terms of the effective bulk modulus K' which is defined as follows.
-1
K'= B_i_l
tE K
The pressure rise is then given by Ap = u[p/K']"2

The acoustic velocity in an elastic pipe becomes a' and is given as a' = (K'/p)”2
Hence Ap=pua'
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WORKED EXAMPLE No.3

The density of water is 1000 kg/m3 and the bulk modulus is 4 GPa. The modulus of elasticity
for steel E is 200 Gpa.

A steel pipe carries water at 2 m/s. The pipe is 0.8 m bore diameter and has a wall 5 mm thick.
Calculate the pressure rise produced when the flow is suddenly interrupted.

SOLUTION
-1 -1
K':{R+i} :{ 08, 1 9} —952.4 MPa

tE K 0.005x 200x10° 4x10

Sudden closure  a = (K'/p) * = (952.4 x 10%/1000) ** = 976 m/s
Ap=a'up=976 x2x 1000 =1.95 MPa

2.6 DAMPING OUT PRESSURE SURGES

Pressure surges or water hammer occurs whenever there is a change in flow rate. There are many
causes for this besides the opening and closing of valves. Changes in pump speeds may cause the
same effect. Piston pumps in particular cause rapid acceleration and deceleration of the fluid. In
power hydraulics, changes in the velocity of the ram cause the same effect. The problem occurs
both on large scale plant such as hydroelectric pipelines and on small plant such as power hydraulic
systems. The principles behind reduction of the pressure surges are the same for each, only the scale
of the equipment is different.

For example, on power hydraulic systems, accumulators are used. These are vessels filled with both
liquid and gas. On piston pumps, air vessels attached to the pipe are used. In both cases, a sudden
rise in pressure produces compression of the gas that absorbs the strain energy and then releases it
as the pressure passes.

® Damping valve

Protected pipe : s - kfs’aggseure

Figure 10
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On hydroelectric schemes or large pumped systems, a surge tank is used. This is an elevated
reservoir attached as close to the equipment needing protection as possible. When the valve is
closed, the large quantity of water in the main system is diverted upwards into the surge tank. The
pressure surge is converted into a raised level and hence potential energy. The level drops again as
the surge passes and an oscillatory trend sets in with the water level rising and falling. A damping
orifice in the pipe to the surge tank will help to dissipate the energy as friction and the oscillation
dies away quickly.

Figure 11

2.7 ANALYSIS OF SURGE TANK

Let the area of the surge tank be A and the area of the main pipe be A. The length of the pipe is L.
Let the volume flow rate during normal operation of the turbines be Q. In the simplest analysis we
will consider that there is no friction anywhere and that when an emergency stop is made, all the
water is diverted into the surge tank.

o dz Q dz
Mean velocity in surge tank U+ = — = — =A;—
Yy g L A, Q=A; qt
Mean velocity in the pipe u, _Q
Ap
. dz A
Substitute for U, =——T 1
Q=G (2)

The diversion of the flow into the surge tank raises the level by z. This produces an increased
pressure at the junction point of Ap = pgz

The pressure force produced F= ApAp= ApAgz
The inertia force required to decelerate the water in the pipe is
F = mass x deceleration = - mass x acceleration = - pApL du/dt

Equating forces we have the following.

du du L du
A pgz=-pA_ L— z=-L— z
pPIZ="P Rl O dt g dt

Putting (1) into (2) we get
LA;d*z d’z _ 9A,

z= - Z e (3)
g A, dt? dt>  LAg
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By definition this is simple harmonic motion since the displacement z is directly proportional to the
acceleration and opposite in sense. It follows that the frequency of the resulting oscillation is

f_i 9A
2n L A;

The periodic time will be T=1/f
The amplitude and periodic time are referred to as the APO (amplitude and period of oscillation).

A good mathematician would solve the 2nd order differential equation to produce both the
frequency and amplitude.

Equation (3) maybe re-written as follows.
2 A 2
d—ZZ:—g P 7=—0’z izd—22+z:0
This is a special case of the standard 2™ order differential equation with no friction.

27 42
(i) d’z +2§(%j+z:o
o) | dt? o\ dt

d is called the damping ratio and this appears when frictional damping is considered. ® is the
angular frequency (w=2xf). This equation appears in many forms including the following.
2
972 | 255 Ejmzz =0
dt* dt
and for no friction
2
i72+0)ZZ:0
dt
The standard solution to this equation is z = z_ sin(wt)
Z, is the amplitude, that is, the amount by which the height in the tank will move up and down from
the mean level. The following is a direct way of finding the amplitude.

The mean change in height :270

The weight of water entering the surge tank = pgA;z,

2
The potential energy stored in the tank = pgA- z, Z?" =poA; Z?"
u? u’
The kinetic energy lost=Mass X — = pLA, —
2 2 ; T .
] u 2 Z(Z) i 14T :
Equate the energies. pLA, o= POA; Y -
LA,
ZO = uO
9A;
The equation for the motion in full is : ' - . | | timne
LA, . \
z=u, sin(m t)
9AT
The peak of the surge occurs at T/4 seconds from

the disturbance.
Figure 12
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2.8 THE EFFECT OF PIPE FRICTION

If pipe friction is taken into account, then the normal level of the surge tank will not be the same as
the level of the storage lake but will be less by an amount equal to the frictional loss in the system.
This is given by D'Arcys equation as hf = 4fLu2/2g

If f is regarded as a constant then we may say hf = Cu2

This must be now included into equation (3) so that

z (plus or minus hf)= - (L/g)(AT/Ap)(d2z/dt2)

The solution of this may be done by step by step integration and it would show that the amplitude
of the oscillation dies down (as for any damped oscillation in mechanical systems). In reality the

problem is more complicated because f is not constant and varies from 0 at zero flow conditions to
a maximum at maximum flow conditions. Reflected waves also complicate the story.

/\ time

o v-t\J T

Figure 13

2.9 OSCILLATIONS

The pressure surge travel along the pipe lines at the local acoustic velocity. They can be reflected so
that they travel back again to where they started. Reflections may occur from a dead end (such as a
valve, a ram or a pump) , or from an open end (such as a free surface). When they are reflected from
an open end, they are reversed into a rarefaction (negative pressure with respect to the normal
level).

When a valve is suddenly closed at the turbine of a hydro-electric plant, a pressure surge is set up
which travels to the lake and is reflected back as a rarefaction to the valve where it is again
reflected as pressure. The pressure waves will pass back and forth in the pipe gradually dying away
as the energy is dissipated. The use of a surge tank with a damping orifice reduces the effect to two
or three oscillations. The same thing may occur when a large pump is suddenly switched off only in
this case the fluid on the suction side will cause a pressure wave and on the delivery side will cause
a rarefaction because the fluid is travelling away from the pump.

In some systems such as power hydraulics, the time taken for the pressure surge to travel away from
the disturbance and to be reflected back again may coincide with the natural frequency of the item
causing the disturbance. This may be a spring loaded valve for example. The result is a unstable
oscillation with interaction between the dynamics of the valve and the dynamics of the system
causing positive feedback and sustaining the oscillation. This results in valve squeal.

This is a complex area of study and the student should consult advanced text for full details.
Attenuation due to friction is also involved. The theory is similar to that of A.C. electric power
transmission. The student would also need to study the dynamics of mechanisms, especially forced
and natural oscillations.
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SELF ASSESSMENT EXERCISE No. 3

1. Derive the water hammer equation for a long elastic pipe carrying water from a large upstream
reservoir with a constant water level to a lower downstream reservoir. Flow is controlled by a
valve at the downstream end.

Sketch the variation in pressure with time for both ends and the middle of the pipe. following
sudden closure of the valve. Sketch these variations for when friction is negligible and for
when both friction and cavitation occur.

Assuming the effective bulk modulus is given by K'={(D/E) + 1/K}-1

and that the maximum stress in the pipe is o, derive a formula for the maximum allowable
discharge.

2a. Explain the purpose and features of a surge tank used to protect hydroelectric installations.

b. Derive an expression for the amplitude of oscillation of the water surface in a surge tank of
cross sectional area Ar connected to a pipe of cross sectional area A, and length L following a
complete stoppage of the flow. The normal mean velocity in the pipe is u, and friction may be
ignored.

The general solution to the standard second order differential equation

d’z
d?'i‘m Z=C

2

2
IS z = Esin(mt) + Fcos(mt) +C—2
m

3.a. A hydroelectric turbine is supplied with 0.76 m®s of water from a dam with the level 51 m
above the inlet valve. The pipe is 0.5 m bore diameter and 650 m long.

Calculate the pressure at inlet to the turbine given that the head loss in the pipe is 8.1 m. (0.41
MPa).

Calculate the maximum pressure on the inlet valve if it is closed suddenly. The speed of sound
in the pipe is 1200 m/s. (5.05 MPa)

b. The pipe is protected by a surge tank positioned close to the inlet valve.

Calculate the maximum change in level in the surge tank when the valve is closed suddenly
(ignore friction). (3.97 m)

Calculate the periodic time of the resulting oscillation.
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4. A pipe 2 m bore diameter and 420 m long supplies water from a dam to a turbine. The turbine
is located 80 m below the dam level. The pipe friction coefficient f is 0.01 (f = 4Cx).

Calculate the pressure at inlet to the turbine when 10 m®s of water is supplied. (0.772 MPa)

Calculate the pressure that would result on the inlet valve if it was closed suddenly. The speed
of sound in the pipe is 1432 m/s. (4.55 MPa)

Calculate the fastest time the valve could be closed unormly if the pressure rise must not
exceed 0.772 MPa). (1.72 s)

5. a) Sketch the main features of a high-head hydro-electric scheme.

b) Deduce from Newton's laws the amplitude and period of oscillation (APO) in a cylindrical
surge tank after a sudden stoppage of flow to the turbine. Assume there is no friction.

c) State the approximate effect of friction on the oscillation.

d) An orifice of one half the tunnel diameter is added in the surge pipe near to the junction with
the tunnel. What effect does this have on the APO ?
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FLUID MECHANICS

TUTORIAL 9

COMPRESSIBLE FLOW

On completion of this tutorial you should be able to

e define entropy

e derive expressions for entropy changes in fluids

e derive Bernoulli's equation for gas

e derive equations for compressible ISENTROPIC flow
e derive equations for compressible ISOTHERMAL flow
e solve problems involving compressible flow

e derive equations for shock waves

e solve problems involving shock waves

Let's start by revising entropy.



1. ENTROPY

1.1 DEFINITION

You should already be familiar with the theory of work laws in closed systems. You
should know that the area under a pressure-volume diagram for a reversible expansion
or compression gives the work done during the process.

In thermodynamics there are two forms of energy transfer, work (W) and heat (Q). By
analogy to work, there should be a property which if plotted against temperature, then
the area under the graph would give the heat transfer. This property is entropy and it is
given the symbol S. Consider a p-V and T-s graph for a reversible expansion.

1] F 3 T

F

\\\_

—qV

V
Figure 1

L 2

From the p-V graph we have W = I pdV

From the T-S graph we have Q = J. TdS
This is the way entropy was developed for thermodynamics and from the above we get
the definition
dS =dQ/T
The units of entropy are hence J/K.
Specific entropy has a symbol s and the units are J/’kg K
It should be pointed out that there are other definitions of entropy but this one is the

most meaningful for thermodynamics. A suitable integration will enable you to solve
the entropy change for a fluid process.
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2. ISENTROPIC PROCESSES

The word Isentropic means constant entropy and this is a very important
thermodynamic process. It occurs in particular when a process is reversible and
adiabatic. This means that there is no heat transfer to or from the fluid and no internal
heat generation due to friction. In such a process it follows that if dQ is zero then dS
must be zero. Since there is no area under the T-S graph, then the graph must be a
vertical line as shown.

T &

ds=0

"

Figure 2

There are other cases where the entropy is constant. For example, if there is friction in
the process generating heat but this is lost through cooling, then the nett result is zero
heat transfer and constant entropy. You do not need to be concerned about this at this
stage.

Entropy is used in the solution of gas and vapour problems. We should now look at
practical applications of this property and study the entropy changes which occur in
closed and steady flow systems for perfect gases and vapours. These derivations should
be learned for the examination.
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3. ENTROPY CHANGES FOR A PERFECT GAS IN A CLOSED SYSTEMS

Consider a closed system expansion of a fluid against a piston with heat and work
transfer taking place.

System Bounday

Figure 3

Applying the non-flow energy equation we have

Q+W=AU
Differentiating we have dQ+dW=dU
Since dQ = TdS and dW = -pdV then TdS - pdV =dU

TdS =dU + pdV

This expression is the starting point for all derivations of entropy changes for any fluid
(gas or vapour) in closed systems. It is normal to use specific properties so the equation
becomes

Tds = du + pdv

but from the gas law pv = RT we may substitute for p and the equation becomes
Tds = du + RTdv/v

rearranging and substituting du = ¢y dT we have

ds =cy dT/T + Rdv/v............... (D)
s is specific entropy
v is specific volume.

u is specific internal energy and later on is also used for velocity.
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3.1.ISOTHERMAL PROCESS

T.i

h

(1)
I
|
I
|

¥

AS

Figure 4

¥

=]

In this case temperature is constant. Starting with equation (1)

ds = ¢y dT/T + Rdv/v.

since dT = 0 then

$2 - s1 =As =R In(1/v1)

A quicker alternative derivation for those familiar with the work laws is:

O+W =AUbut AU=0thenQ=-WandW = -mRT lnﬂ

0= ITds = TAS but T is constant.

2s=2-- 2 _rinz
T T

1

AS:lenE

1

As = Rlnv—zandsincev—2=ﬂ

Yy Vi D,

As =Rlnﬂ
P,
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3.2. CONSTANT VOLUME PROCESS

.,/ Ine of
T “(2) constant volume
F
(1)
» 5
ol ﬂ 5 B
Figure 5
Starting again with equation (1) we have ds = ¢ydT/T + Rdv/v
In this case dv=0 so ds = ¢ dT/T
Integrating between limits (1) and (2) As= ¢y In(T»/Ty)
3.3 CONSTANT PRESSURE PROCESS
T line of constant
4 pressure
(2] =

-
—_

"

> 5
Figure 6
Starting again with equation (1) we have
T . : .
ds =C, d7 + Rﬂ In this case we integrate and obtain
14

T v
As=C, lnFZR In—2= For a constant pressure process, v/T = constant
1 Vi

V)

v

1 1 1 1

It was shown in an earlier tutorial that R = ¢, - ¢y hence

T
As=C, In—=

1

. ©D.J.Dunn
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3.4_POLYTROPIC PROCESS

This is the most difficult of all the derivations here. Since all the forgoing are particular
examples of the polytropic process then the resulting formula should apply to them also.

Sconstp
s I 1

T . mgt P

]

1 - -

(2)

¥
EL ]

S5a4-58 Sa-
1771 |JATR)

Lol B

F 3

B
Ll

Figure 7

The polytropic expansion is from (1) to (2) on the T-s diagram with different pressures,
volumes and temperatures at the two points. The derivation is done in two stages by
supposing the change takes place first at constant temperature from (1) to (A) and then
at constant pressure from (A) to (2). You could use a constant volume process instead of
constant pressure if you wish.

$2-S1 = (SA-S1) - (SA-S2)

$2-S1 = (SA-S1) + (s2-5A)
For the constant temperature process

(sa-s1) =R In(p1/pa)
For the constant pressure process

(s2-sA) = (cp) In(T2/TA)

Hence
T. .
As = Rin 2L C, In—+s-s1 Since ppo = p2 and Tao=T
P T,
Then
P T, o
As =$3-s1 = Rln—+C, In—= Divide through by R
T
P 1
c, T
as_ Py Zr e
p, R T

From the relationship between cp, ¢y, R and y we have ¢p/R =y /(y-1)
ra
-1
Hence £=lnﬁ+Lln—2 £=lnﬂ(£jy
p, r—-1 T R P\ 144

This formula is for a polytropic process and should work for isothermal, constant
pressure, constant volume and adiabatic processes also. In other words, it must be the
derivation for the entropy change of a perfect gas for any closed system process. This
derivation is often requested in the exam.
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WORKED EXAMPLE No. 1

A perfect gas is expanded from 5 bar to 1 bar by the law pV'” = C. The initial
temperature is 200°C. Calculate the change in specific entropy.
R=287JkgK y=14.

SOLUTION

1
1\ 12
T, =473 S —361.7K

ralen t
R P, \ T,

35
As _ (In5) 30LTV 0671
R 472

As =0.671x 287 =192.5J/kgK

SELF ASSESSMENT EXERCISE No. 1

Calculate the specific entropy change when a perfect gas undergoes a reversible
isothermal expansion from 500 kPa to 100 kPa. R = 287 J/kg K.
(Answer +461.9 J/kg K).

Calculate the total entropy change when 2 kg of perfect gas is compressed
reversibly and isothermally from 9 dm3 to 1 dm3. R=300 J/kg K. (Answer -1.32
kJ/k)

Calculate the change in entropy when 2.5 kg of perfect gas is heated from 200C to
1000C at constant volume. Take cy= 780 J/kg K (Answer 470 J/K)

Calculate the total entropy change when 5 kg of gas is expanded at constant
pressure from 300C to 2000C. R =300 J/kg K cy= 800 J/kg K (Answer 2.45 kJ/K)

Derive the formula for the specific change in entropy during a polytropic process
using a constant volume process from (A) to (2).

A perfect gas is expanded from 5 bar to 1 bar by the law pV " = C. The initial
temperature is 200°C. Calculate the change in specific entropy.
R=287JkgK vy=14. (Answer -144 J/kg K)

A perfect gas is expanded reversibly and adiabatically from 5 bar to 1 bar by the
law pV' = C. The initial temperature is 2000C. Calculate the change in specific
entropy using the formula for a polytropic process. R = 287 J/kg Ky =1.4. (The
answer should be zero since the process is constant entropy).
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Let's go on to apply the knowledge of entropy to the flow of compressible fluids starting
with isentropic flow.

4. ISENTROPIC FLOW

Isentropic means constant entropy. In this case we will consider the flow to be
ADIABATIC also, that is, with no heat transfer.

Consider gas flowing in a duct which varies in size. The pressure and temperature of the
gas may change.

Figure 8

Applying the steady flow energy equation between (1) and (2) we have :

® - P =AU+ AF.E.+ AK.E. + AP.E.

For Adiabatic Flow, ® = 0 and if no work is done then P =0
AU + AFE. = AH

hence :
0 = AH+ AK.E.+ AP.E.

In specific energy terms this becomes :
0= Ah + Ak.e. + Ap.c.

rewriting we get:
h; + u12/2 + gz =h + w2+ g z,

For a gas, h = C, T so we get Bernoulli's equation for gas which is :
CT, + u12/2 + gz, =CpT, + u22/2 + gz,

Note that T is absolute temperature in Kelvins T =0C + 273
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4.1 STAGNATION CONDITIONS

If a stream of gas is brought to rest, it is said to STAGNATE. This occurs on leading
edges of any obstacle placed in the flow and in instruments such as a Pitot Tube.
Consider such a case for horizontal flow in which P.E. may be neglected.

I
™

1 ]
(1) o1

L 4

Figure 9

u=0 andzy =2z soCpT| + uj2/2 =C,To + 0
Ty = u22Cp +T)
T, 1is the stagnation temperature for this case.

LetTo-Ty= AT = u2/2Cp

AT =u12/2Cp
NowCp -Cy = R and Cp, /Cy=y v is the adiabatic index .
hence Cp =R /(y-1) andso:

AT=ui2(y-1)/ 2yR)
It can be shown elsewhere that the speed of sound a is given by :

a2=yRT
hence at point 1:
AT /Ty =uw2(y-1)/ 2y RT))=ui2(y-1)/2a;2

The ratio u/a is the Mach Number M, so this may be written as :
AT/ Ty = Ma2(y -1)12

If M, is less than 0.2 then M,2 is less than 0.04 and so AT/T; is less than 0.008. It
follows that for low velocities, the rise in temperature is negligible under stagnation
conditions.

10
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The equation may be written as :
I,-1, _ M§(7_1)
T, 2

Since pV/T = constant and p V' = constant then :
L_I

T _ [P_j r
T, P
Hence :

+1

(p_zjV M)

b 2

B

p2 is the stagnation pressure. If we now expand the equation using the binomial theorem

we get :
2 2 4
p_2:1+yMa 1+Ma +Ma F e,
P, 2 4 8
2
If M, is lessthan0.4then:p—2:1+YM—a
P,

Now compare the equations for gas and liquids :

LIQUIDS  u=(2Ap/p)0.5

2
GAS by _, Ma
P
Ma2 V2 u2
Putpo=p1 + Ap SOZAp:y pl_Y1p1=p1 1

2 7' 2yRT 2
where p1= pi/RT and  Mz2=u;2/(yRT)

hence u=(2Ap /p1)0-5 which is the same as for liquids.

11
. ©D.J.Dunn



SELF ASSESSMENT EXERCISE No. 2

Take y=1.4 and R =283 J/kg K in all the following questions.

1. An aeroplane flies at Mach 0.8 in air at 150 C and 100 kPa pressure. Calculate the
stagnation pressure and temperature. (Answers 324.9 K and 152.4 kPa)

2. Repeat problem 1 if the aeroplane flies at Mach 2. (Answers 518.4 K and 782.4
kPa)

3. The pressure on the leading edges of an aircraft is 4.52 kPa more than the
surrounding atmosphere. The aeroplane flies at an altitude of 5 000 metres.
Calculate the speed of the aeroplane.( Answer 109.186 m/s)

Note from fluids tables, find that a =320.5 m/s p; =54.05kPa y =14

4. An air compressor delivers air with a stagnation temperature 5 K above the
ambient temperature. Determine the velocity of the air. (Answer 100.2 m/s)

Let's now extend the work to pitot tubes.

12
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5. PITOT STATIC TUBE

A Pitot Static Tube is used to measure the velocity of a fluid. It is pointed into the
stream and the differential pressure obtained gives the stagnation pressure.

-  » }
/11

(1) > =
@) ——
e
P2
:
P
Figure 10
p2= p1+Ap

Using the formula in the last section, the velocity v may be found.

WORKED EXAMPLE No.2

A pitot tube is pointed into an air stream which has a pressure of 105 kPa. The
differential pressure is 20 kPa and the air temperature is 200C. Calculate the air
speed.

SOLUTION

p2=p1+Ap = 105+20=125kPa

Rl

2 —
125 _ HMa (Y 1)} + 1} hence Ma = 0.634

105 2
a=(yRT)0.5 = (1.4 x 287 x 293 )0.5 = 343 m/s

M, =vu/a henceu=217.7 m/s

Let's further extend the work now to venturi meters and nozzles.

13
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6. VENTURI METERS AND NOZZLES

Consider the diagrams below and apply Isentropic theory between the inlet and the
throat.
(E))

)

Figure 11
w2-u2=h;-hy
If the Kinetic energy at inlet is ignored this gives us u2 =hy-hp

Foragash=CpTso: u) =C,[T}-T,]

Using Cp = yR/(y-1) we get  u;, =2LR1[T1 -T,]

RT =pV/m=p/p SO

u? = 2y {lﬁ_pz}
J= AL 2
r=1Lp P

pV/ = p,V, soit follows that p—ly = p—i
P P
u22:_27/ (ﬂ 1_p2p1:|
y=1{p L PP

1—
T oy-1p 12

The mass flow rate m =py Ap up Cq where Cq is the coefficient of discharge which for
a well designed nozzle or Venturi is the same as the coefficient of velocity since there is
no contraction and only friction reduces the velocity.

1 2 L
7 2 7 ¥
Py = Py (&J hence m = Cd AZ |:_7:| [plpl] (&j _ (&)
P y -1 P P

14
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If a graph of mass flow rate is plotted against pressure ratio (pp/ p1) we get:

) &
ImAass's

critical ratio

Figure 12

Apparently the mass flow rate starts from zero and reached a maximum and then
declined to zero. The left half of the graph is not possible as this contravenes the 2nd
law and in reality the mass flow rate stays constant over this half.

What this means is that if you started with a pressure ratio of 1, no flow would occur. If
you gradually lowered the pressure p; , the flow rate would increase up to a maximum
and not beyond. The pressure ratio at which this occurs is the CRITICAL RATIO and
the nozzle or Venturi is said to be choked when passing maximum flow rate. Let
)3
P

=r

) dm
For maximum flow rate, = =0
r

The student should differentiate the mass formula above and show that at the maximum
condition the critical pressure ratio is :

2 !
V= ——
y+1

If the formula for the critical pressure ratio is substituted into the formula for velocity,
then the velocity at the throat of a choked nozzle/Venturi is :

u; = {&} =RT =a’
P>

6.1 MAXIMUM VELOCITY

Hence the maximum velocity obtainable at the throat is the local speed of sound.

15
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6.2 CORRECTION FOR INLET VELOCITY

In the preceding derivations, the inlet velocity was assumed negligible. This is not
always the case and especially in Venturi Meters, the inlet and throat diameters are not
very different and the inlet velocity should not be neglected. The student should go
through the derivation again from the beginning but this time keep v in the formula and
show that the mass flow rate is

2 L
2 2 2
C,4, |:p1pl ’ } [2} _(2)
y=1]\ p )2
R 2
Al P,

The critical pressure ratio can be shown to be the same as before.

m =

6.3 MORE ON ISENTROPIC FLOW

When flow is isentropic it can be shown that all the stagnation properties are constant.
Consider the conservation of energy for a horizontal duct :

h +u2/2 = constant h = specific enthalpy

If the fluid is brought to rest the total energy must stay the same so the stagnation
enthalpy hy is given by :

hy = h+u2/2 and will have the same value at any point in the duct.
since hy = Cp T, then To (the stagnation temperature) must be the same at all points. It

follows that the stagnation pressure p, is the same at all points also. This knowledge is
very useful in solving questions.

16
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6.4 ISENTROPIC EFFICIENCY (NOZZLE EFFICIENCY)

If there is friction present but the flow remains adiabatic, then the entropy is not
constant and the nozzle efficiency is defined as :

n= actual enthalpy drop/ideal enthalpy drop
For a gas this becomes : (T1-T)AT1-T2)

T,' is the ideal temperature following expansion. Now apply the conservation of energy
between the two points for isentropic and non isentropic flow :

Cp Ty +ui22=CpTo+up22 ... for isentropic flow

CpTy +u22=CpTo+ up2/2 ... for non isentropic
Hence

N=(T1-T)/(T1-T2") = (u22-u12)/(ux2-u;?)
If vy is zero (for example Rockets) then this becomes :

17
. ©D.J.Dunn



SELF ASSESSMENT EXERCISE No. 3

1. A Venturi Meter must pass 300g/s of air. The inlet pressure is 2 bar and the inlet
temperature is 1200C. Ignoring the inlet velocity, determine the throat area. Take
Cd as 0.97. Take y=1.4 and R =287 J/kg K (assume choked flow)
(Answer 0.000758 m2)

2. Repeat problem 1 given that the inlet is 60 mm diameter and the inlet velocity
must not be neglected. (Answer 0.000747 m2)

3. A nozzle must pass 0.5 kg/s of steam with inlet conditions of 10 bar and 4000C.
Calculate the throat diameter that causes choking at this condition. The density of
the steam at inlet is 3.263 kg/m’. Take y for steam as 1.3 and Cq as 0.98.
(Answer 23.2 mm)

4. A Venturi Meter has a throat area of 500 mmZ2. Steam flows through it, and the inlet
pressure is 7 bar and the throat pressure is 5 bar. The inlet temperature is 4000C.
Calculate the flow rate. The density of the steam at inlet is 2.274 kg/m’.

Take 7y=1.3. R=462J/kg K. Cd=0.97. (Answer 383 g/s)

5. A pitot tube is pointed into an air stream which has an ambient pressure of 100 kPa
and temperature of 200C. The pressure rise measured is 23 kPa. Calculate the air
velocity. Take y=1.4 and R =287 J/kg K. (Answer 189.4 m/s)

6. A fast moving stream of gas has a temperature of 250C. A thermometer is placed
into it in front of a small barrier to record the stagnation temperature. The
stagnation temperature is 280C. Calculate the velocity of the gas. Take y= 1.5 and
R =300 J/kg K. (Answer 73.5 m/s)

Let's do some further study of nozzles of venturi shapes now.

18
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7. CONVERGENT - DIVERGENT NOZZLES

A nozzle fitted with a divergent section is in effect a Venturi shape. The divergent
section is known as a diffuser.

3)
)
2)
-

— —_—
—

—e

Figure 13

If p1 is constant and p3 is reduced in stages, at some point pp will reach the critical
value which causes the nozzle to choke. At this point the velocity in the throat is sonic.

If p3 is further reduced, pp will remain at the choked value but there will be a further
pressure drop from the throat to the outlet. The pressure drop will cause the volume of
the gas to expand. The increase in area will tend to slow down the velocity but the
decrease in volume will tend to increase the velocity. If the nozzle is so designed, the
velocity may increase and become supersonic at exit.

In rocket and jet designs, the diffuser is important to make the exit velocity supersonic
and so increase the thrust of the engine.

7.1 NOZZLE AREAS

When the nozzle is choked, the velocity at the throat is the sonic velocity and
the Mach number is 1. If the Mach number at exit is Mg then the ratio of the
throat and exit area may be found easily as follows.

u= (YRT)0S  ue= Me(YRTe)0-5 mass/s = ptA(vt = peAeVe.
1

A 1

S _Pele but earlier it was shown that Pe _ (p_eJV

A, pu, P P

1 1
A + M_(YRT. )"’ T o
—t = (p_e)’ M It was also shown earlier that —= = [P_eJ !

. (p.) (RT)” T, \p,
1 o1 0.5
A, \p, P,
L4y
ﬁzMe pe |
Ae pt

There is much more which can be said about nozzle design for gas and steam with
implications to turbine designs. This should be studied in advanced text books.
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WORKED EXAMPLE No.3

Solve the exit velocity for the nozzle shown assuming isentropic flow:

Figure 14

T;=350K P; =1MPa py=100kPa

The nozzle is fully expanded (choked). Hence M;=1 (the Mach No.)
The adiabatic index y = 1.4

SOLUTION
The critical pressure p; = p1 {2/(y - 1)} """ =0.528 MPa

TYT1 = (p/p1)' """ hence T=291.7K
To/Te= {1 + M2(y-1)/2} hence To=350K

It makes sense that the initial pressure and temperature are the stagnation values
since the initial velocity is zero.

To=Ti (p2/p0) " "= 1813 K ay = (YRT7)0:5 =270 m/s
po/p2 = {1+ Ma2(y- 12 } "*"

Hence M =2.157 and up=2.157x270=582.4 m/s

20
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SELF ASSESSMENT EXERCISE No. 4

1. Air discharges from a pipe into the atmosphere through an orifice. The stagnation
pressure and temperature immediately upstream of the orifice is 10 bar and 287 K
at all times.

Determine the diameter of the orifice which regulates the flow rate to 0.03 kg/s.
(Answer 4 mm)

Determine the diameter of the orifice which regulates the flow rate to  0.0675 kg/s.
(Answer 6 mm)

Atmospheric pressure is 1 bar, the flow is isentropic and the air should be treated as
a perfect gas. The following formulae are given to you.

TO = T{l + Mz(y-])/z } p]/p2 - (TI/TZ) y/y-1)

The relationship between areas for the flow of air through a convergent- divergent
nozzle is given by

A/A* = (1/M){(M2 + 5)/6)3

where A and A* are cross sectional areas at which the Mach Numbers are M and
1.0 respectively.

Determine the ratio of exit to throat areas of the nozzle when the Mach number is
2.44 at exit. (Answer 2.49/1)

Confirm that an exit Mach number of 0.24 also gives the same area ratio.

2. Air discharges from a vessel in which the stagnation temperature and pressure are
350 K and 1.3 bar into the atmosphere through a convergent-divergent nozzle. The
throat area is 1 x 10-3 m2. The exit area is 1.2 x 10-3 m2. Assuming isentropic flow
and no friction and starting with the equations

a= (yRT)l/z
Cp To= CpT +v2/2
pp = constant

Determine the mass flow rate through the nozzle , the pressure at the throat and the
exit velocity. (Answers 0.28 kg/s, 0.686 bar, 215.4 m/s)

21
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3. Show that the velocity of sound in a perfect gas is given by a=(yRT)"

Show that the relationship between stagnation pressure, pressure and Mach number
for the isentropic flow of a perfect gas is

po/p = {1+ (y-1)M2/2}""

It may be assumed that ds = Cp d(1,v) + Cy d(lup)

where v is the specific volume.

A convergent - divergent nozzle is to be designed to produce a Mach number of 3
when the absolute pressure is 1 bar. Calculate the required supply pressure and the

ratio of the throat and exit areas.

(Answers 36.73 bar  0.236/1)

Let's now examine the flow of gases in long pipes and ducts in which the temperature
stays constant.

22
. ©D.J.Dunn



8. ISOTHERMAL FLOW

Isothermal flow normally occurs in long pipes in which the temperature of the gas has
time to normalise with the surroundings. Consider a section of such a pipe :

dL R

- Ll

P ————— L
f
—h

ass/s 1+ P A
mass/s — I+ ) Ay

11118

—
s S e . i

Figure 15
The friction coefficient is Cr as defined by D'Arcy's formula.
p2- p1 =dp Pressure force = A(p; - p2) =-A dp

Resisting shear force = tynDdL  where 1y is the wall shear stress and D is the
diameter.

Since the pressure drops along the length, the volume expands and so the velocity
increases since the area is constant du = increase in velocity.

If the velocity increases, then the mass must be accelerated. the inertia force required to
this is equal to the change in momentum per second m(u, — u;)

Balancing forces produces this equation :
2

. D
~Adp-nDdLt, =m(u, —u,)=p,Au, divideby A and put A = T
4nD dL
—dp = %+ p,u,(u, —u,) let the change in velocity be very smallso that (u, —u, )= du
n
4dL
—dp= +p2u2(du)

The friction coefficient Cris defined as :

Cy= Wall shear Stress/dynamic pressure =2 Ty / p u’
_ 4dLp, u;C,
2D

—dp _ 2dLC; N du
pbu; D u

—dp +p,u,(du) divide through by p, u2

We may drop the suffix so that for any given point in the pipe
—dp 2dLC; N du
pu’ D u

-dp/(pu2) = 2C¢dL/D )+ (du/u)

Usually the change in velocity is negligible and dv is approximately zero. This reduces
the equation to :

23
. ©D.J.Dunn



-dp/(pu2) = 2C¢dL/D)
Hence -dp/dL = (pu2)(2C¢/D)

Since V=mRT/p = Av then v=mRT/pA = 4mRT/pnD2 where m is the mass flow
rate

and so u2 =16m2R2T2/p2n2D4
and pu2=16 pm2R2T2/p212D4

. ©D.J.Dunn
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but p=p/RT so p u2=16 pm2RT/pn2D4
) -dp /dL = (32 Cy m2RT)/(pn2D5)
-pdp = (32 Cy m2RT)(dL)/ n2D5)
Integrating with corresponding limits of L=0 when p = p1 and L=L when p = p3

Then (1-p22/p12)= (64 m2RT C; L)/( =2 D5 p12)

SELF ASSESSMENT EXERCISE No. 5

1. An air storage vessel contains air at 6.5 bar and 150C. Air is supplied from the
vessel to a machine through a pipe 90 m long and 50 mm diameter. The flow rate is
2.25 m3/min at the pipe inlet. The friction coefficient C; is 0.005. Neglecting
kinetic energy, calculate the pressure at the machine assuming isothermal flow.
(Answer 5.98 bar)

8.1 FRICTION COEFFICIENT

The friction coefficient Cy has been comprehensively explained in other tutorials for
non - compressible flow.

For smooth bore pipes the following is found to be accurate.

BLAZIUS found C¢=0.079 Re -0.25

LEE found that C¢=0.0018 + Re-0.35
Otherwise use the Moody chart to find f in which case you need to remember that

Re =puD/p  butsince u=V/A and p=m/V then Re =4m/puD

25
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ASSIGNMENT 6

1. A natural gas pipeline is 1000 m long and 100 mm bore diameter. It carries 0.7
kg/s of gas at a constant temperature of 00 C. The viscosity is 10.3 x 10-6
N s/m2 and the gas constant R = 519.6 J/kg K. The outlet pressure is 105 kPa.
Calculate the inlet pressure. using the Blazius formula to find f. (Answer 357
kPa.)

2. A pipeline is 20 km long and 500 mm bore diameter. 3 kg/s of natural gas must be
pumped through it at a constant temperature of 200C. The outlet pressure is 200
kPa. Calculate the inlet pressure using the same gas constants as Q.1.

(Answer 235 kPa)

3. Air flows at a mass flow rate of 9.0 kg/s isothermally at 300 K through a straight
rough duct of constant cross sectional area of 1.5 x 10-3 m2. At end A the pressure
is 6.5 bar and at end B it is 8.5 bar. Determine

a. the velocities at each end. (Answers 794.8m/s and 607.7 m/s)
b. the force on the duct. (Answer 1 380 N)

c. the rate of heat transfer through the walls. (Answer 1.18 MJ)
d. the entropy change due to heat transfer. (Answer 3.935 KJ/k)
e. the total entropy change. (Answer 0.693 kJ/K)

It may be assumed that ds = C,, dT/T + R dp/p
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4. A gas flows along a pipe of diameter D at a rate of m kg/s. Show that the pressure

gradient is
-dp /dL = (32 fm2RT)/(pn2D5)
Methane gas is passed through a pipe 500 mm diameter and 40 km long at 13 kg/s.
The supply pressure is 11 bar. The flow is isothermal at 150C. Given that the
molecular mass is 16 kg/kmol and the friction coefficient Cris 0.005 determine

a. the exit pressure. (Answer 3.99 bar)

b. the inlet and exit velocities. (Answers 9.014 m/s and 24.85 m/s)

c. the rate of heat transfer to the gas. (Answer 3.48 kW)

d. the entropy change resulting from the heat transfer. (Answer 12.09 kJ/K)

e. the total entropy change calculated from the formula

ds = Cp In(T2/Ty) - R In(p2/p1) (Answer 1.054 kJ/K)

Let's now go on to look at shock waves that occur in compressible flow when it goes
supersonic.
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9. NORMAL SHOCK WAVES

Shock waves occur in compressible fluids and are due to a sudden rise in pressure from
p1 to p2 for example resulting from an explosion or from a sudden change in flow.

Consider a sudden rise in pressure travelling through a stream tube of fluid of constant
cross sectional area A. The conditions before the change are denoted by suffix (1) and
after the change by suffix (2).
In particular the Mach
Numbers are M; and M,. We —uy ||| —» U,
will look at the laws governing
the changes one at a time compression wave 4+—
starting with momentum.

Figure 16
9.1 MOMENTUM CHANGE

From the fundamental law Force = rate of change in momentum we get
(p1-p2) A= m(uz2-uy)
Substitute mass flow rate = m = pA u and divide both sides by A
(p1-p2) = (p2v2? - p1v1?)
Substitute the sonic velocity a= YyRT and RT=p/p It follows that a2=yp/p

Mach Number is defined as M =u/a so u2=ypM2/p

Hence (p1-p2) = (p2yM22- piyM;2)

9.2 ENERGY CONSERVATION

The change in pressure is so rapid that there is no time for heat to transfer out of the gas
so the pressure rise is adiabatic. In this case we may use Bernoulli.

2 2
u u . .
c T + N c T, + 72 assume ¢, is constant and substitute u’ =yRTM"

+YRTIM12 —c T +VRT2M§

CpTl > B
c + YRM;
T P, . : : 6,1 impli
-2 _ —22 substitute the relationship R = M and simplify
T, YRM; !
Cpt
2
o™
1+(y-1)—
T
T _ 2 (ii)
Loy

9.3 CONSERVATION OF MASS
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m =p1 Au; =p2 Aup so pi/p=uy/u; butu=aM

M
Pr_2:% Gherea =YRT

p, aM,
AJYRT M T M
SO P _NTR x[ 2 j = / -2 x (—zj substitute equation (ii)
P, YRT, M, T, M,

9.4 OVERALL RESULT

By combining the previous work the following equation can be obtained.

21+M12
M=, v)
Ty
y—1

This equation can now be used to solve problems where the Mach number before the
change is known.

Note if M1 =1 then My =1 and if M1 > 1 then M <1
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WORKED EXAMPLE No. 4

A gas has a temperature of 300 K, pressure of 1.5 bar and velocity of 450 m/s.
Calculate the velocity, pressure and temperature after a shock wave passes into it.
Takey = 1.3 and the mean molar mass is 44.

SOLUTION

First calculate the gas constant R

R = Ry/molar mass = 8314/44 = 188.95 J/kg K

Note the universal gas constant R, is on the back page of the fluids tables or should
be remembered as 8314 J/kmol K

Next calculate a; = V(y RT) =V (1.3 x 188.95 x 300) = 271.46 m/s
Hence the initial velocity is supersonic with a Mach No.

M =450/271.46 = 1.6577

Now calculate M5 from equation (v)
Show for yourself that My = 0.642

o 1+yM;]
Now use equation (i) to find p> by 2TV :
p, 1+vM;
Show for yourself that pp = 4.47 bar
Next use equation (ii) to find Ty
2
1 + (y 1)M1
L__ 2
T —1)M;
o4 (Y 2) 2

Show for yourself that T, =399 K
Now find the sonic velocity after compression a» =\(y RT) = 313 m/s

Hence u =axMs =201 m/s
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SELF ASSESSMENT EXERCISE No. 7

1.  Write down the equations representing the conservation of mass, energy and
momentum across a normal shock wave.

Carbon dioxide gas enters a normal shock wave at 300 K and 1.5 bar with a
velocity of 450 m/s. Calculate the pressure, temperature and velocity after the
shock wave. The molecular mass is 44 kg/kmol and the adiabatic index is 1.3.
(Answers 446 kPa, 399 K and 201 m/s)

2. Air discharges from a large container through a convergent - divergent nozzle into
another large container at 1 bar. the exit mach number is 2.0. Determine the
pressure in the container and at the throat. (Answers 7.82 bar and 4.13 bar).

When the pressure is increased in the outlet container to 6 bar, a normal shock
wave occurs in the divergent section of the nozzle. Sketch the variation of pressure,
stagnation pressure, stagnation temperature and Mach number through the nozzle.

Assume isentropic flow except through the shock. The following equations may be
used.

YyRT u’
—1 + — = constant
’Y —

u = Ma,/yRT

v
P _ (lj
) T,

31
. ©D.J.Dunn




HYDROLOGY -TUTORIAL 1

UNIFORM FLOW IN CHANNELS

In this tutorial you will
e Derive formula for flow through notches.
e Solve problems involving flow through notches.
e Define uniform channel flow.
e Derive formulae relating channel dimensions and flow rate.
¢ Define the Froude Number.

e Define sub-critical and super critical flow.

The student is advised to study Tutorial 1 from the Fluid mechanics D203 section before starting
this tutorial.

© D.J.DUNN www.freestudy.co.uk 1




1. FELOW THROUGH NOTCHES

A notch is placed in a channel to measure the flow by restricting it. The flow rate is related to the
depth of water behind the notch and a calibrated depth gauge is all that is needed to indicate the
flow rate. B

I

h
H
dh

RECTANGULAR NOTCH

The velocity of water due to a pressure head
only is u = +2gh. This assumes there is
negligible velocity approaching the notch.

The flow through the elementary strip is
dQ=uBdh

H H
Q=B udh = B2¢g [h'*dh = %B\/EH” Figure 1
0 0

Where the flow approaches the edge of a notch, there is a contraction because the velocity at the
edge is not normal to the plane of the notch. This produces a reduction in the cross section of flow
and some friction in the flow. Depending on the design of the edges a coefficient of discharge Cyq is

needed to correct the formula.
Q — CdzTB lzg H3/2

Further study will yield formula for C4 based on the various shapes of the edges.

SUBMERGED RECTANGULAR NOTCH and SLUICE GATE
If the notch is a rectangular hole, the integration must
be between the two depths H; and H; yielding

Q-c, 3 2e(3 - 1)

If the bottom of the notch is the floor of the downstream
channel, we have a sluice gate and the same formula
applies.

VEE NOTCH
The width of the elementary strip varies depth such that

b= 2(H h) tan(6/2)

H
Q= j ubdh = 2,/2g tan( jj (H-h)h"2dh
0

H

Q= 2@@{5) [ (HR"2 ~n*2 hih

0

h

i

Figure 3
Q=22g tan( j{ H? - §H5/2 } =2,2g tan(%)[%Hm } and introducing C4 we have

8 0 s
=C,—./2¢g tan| — |H
Q-C, % e an(zj
VELOCITY OF APPROACH

If the velocity approaching the notch is not negligible say u; then the velocity through the
elementary strip is u = w/iulz +2gh ’ If a notch is fitted into a channel not much bigger than the

notch, the velocity of the water approaching the notch is not negligible and a correction needs to be
made.
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WORKED EXAMPLE No.1

The depth of water above the sill of a rectangular notch is 0.23 m and the notch is 0.5 m wide.
The coefficient of discharge is 0.6. Calculate the flow rate of water.

SOLUTION

Q=C, %B 260 = 0.6(2 X30‘5 quzg 0.25%2 = 0.1107 m*/s

WORKED EXAMPLE No.2

The depth of water above the sill of a vee notch is 0.4 m and has an included angle of 90°. The
coefficient of discharge is 0.65. Calculate the flow rate of water.

SOLUTION

Q=C, %JZg tan(%jHS/z =0.65 x%,/zg tan45°x 0.4°2 = 0.155 m’/s

WORKED EXAMPLE No.3

The depth of water behind a sluice gate in a horizontal rectangular channel is 3 m and the sluice
is 0.8 m high. The coefficient of discharge is 0.75. Calculate the flow rate of water in the
channel downstream.

SOLUTION

Q=C, %B@(Hg/z ~HJ?) = 0752 . 3 2877 -227%)=12.84m’

SELF ASSESSMENT EXERCISE No.1

1  The depth of water above the sill of a rectangular notch is 0.4 m and the notch is 0.75 m wide.
The coefficient of discharge is 0.62. Calculate the flow rate of water. (0.347 m’/s)

2 The depth of water above the sill of a Vee notch is 0.2 m and has an included angle of 60°. The
coefficient of discharge is 0.6. Calculate the flow rate of water. (0.228 m’/s)

3. A sluice controls the flow in a rectangular channel 2.5 m wide. The depth behind the sluice is
2 m and the sluice is 0.5 m high. What is the discharge? Take Cq =0.8. (5.85 m’/s)
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2. UNIFORM FLOW IN CHANNEL

Channel flow is characterised by constant pressure (usually atmosphere) at all points on the surface.
This means that flow can only be induced by gravity so the bed of the channel must slope downwards.
There is no pressure gradient in the fluid pushing it along.

If the cross section is uniform and the depth is uniform then the flow rate is uniform at all points along
the length. This can only occur if the change of potential height is balanced by the friction losses.
This is UNIFORM FLOW.

DEFINITIONS

Flow rate= Q (m’/s)  Flow rate per unit width q m*/s

Cross sectional area = A (m?)

Wetted perimeter = P (m)

Mean velocity = u, = Q/A (m/s)

Slope of bed = S which is otherwise called the energy gradient.

The hydraulic gradient is 1 and this is the friction head loss per unit length of the bed.
The hydraulic gradient is the same as the slope if the flow has a constant depth (uniform flow).

The hydraulic radius is defined as Ry, = A/P and this is also often called the hydraulic mean depth with
symbol m.

The wetted area is A,, = PL

Ty 1s the wall shear stress. This is the force per unit surface area resisting flow at the surface of contact
between the fluid and the wall.

CHEZY FORMULA

Consider part of a flow of regular cross section A and length L.

Atmosphere Atmosphere

RRER. XRER.

W
Figure 4

If the slope is small the weight of the section considered is W = pgAL

Resolving the weight parallel to the bed the force causing flow is F = W sin(S)

If' S is small sin S = S radians so F=WS=pgALS

If the flow is steady there is no inertia involved so the force resisting motion must be equal to this force.
The resisting force per unit surface area = F/A,, = 1, = F/PL = pgALS /PL=pgAS /P =pg Ry S

Chezy thought that Ty o Uy and s0 Ty = C; u,” Hence C; u,> = pg Ry, S

The Chezy formula is U, =C (RnS) *

C=(pg/C))” and C is the Chezy constant.
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WORKED EXAMPLE No. 4

An open channel has a rectangular section 2 m wide. The flow rate is 0.05 m*/s and the depth is
0.4 m. Calculate the slope of the channel using the Chezy formula for steady flow. Take the
constant C =50 m” /s

SOLUTION

A=2x04=0.8 m’
P=2+04+04=28m
R,=A/P=0.2857m

U, = Q/A = 0.05/0.8 = 0.0625 m/s
U, =0.0625=C (R, S) *

u,= 0.0625 =150 (0.2857 S) *
S=5.469x 10°

SELF ASSESSMENT EXERCISE No.2

1. An open channel has a triangular section with sides at 45° to the vertical. The flow rate is
0.0425 m’/s and the depth is 0.225 m. Calculate the slope of the channel using the Chezy
formula for steady flow. Take the constant C =49 m” /s
(Answer 0.00369)

2. A channel with a section as shown carries 1.1 m’/s of water with the depth as shown. The slope
of the bed is 1/2000. Calculate the constant C in the Chezy formula.

1L.5m ‘

1.1m

Figure 5
(Answer 51.44)
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THE CHEZY - MANNING FORMULA

1/6
h

n
n is a dimensionless constant based on the surface roughness of the channel. Substituting this into the
Chezy formula yields

Manning extended Chezy's formula. Based on research he stated that C =

213172
R /

u, = —2—— This is the Chezy - Manning formula.
n

WORKED EXAMPLE No. 5

An open channel has a rectangular section 5 m wide. The flow rate is 1.2 m*/s and the depth is
1.4 m. Calculate the slope of the channel using the Manning formula for steady flow. Take the
constant n = 0.019 m” /s

SOLUTION

A=5x14=7m’
P=5+14+14=78m
R,=7/7.8=0.897 m
Uo=Q/A=0.171 m/s

23102 2 2
S A — sz&“%] :[0'019 XO'mJ ~12.256x 10

° n . 0.897°

SELF ASSESSMENT EXERCISE No.3

1. A rectangular channel is 2 m wide and runs 1.5 m deep. The slope of the bed is 1/4000. Using
the Manning formula with n = 0.022, calculate the flow rate.
(Answer 1.534 m’/s)

2. An open channel has a rectangular section 3 m wide. The flow rate is 1.4 m’/s and the depth is
0.8 m. Calculate the slope of the channel using the Manning formula for steady flow. Take the
constant n = 0.02 m” /s
(Answer 292.5 x 10)

3. Water flows down a half full circular pipeline of diameter 1.4m. The pipeline is laid at a
gradient if 1/250. If the constant n in the Manning formula is n=0.015 what is the discharge.
(1.612 m’/s)
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DARCY FORMULA APPLIED TO CHANNELS

The Chezy formula may be related to the Darcy formula for flow in round pipes.

: . 4C;Lu,’
The Darcy formula (not derived here) is hy = 2—d°
g
. . fLu,’
Sometimes this is stated as h, = 5 (; where 4Cs=f
g

hy is the friction head and Cx is the friction coefficient which is related to the Reynolds's number and the
relative surface roughness.

If a round pipe runs full but with constant pressure along the length, then the Chezy and Darcy formulae
may be equated.

From the Darcy formula we have uo2 = 2gdh;
4C;L
For constant pressure, hyLL = S u02 = Zg_dS
4C;
From the Chezy formula we have U,-=CRS
For a round pipe diameter d running full Ry=d/4 u,” = C’Sd/4
2
Equating we have C3d = 2gdS
4 4C;
2g
Cf = F
2
From the Chezy equation we have u02 = ¢ ihf
h. - Luo2 B CfLuO2
f= =
C’R, 2gR,

This version of the Darcy formula may be used for pipes and channels of any shape with no pressure
gradient. Discussion of the Darcy formula show that Cr is related to the surface roughness and this
compares with Manning's work.

In the case of LAMINAR FLOW Poiseuille's equation is also relevant and this gives the friction head as

32ulu
hf = —2 0
pgd
Equating this to the Darcy formula gives:
2
32u L2u0 _ 4C;Lu, hence C, = lop 16
pgd 2gd pu,d R,

The complete relationship between the Reynolds' number R, and the relative surface roughness is given on
the Moody Chart. The chart has several regions, laminar flow, turbulent flow and a region between where
it is in transition. The turbulent flow varies between smooth surfaces and fully rough surfaces that produce
fully developed turbulent flow. Relative surface roughness is defined as € = k/D where k is the mean
surface roughness and D the bore diameter. The chart is a plot of Cy vertically against R horizontally for

various values of €. In order to use this chart you must know two of the three co-ordinates in order to pick
out the point on the chart and hence pick out the unknown third co-ordinate.
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For the laminar region C; = E

€

For smooth pipes, (the bottom curve on the diagram), various formulae have been derived such as those by
Blasius and Lee.

BLASIUS Cr=0.0791 R*#

LEE Cr=0.0018 +0.152 R,
The Moody diagram shows that the friction coefficient reduces with Reynolds number but at a certain point,
it becomes constant. When this point is reached, the flow is said to be fully developed turbulent flow. This
point occurs at lower Reynolds numbers for rough pipes.

A formula that gives an approximate answer for any surface roughness is that given by Haaland.

1.11
L —3.6log,, Q+ [Lj
JC; R, \3.71

0.016

0.018 AL
0.014 N g
i ‘ \‘“m__ E“
N L] 0.02 @
0012 I NE o
4 i\ \‘\ g
[@] \Q\ (E-
E N \ 00| B
g 2
ke \\ “
2 0.008 0.005 %
e 5
£ 0006 L200- -1
s . 0.001 »
0.004 NS 0.0005
X 0.0002
=== 8:0000s
0.002 0.00001

10? 103 104 105 108 107 108

Reynolds Number Re
Figure 6

SELF ASSESSMENT EXERCISE No. 4

1. The Darcy - Weisbach formula for a round pipe running full states that hy = 4 CyLu%2gd where L is
the length, d the diameter and u the mean velocity.

a. Show that for laminar flow C;= 16/R,

b. Relate the Chezy formula u = C (RS)" and the Manning formula u = R** $")/n to the Darcy -
Weisbach formula and list the ranges of applicability of all three formula.

c. Sketch the relationship between Crand R, for the range R, = 10° to R.= 10%ina pipe of circular cross
section for typical values of surface roughness k.

d. If ageing causes the surface roughness of a pipe to increase, what affect would this have on the flow

carrying capacity of the pipe?
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3. CRITICAL FLOW

SPECIFIC ENERGY HEAD - h

At any point in the length of the channel the
fluid has three forms of energy relative to the
bed, kinetic, gravitational (potential) and flow
(pressure) energy.

ryl hb

Figure 7

Strictly, all energy terms should be the mean values. The mean depth is h and the mean gravitational
(potential) head is y (the distance to the centroid). The depth at the bottom is h, = h+y and the mean
velocity is u,

2 2
u

From the Bernoulli Equation h, =h+y+ Lo =h,+—*
2g 2g

Text books jump straight to this formula wrongly giving hy, as the pressure head.

Rearrange the formulaand u, = {2g(h, —h, )}1/2

Consider a channel with an unspecified cross section of area A.
Q=Au, Q=Af{2g(h, ~hy )"

CRITICAL DEPTH -hc¢

It will be shown that for a given value of h; there is a depth h, that produces maximum flow rate but the
value of h, depends on the shape of the channel since the width is a function of depth and hence the area is
a function of depth. Let's examine a rectangular cross section.

B
RECTANGULAR SECTION ‘
. N R
1/2
Q=By2g{n,’n, -1’
Figure 8

If we plot h — Q for a given value of B and hy we get figure 9a and if we plot h — hy for a given value of B
and Q we get figure 9b.

& &

h
“\-_\_\ 11

e
| A

> -

Q hy
Figures 9a Figure 9 b

oW

gub critical
fl

The plots reveal some interesting things. Point C is called the critical point and this gives the minimum
energy head for a given flow rate or a maximum flow rate for a given energy head.

For a flow rate other than the critical value, there are two possible depths of flow. This is logical since for a

given amount of energy the flow can be slow and deep or fast and shallow. Flow at the shallow depth is
super-critical and flow at the larger depth is sub-critical. The critical depth is denoted h,..
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To find the critical depth we use max and min theory. At point C dQ/dh, =0
Differentiate and we get:

12
d_Qz{(zg)l/z(hs_?jhb j} ( b O:( $ _ﬂj 1’lb =2_hS=hc

Since u, = {2g(h, —h, )}""* then substituting for hy will produce the critical velocity.

o) ) -

It follows that the critical flow rate is Q_ = Au,_ = B\/g h??

Here is an alternative derivation for the rectangular channel.
A=Bh, u, = Q/(A) = Q/(B hy)

Q’ . . . . .
h,=h, + For a given flow rate the minimum value of h, 1s found by differentiating.
2Q?

dh Q’

S

For a minimum value equate to zero.

= 1— —
hy,  2g(Bh})  g(B%h})
Q e Q)"
0 =1—~(—) =./g\B°h? ) or h, =| =—
g Bzh% Q g b b [ngJ

INTE
These are the critical values so it follows that Q= B\/g h**or h, = [ Q J

c c c ng
Q B\/gh:;/z u2
u, =—=%= ¢ =,/gh, or h, =—¢%
® Bh, Bh She ¢ g
2 2 2 2 2
2g 2¢ g 2g 2
2
hs:hc+u_C:hc+&:§hc hc:ghs
2¢g 2¢ 2 3
5 V2 2
The critical flow in terms of hyisQ, = B\/g hg/z = B\/g (5 hsj =B.|g (E]hsm
i o . 2gh
The critical velocity in terms of hyis u, = ,/gh, = TS

FROUDE NUMBER

You may have studied this in dimensional analysis. The Froude Number is a dimensionless number
important to channel flow as well as to surface waves. It is defined as :

F = —2_ For critical flow F = —Ze Substitute u, = @ into this and F, = \/a =1

Jeh Veho gh,
The Froude number is always 1 when the flow is critical in a RECTANGULAR CHANNEL but not for
other shapes. Another name for super-critical flow is SHOOTING or RAPID FLOW and
sub—critical is called TRANQUIL FLOW.

Summary for a rectangular channel

The critical depthis h_ = %hs The critical velocity is u, = ,/gh, = %
The critical flowis Q, = B\/g h?* =B g (%) hSS/2 Froude Number F,=1
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WORKED EXAMPLE No. 6

A rectangular channel 1.6 m wide must carry water at depth of 1 m. What would be the maximum
possible flow rate and what would be the mean velocity?

SOLUTION

For maximum flow rate the depth must be the critical depth so h, = 1m.
The critical velocity is u.=(ghy)”=(9.81x1)”* =3.132 m/s
The critical flow is Qc=Au.=16x1x3.132=5.01 m’/s
Check the Froude number F =Y 3132 _ 1

' \/ghc _\/gxl -

If the constant n in the Manning formula is 0.019 m” /s what must the slope of the bed be for
constant depth at maximum flow rate?

A=16x1=1.6m? P=16+1+1=36m Ry=1.6/3.6=0.444m
U, =u.= 3.132 m/s

230172 2 2
u, = Ry 5™ rearrange S= nuz% = (0'019 X :2;/;132) =0.0104
n R, 0.444

WORKED EXAMPLE No. 7

Water flows in a rectangular channel 3 m wide with a mean velocity of 1.5 m/s and a depth of
1.2 m. Determine whether the flow is tranquil or shooting. Calculate the following.

The actual flow rate

The specific energy head
The critical depth

The maximum flow possible

SOLUTION
5

quoz 1
"o Jeh fgx12

Actual flow rate= A u, = (3x 1.2) x 1.5=5.5m’/s

=0.437 It follows that the flow is tranquil.

Energy Head hy=h +u,”/2g =12+ 1.5*/2g=1.315m
h.=2h/3=2x1.315/3=0.876 m

For maximum flow rate F, = 1

F=1= % u, =fgh, =+/9.81x0.876 =2.931m/s
gh
A=3x0.876=2.629 m’
Q.= Au=2.629x 2.931 =7.71 m’/s
If the depth changed to the critical depth, the flow rate would increase.
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SELF ASSESSMENT EXERCISE No.5

1. A rectangular channel is 3.2 m wide and must carry 5 m’/s of water with the minimum specific head.
What would the depth and mean velocity be? (1.563 m and 3.915 m/s)

2. If'the channel in question 1 must carry flow at a constant depth and n in the manning formula is 0.022,
what is the slope of the bed?  (0.013)

3. The flow in a horizontal, rectangular channel, 6m wide is controlled by a sluice gate. The
depths of flow upstream and downstream of the gate are 1.5m and 0.300 m respectively.
Determine:

(a) the discharge (b) the specific energy of the flow (c) the critical depth.

VEE OR TRIANGULAR SECTION

Q= Af2g(h, —h, )2 A=Y hyx 2 hy tan(6/2) ; "
Q = hitan(0/2){2g(h, ~h, )}
Q = tan (02 )e (hin, -} )}

;TQ = ‘can(6/2)(2g)1/2 (4h3bhs —5h )‘/2 Figure 10
b

For maximum (4hf)hS = 5h§) (4h, = 5h,) h, = 55

Since u, = {2g(h, —h, )}""* then substituting for hy will produce the critical velocity.

12 12 12 12
5 1/2 h gh gh j
={2¢| —h . —h =(2 _c —| &¢ —| &c
uo{g(4c j} (g)(4j (2j uc(z

h 12 1/2
Q, = Au, = hﬁtan(e/z)(g—zcj Q, = (%j tan(6/2)h*"
FROUDE NUMBER

F, =—— For critical flow F = Yo Substitute for u F = Va2 1. 0.707

ar Jen. NN

In terms of hg

1/2 1/2 4h 5/2 4h 5/2
Q. =(%) tan(6/2)h>? =(%j tan(9/2)(Tsj = (%]( 55) tan(6/2)

12 12
" = (& :[gxi A
2 2 5 5

Summary for triangular section

The critical depth is h, = 425
The critical velocity is u, = glzlc = 2?ghs
1/2 ap V2
The critical flow is Q, = [%] tan(0/2)h? = (%J( 55} tan(6/2)
Froude Number F = 1. 0.707
V2
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WORKED EXAMPLE No. 8

A triangular channel 3 m wide with an included angle of 90° must carry water with a depth of 3 m.
What would be the maximum possible flow rate the mean velocity at this flow rate?

SOLUTION
For maximum flow rate the depth must be the critical depth so h, =3 m.
12 12
The critical velocity is u, = [%j = [%gj =3.836m/s
A =h tan(0/2) = 3% tan(45) = 9 m’
The critical flow is Qc.=Au.= 9x3.836=34.524 m’/s
u 3.836

Check the Froude number F=—F-==
Veh, Jgx3

If the flow must remain at constant depth and n in the manning formula is 0.025, calculate the slope of
the bed.

=0.707

2
j =0.0085

2/3 1.0612/3

P =2h./cos(0/2) = 8.485 R,=A/P=1.061 S= (
h

2
nu, ] _(0.025 X 3.836

WORKED EXAMPLE No. 9

A triangular channel 3 m wide with an included angle of 120° must carry 0.75 m’/s with the minimum
specific head. What would be the maximum flow rate the mean velocity?

SOLUTION
For minimum specific head, the flow rate and velocity must be the critical values.

1/2
Q.= (%) tan(6/2)h>” rearranging

Qc2/5 0.752/5
— —==h = — —==0.521m
[(g] tan(O/Z)J ((gj tan(60)}
A =htan 0 = 0.469 m’ u=QJ/A=16m

SELF ASSESSMENT EXERCISE No.6

1. A uniform channel has a vee cross section with a symmetrical included angle of 100°. If it carries
1.25 m*/s of water with minimum specific energy head, what would be the depth and mean velocity.
(0.742 m and 1.907 m/s)

2. The same channel described in question 1 must carry the flow at a constant depth. If n in the Manning
formula is 0.022, what must be the slope of the bed.
(0.00943)
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HYDROLOGY -TUTORIAL 2

TRAPEZOIDAL CHANNELS

In this tutorial you will

Derive equations associated with flow in a trapezoidal channel.

Derive equations for optimal dimensions.

Solve slope of bed using Chezy and manning formulae.

Solve questions from past papers.

This tutorial is a continuation of tutorial 1 which should be studied first.
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TRAPEZOIDAL SECTION \ &
h
This topic occurs regularly in the Engineering Council ¢ / y !

Exam. The trapezoidal section is widely used in canals to
accommodate the shape of boats and reduce the erosion of
the sides. b B b

BEST DIMENSION Figure 1

The channel dimensions that give the maximum flow rate for a fixed cross sectional area is the one with
the least amount of friction. This means that it must have the minimum wetted surface area and hence the
minimum wetted perimeter P. If this value is then used in any formulae for the flow rate, we will have the
maximum discharge possible. Using the notation shown on the diagram we proceed as follows.

Area A = (B +b) hy, from which B = (A/ hy) —b = (A/ hy) — hy/tand

Wetted Perimeter P = B + 2h,, /sinf

Substitute for B P:A—i+%ﬁ:i+hb(i—Lj
h, tan@ sin® h, sin0 tan0

For a given cross sectional area the minimum value of P occurs when dp/dh, = 0

e __ A2 +( ,2 _ j Equate to zero and A = hbz(_i - Lj and substitute for A
dh, h, sind  tan0 sind  tan0
B4 hy hb:hbz L_Lj (B-ﬁ- h, )=hb('i_LJ
tan @ sin@  tan0 tan @ sin® tanf
B =2h, L—L or B=2h K whereK = L—L
sind  tan0 sind  tan0

It can be shown that when this is the case, the bottom and sides are both tangents to a circle of radius hy,.

When 0 =90° K =1 and when 0 =45° K =2 -1=10.414 and in fact K is almost a linear function such
that K = 6/90

WORKED EXAMPLE No.1

Calculate the dimensions of a trapezoidal channel with sides at 45° if it must carry 2.5 m’/s of water
with minimum friction given that C = 50 in the Chezy formula and the bed has a gradient of 1 in 1000

SOLUTION

The Chezy formula is u, = C (RpS) * or Q=A C (RiS) *
1 1
B =2h - =0.828h b=hytan 45°=h
b( sind5 tan45j b 4 °
A= (B+Db)hy=(0.828 hy + hy) h,= 1.828 hy,>

P= B+2hb( 1 j =0.828h, +2.828h, = 3.656h,

sin45
Rh =A/P=0.5 hb
Q=2.5=1.828 hy’ x 50(0.5 hy/1000)""*
0.000748 = hy" (0.5 hy/1000)
0.748=0.5 hy’

h,=1.084 m B=0.828 h,=0.897 m
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SELF ASSESSMENT EXERCISE No.1

1. Calculate the dimensions of a trapezoidal channel with sides at 60° to the horizontal if it must carry
4 m’/s of water with minimum friction given that C = 55 in the Chezy formula and the bed has a
gradient of 1 in 1200.

(hpb=1334m B=1.541m)

2. Calculate the dimensions of a trapezoidal channel with sides at 30° to the horizontal if it must carry
2 m’/s of water with minimum friction given that C = 49 in the Chezy formula and the bed has a
gradient of 1 in 2000.

(h,=1.053m B=0.564m)

CRITICAL DEPTH

It requires a lot of Algebra to get to the critical values. Start as before  hy = hy, + u,’/2g
Rearrange to make u the subject ~ u? = {2g(h, —h, )}

Q=Aug Q =A%’
A=(B+b)h Q*=(B+b)’hy u,’

) Q? B 2, 2
Substitute for u, E =(h, —h, B+b)h,

We cannot differentiate this expression because b is a function of h so we make a substitution first.

b=hytan 0

Q2 h 2 h2 2
=~ =(h,-h, {B + —b) h,* = (h, —h, ) Bh, +—— | Now we need to multiply out.
29 tanf tanf

2 4 3 4 3 s .
Q_ = (hs _hb{Bzhﬁ + hb +%J — (Bzhtz)hs + hbhs + 2Bhbhs ] —(Bzhi n hb n 2BhbJ

29 tan’0  tanf tan’0  tanf tan’0  tanf

Now differentiate with respect to hy, to find the maximum flow rate for a given specific energy head.
4h;h, . 6Bhyh, 3B%h? Sh;g _8Bh;
tan“0  tan0

2Qd4Q _ 2B’hyh, +—2
2gdh, tan‘d  tand
For maximum Flow rate equate dQ/dh, to zero.
4hih, . 6Bhph, 322 Shy  8Bhj
tan’0 tanf ® tan%0 tanf
We can simplify by substituting back hy/tan 6 =b
0 = 2B*h,h_ +4b’h,h, +6Bbh,h, —3B*h; —5b’h; —8Bbh;
0=h,(2Bh, +4b’hh, + 6Bbh, )- h? (3B + 5b” + 8Bb)
0 = (2B2h, +4bhh, +6Bbh, )—h, (3B + 5b2 + 8Bb
2 2
(2132 ] 6Bb)hs _on,
(3B% +5b +8Bb)
. (2B> +4b> +6Bb) _ (2B+4b)B+b) _ (2B+4b)
(3B2+5b>+8Bb) (3B+5b)B+b) (3B+5b)

0 =2B’h,h, +

Rearrange to get the critical depth  h, =h_ =
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_(2B+ 4b)h b (3B+5b)

h=-—" "7 - -7
“T(B+5b) 1 * T (2B+4b) ¢

If B=0 we have a Vee section hy =h_ = 4h,

If' b =0 we have a rectangular section h, =h_ = 2h,

There are computer programs for making the calculations such as the one at
http://www.lmnoeng.com/Channels/trapezoid.htm

(3B+5b
2B +4b

R Mt
(G o2

o
i)

(2B +4b)

To find the critical velocity flow rate substitute h = ;hc into u? =u? = {2g(h, —h,)}

gh

If B=0 we have a Vee section u, = {g—gc} as before.

If b= 0 we have a rectangular section we have u,_ = ./{gh | as before.

To find the critical flow rate substitute use Q. = Au, A =(B+Db)h,

Q. = (B+b)h, \/{2 h ((;—izb)} Q. =(B+b)hi/2\/{2g[(2§—izb)j}

If B =0 we have a Vee section Q_ = bh>? {%} as before in a slightly different form

If b= 0 we have a rectangular section we have Q_ = Bh>" @ as before.

Summary for trapezoidal section

The critical depth is h, = Mhs
(3B +5b)
The critical velocity is u, =_[12gh, _B¥b
(2B+4b)
B+b
The critical flow i =(B+bh)? {2¢ ———
e critical flow is Q. =( )h; \/{ g((2B+4b)j}

The major problem exists that solving with these formulae requires a value for b and this depends
on the answer itself.
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WORKED EXAMPLE No. 2

A canal has a trapezoidal section with a base 5 m wide and sides inclined at 50° to the horizontal. It is
required to have a depth of 2 m, what would the flow rate be if the specific energy head is a
minimum? Calculate the depth, flow rate and mean velocity for this condition. What is the Froude
Number?

SOLUTION

For minimum specific energy, the flow and depth must be critical so h, =2 m.
b =2/tan50° = 1.678 B=5

_ 32 B+b _ 3/2 6.678 _ 3
Q, = (B+b)h’ \/{zg(—(zm%)} (6.678)2 {2g(—16.713)} 52.89 m’/s

A=B+bh.=6678x2=13356m> u.=QJ/A=396m  Fr=u/V(gh)=0.89

WORKED EXAMPLE No. 3

A channel has a trapezoidal section with a base 0.5 m wide and sides inclined at 45° to the horizontal.
It must carry 0.3 m’/s of water at the critical depth. Calculate the depth and mean velocity.

SOLUTION

There is no simple way to solve this problem because of the complexity of the formula.
B+b L)

= (B+b)h?? |{2g| ———— |} where b= hy/tanf :

Qe =(B+bh \/{ g( (2B + 4b)j} h o3l L ol .

Evaluate and plot Q. for various values of h, Qe
and we get the following graphs.

0z

From the graph we see that when Q. = 0.3 m’/s, h. = 0.27 ;
A=(0.5+0.275)(0.275)=0.213 m* u.=QJ/A = 1. "o 01 012 5ms

Figure 2

SELF ASSESSMENT EXERCISE No.2

1. A channel has a trapezoidal section with a base 2 m wide and sides inclined at 60° to the horizontal. It
must carry 0.4 m’/s of water with the minimum specific energy head. Calculate the depth and mean
velocity for this condition.

(0.157 m and 1.22 m/s)

2. A canal has a trapezoidal section with a base 4 m wide and sides inclined at 40° to the horizontal. It is
required to have a depth of 1.5 m, what would the flow rate be if the specific energy head is a
minimum? Calculate the flow rate and mean velocity for this condition.

(29.1 m*/s and 3.353 my/s)
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WORKED EXAMPLE No. 4

An open channel has a trapezoidal cross section with sides inclined at 45° to the vertical. The
channel must carry 21 m’/s with a velocity of 3 m/s with minimum friction. Determine the
smallest slope of the bed for these conditions and the corresponding depth and dimensions of
the channel. The constant n in the Manning formula is 0.012. Show that this is a sub critical

flow.
\ / .n_h
b B b
Figure 3
SOLUTION
Q=21m’s U, =3 m/s A=Qu=7m’
For minimum friction the optimal value of B is B = 2hb(.L - Lj
sinf  tanf
B =2h, ‘1 _ =0.8284h, b=h,
sin45 tan45
A=B+bh, 7=(0.8284h,+ hy)h, = 1. 8284h,’
hy =(7/1. 8284) = 1.957 m
B=1.621m b=1957m
P=B +2b/sin45=1.621 + 2 x 1.957/sin 45 =7.155
A=7
Ry =7/7.155 =0.978 m (Note that for 45° R, = 0.5 hy)
2312 2312
Manning formula u= RTS 3= 097887
n 0.012

S =0.001333
The specific energy head is hy = 1.957 + 3%/2g =2.416 m
_(2B+4b),  2x1.621+4x1.957 11.07

" (3B+5b) ° 3x1.621+5x1.957 14.648
Since the actual depth is larger the flow is sub critical.

=0.756m

The critical depth is
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SELF ASSESSMENT EXERCISE No. 3

These are exam standard questions.

1. An open channel has a trapezoidal section with sides inclined at 45° to the vertical. The channel must
carry 20 m’/s of water with a mean velocity of 2.5 m/s. Determine the smallest slope of the bed
possible and the corresponding depth and dimensions of the channel. The constant n in the Manning
formula is 0.012. Show that this is a sub critical flow.

(Answer S=0.000845, h=2.1,B=2.1 mand b=2.1 m.)

2. A channel has a trapezoidal section 5 m wide at the bottom. The sides slope at 1 metre up for each 2

horizontal. The bed has a slope of 1/3600 and n in the manning formula is 0.024.

Calculate the flow rates corresponding to mean velocities of 0.3 and 0.6 m/s.

(Ans. 0.549 m*/s and 4.81 m’/s)
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HYDROLOGY -TUTORIAL 4

UNSTEADY FLOW IN CHANNELS

In this tutorial you will

e Derive equations associated with a rise in the level of the bed.
e Define a hydraulic jump and derive the equations for it.

e Define a narrow weir and derive equations for it.

e Define a broad weir and derive equations for it.

e Derive equations for the flow rate through a Venturi Flume.

e Solve questions from past papers.

This tutorial is a continuation of tutorial 1 and 2 and these should be studied first.
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UNSTEADY FLOW

If the depth of the water is not constant, we have unsteady flow. This might occur when the frictional
losses do not match the change in potential energy. In this case the hydraulic gradient 'i' is not the same as
the slope 'S". The height of the bed relative to the datum level is z.

z‘ z
. > Datum Level

Figure 1
The total head is defined as h plus the additional potential head z
hr =hg+z =h+z+u’2g
Start with hs=hr-z

Differentiate with respect to x (the distance along the channel from a given datum point).
dhs /dx = dhy/dx - dz/dx

dz/dx is the gradient of the bed and this is clearly negative so dz/dx =- S
dhg /dx = dhy/dx + S

The change in the total head can only be due to frictional losses and this will be a reduction so we can
define this as the hydraulic gradient i = dh¢/dx = - dhy/dx
dhg /dx=S -1

We had hs=h+u’/2g

Differentiate this with respect toh  dhg/dh =1 + (u/g)du/dh

u=Q/A.

Differentiate with respect to A du/dA = -Q/A?

If A is a function of depth, then this is difficult. For a rectangular channel A=B h

Differentiate with respect to h dA/dh=B
Substitute dw/dh=(-Q/A®) B
Substitute into dhg/dh =1 + (w/g)du/dh
dhg/dh =1 - (u/g) (/A?) B
dhg/dh =1 - (u/g) (Q/A*) B
Substitute Q/A =u dhg/dh =1 - (u’/g) B/A
Substitute B/A = 1/h dhg/dh =1 - (u’/gh) =1 —F/

For maximum or minimum specific head dhg/dh = 0 and this can only occur if F; =1
Flow is at the critical depth when F, =1
The velocity that produces the critical depth is u. = V(g h)

Note that it has been assumed that h is constant at all widths so the Froude number is only 1 when the
channel is rectangular in section.
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HYDRAULIC JUMP

It has already been shown that for a given flow rate in an open channel, there are two possible
depths. One is when the flow is slow and deep called TRANQUIL FLOW and the other when it is
shallow and fast called RAPID FLOW or SHOOTING FLOW.

It is possible rapid flow to change to tranquil flow quite suddenly and spontaneously and when it
does we get a phenomenon called a hydraulic jump. It is not possible for the reverse to happen.

For a hydraulic jump to occur, the F;> 1, i.e. the flow must be supercritical.

The jump might occur because the slope

of the bed is insufficient for friction to
balance the loss of potential energy.
Since the losses are smaller for the
tranquil flow, the balance can be hlI
restored.

112

A jump can be made to occur if there is
an obstacle on the bed higher than the
critical depth. Figure 2

When the change occurs there is a reduction in momentum and an increase in the hydrostatic force.
The solution is based on equating them.

U, = mean velocity. The mean depth is h/2
Pressure force on a cross section is F, = pgAh/2 Momentum force at a section =F, = pAu’

The cross sectional area is A = B h where B is the width.
2 2
Change in pressure force = 2 gglhl _P gﬁ;zhz = pg];hl _P ng2h2

Change in pressure force =%(hf - h%)z %(h1 —h, )(h, +h,)

Change in momentum force = th1u12 - th2u22 = pB(hlulz- hzuzz)
For continuity of flow u22 =(u; hy/ h2)2

h,h} h

2 2 2

Change in momentum force = pB(hlul - 12121 U j = pBu; h_l(hz - hl)
2 2

The change in pressure and momentum forces may be equated.

B h
%(hl _hZ)(hl +h2)=pBu12h—1(h2 _hl)

g 2 hy
=2(h;+h,)=u; —
2( 1 2) 1 h,
h, |g
u; =(h,+h,) 2|2 1
P =y 2{}11}2 (1)
In terms of the flow rate
Q> = B2h>(h, +h, )| 22 |€ — B%h b (h, +h,)E
h, )2 2
o . 2 (h, +h,)
The flow per unit width is usually given as q~ = gh,h, T e 2)
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2
From (1) 2% _(hh, +h2) b2 +hjh, —h, 5,

h, may be solved with the quadratic equation giving:

2 2
2h, =-h, th, {1 +8%} and since h, cannot be negative 2h, = —h, +h, {l +8&}
gn

2
Substitute the Froude Number F? = uTl 2h, =—h,; +h;4/ %1 +8F? }

ghy
:%,/%1+8F3§—1]

Next consider the energy balance before and after the jump.

Energy Head before the jump = h; +u;>/2g Energy Head after the jump = h, + u,’/2g

Head loss = hy = h; + u;%/2g - hy - u,’/2g hy =h; - hy + (u” - w)/2g
Continuity of flow Q=u; Bh; =u; Bh; u, =1, %
2

2 2
Hence u; —uj =u; -uf(ﬂJ = uf{l(ﬂj }
h, h,

We already found equation (1) was u1 = (h +h )(I;l j
1

NIO‘Q

Substitute

2
i - (h1+h2{%j§{1_@_lJ }
1 2
2 2 8 h, )/ h3 -h{
==2th, +h
u —u, 2(1 {hlj{ h2

(- u2)- 9l 2hh>}§h )
Substitute into the formula for hy

hy =hy - hy + (u? - u?)/2¢g

—(h _ gun +hy N —hy ) 1 T )\, — 1y
b () Bt Y2 - h2) (h —n,), Y2 —n2)

2 x 2gh;h, ? 4h;h,
h, = 4h,h, (h, —h, )+ {(hl "‘hz)(h% _hlz)}

4h h,
h, = 4hth, —4h;hj +h) —h} +h,h —h'h,

4h h,
h, = 3hth, —3h;hj +h} —h}
4hh,
_(hy-hy)
" 4hh,

Useful website http://www.lmnoeng.com/Channels/HydraulicJump.htm
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WORKED EXAMPLE No.1

50 m’/s of water flows in a rectangular channel 8 m wide with a depth of 0.5 m. Show that a
hydraulic jump is likely to occur.

Calculate the depth after the jump and the energy loss per second.

SOLUTION

A1=8x05=4m’ u =Q/A, =50/4=12.5m/s

Froude Number F,; = u/\gh = = 12.5/N(9.81 x 0.5) = 31.855 This is supercritical so a jump is
possible.

h, =% ,/%1+8Fr2}—1]=0?5\/1+8x31.8552 =3.748m

Ar=8x3.748 =30m* uy=Q/A; =50/30 = 1.667 m/s
_(h,-h,)  (3.748-0.5)
" 4hh,  4x05x3.748

Energy loss = mghy = 50 000 x 9.81 x 4.573 =2.243 MJ/s
m = 50 000 kg/s

=4.573m

SELF ASSESSMENT EXERCISE No. 1

1. Show by applying Newton's Laws that when a hydraulic jump occurs in a rectangular channel

the depth after the jump is
h, = % w/%1+8Ff }—1]

3
Go on to show that the head loss is h, = —(h2 - hl)
4h h,

2. 40 m’/s of water flows in a rectangular channel 10 m wide with a depth of 1.0 m. Show that a
hydraulic jump is likely to occur. Calculate the depth after the jump and the energy loss per
second.

(Answers 1.374 m and 3.735 kl/s)

3. Water has a depth H = 1.5 m behind a sluice gate and emerges from the gate with a depth of
0.4 m. Downstream a hydraulic jump occurs. Calculate depth after the jump and the mean
velocity before and after the jump. (Note use Bernoulli to find u;)

Iy
H ¢ h 2

Figure 3

(Answers 1.416 and 1.627 m/s)
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RISE IN LEVEL OF BED

In this section we will examine what happens to the level of water flowing in a channel when there
is a sudden ride in the level of the bed.

Figure 4

First apply Bernoulli between points (1) and (2)
2 2
h, + O h, + %z
2g 2g

. . . u;h
From the continuity equation substitute u, = —-1

hy+—=h,+ +z
2g
2 2,2

Rearrange hy +—L— 2_u1h12_ =0
2g ghy

Substitute h =x+h; -z

2g

u——x}(X-I-h -z)z—ulz{<x+h1'z)2}=o
2g

u; —2gx}(x+h1 -z)z—uf(x+h1 -2)2 =0

{ulz —2gx}(x+h1-z)2 —uf(x—i—h1 —2)2 =0

|
{hl+%—(x+hl-z)—z}(x+h1-z)z—u%{(x+h1_z)2}:0
{
|

There follows a long bout of more algebra to produce a cubic equation for x :
2 2 2
x> + 2)(2(h1 -z —u—lJ +x(h, —Z{h1 —z—u—lJ + zu—1(2h1 ~7)=0
g g) 28

This equation may be used to solve the change in height of the water. If the values of x and z are
small, we may neglect products and higher powers of small numbers so the equation simplifies to:

2 2
,{hl_u_l}&:o
g g

){1 - “—IZJ LT
gh, gh,
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The Froude number approaching the change is F,, = —2L_ hence

Veh,
x(l-F, J+zF; =0
( r1) r

2
zF
2

1 h,

X =
F

r

The equation indicates that if flow is supercritical (F;;>1) then x is positive and the surface rises. If
the flow is sub critical (tranquil F;1<1) then x is negative and the surface is depressed.

WORKED EXAMPLE No. 2

Water flows in a rectangular channel with a depth of 0.55 m and a mean velocity of 4.5 m/s.
Downstream there is a rise in the level of the bed of 0.075 m. Determine the depth and mean
velocity after the rise. Is Bernoulli's equation is satisfied?

SOLUTION

u, 4.5 1937

2=0075mh =0.55m  w=45ms F“ZJ h,  9.81x0.55
gl .0 1XU.

2
The flow is supercritical (Rapid) x = 0.075(1.937) =0.102m

(1.9372 —0.55)

Depth = 0.55 +0.102 = 0.577 m

u, = u;h, _ 4.5x0.55 — 4.289m/s
h, 0.577
. ul2 4.5°
Energy head before rise is h, + — =0.55+ =1.582
2g 2g
2 2
Energy Head after the rise is h, + ;—2 +z =0.577+ 4'2289 +0.102=1.616
g g

There is a small discrepancy.

SELF ASSESSMENT EXERCISE No. 2

1.  Water flows in a rectangular channel with a depth of 1.0 m. Downstream there is a rise in the
level of the bed of 0.1 m. Determine the mean velocity after the rise and the critical depth
upstream if the depth after the rise is :

(@) 1.Im (Answers 3.13 and 1 m)

(b) 0.8m (Answer 2.215 m/s and 0.833 m)
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WEIRS

We shall consider two forms of weirs, a narrow one with a sharp edge and a broad one with a
rounded edge.

NARROW WEIRS

The flow over a sharp edge weir is in essence the same as flow through a rectangular notch.
Consider the flow from section (1) to section (2).

B

Figure 5

We shall only consider the depth upstream relative to the top of the weir. The mean velocity at a

given point is u. The pressure head at (2) is atmospheric Applying Bernoulli between (1) and (2) we
have:

2 2
2g 2g

The velocity upstream is usually small so we can neglect u; and if we use gauge pressure then h, = 0
2

g

Next consider a thin horizontal strip at distance h from the bottom of the weir and height dh. The
volume flow through it is dQ = u, Bdh

dQ = \/2gh,Bdh
H

Q=4/2gB [h{*dh
0

Q= % J28BH*

It is normal to introduce a coefficient of discharge to correct for losses.

Q= %(3611/2g13H2/3
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BROAD CRESTED WEIR

Earlier we examined what happens when the bed of the channel suddenly rises. In the case of the
broad crested weir, the level falls as it passes from the weir and it can be proved that at some point
on the weir, the flow becomes critical. At this point h, = h..

Figure 6

It was shown earlier that h, =—*

where hy is the specific total energy head.

It was also shown that the critical flow rate is
12
8h?3
=(B+b)g"? ==
Q. =(B+b)g"?| =

For a rectangular section this becomes
3 172
Q.= B(%J =1.705h,”"?

This gives the flow rate over the weir. Usually a coefficient of discharge is used to correct for
losses.

Q,=1.705C, h,"
If the approach velocity u; is negligible then hs=h; and makes it easy to solve Q.

WORKED EXAMPLE No. 3

A rectangular channel takes the flow from the foot of a steep spillway with a flow of 10 m’/s
per metre of width. The flow in the channel approaches a broad crested weir with a Froude
number of 3. Calculate the following.

1) The mean velocity in the channel.

i1) The minimum height of the weir which will cause a hydraulic jump to occur in the channel.

SOLUTION

The diagram illustrates the problem

Figure 7
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CHANNEL — At section (1) FZ=9=u,%gh; h,=q/u
Combine and 9 = u13/10g hence u; = 9.593 m/s h;=10/9.593 =1.042 m

JUMP

h, = % w/{1 +8F? %—1]: 3.932m

WEIR — At section (3) the flow is assumed critical so F; =1
2

F’ =% _land u; = gh,

ghs
u; = 4 or h; = 4 substitute and u; =gq hence u;=4.612 m/s
3 U3

h; =q/us =2.168 m

Bernoulli between (2) and (3)

2 2
%2 th, =‘21—3+h3+z hence z = 1.009
g

2g
uj

Jehs

Check F, = =1

SELF ASSESSMENT EXERCISE No. 3

1. A rectangular channel takes the flow from the foot of a spillway with a flow of 20 m*/s per unit
width. The flow in the channel approaches a broad crested weir with a Froude number of 2.24.

Calculate the minimum height of the weir to produce a hydraulic jump in the channel.
(Answer 0.968 m)

2. A wide rectangular spillway has a flow of water of 12 m’/s per unit width. A broad weir in the
path causes a hydraulic jump to occur. The Froude number approaching the jump is 2.5.

Calculate the minimum height of the weir assuming the flow is critical at some point over it.
(Answer 0.85 m)
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2. VENTURI FLUME

-—
‘ . Q F

A venturi flume is a flume that narrows to the Bl — b i

throat and then widens back out again. The r T

reduction in width causes a change in velocity
and hence height. In a Venturi meter the change

is reflected as a change in static pressure but in HII
a flume it is height.

If energy is conserved the total energy head at
inlet and at the throat are the same so from Bernoulli we have:

2 2
H, + 40 =H, + 22
2g 2g
. B,H,
The flow rate s Q= Au=B Hju; =B, H, u, Hence u, =u, BH
1t
B,H, Y 1 2
B/H, ) 2¢g 2g

If the flow rate is a maximum, the depth at the throat will be the critical depth and a hydraulic jump
will form downstream of the throat. In this case

2 2
szzh and h, = u2 :2—hS+h Hence uz—‘/29—hs
3 3
Q=B,H,u, = B,H, / h, _2B hs /2gh

Introducing the coefficient of dlscharge Q =1.705C, h2?

This is the same as for Broad Crested weir. Solving Q with this formula is not straight forward
because hg contains the velocity term. The examination often asks for the derivation of this formula.

WORKED EXAMPLE No4

A rectangular channel is 1.2 m wide and narrows to 0.6 m wide in a venturi flume. The depth at
the entrance and throat are 0.6 m and 0.55 m respectively. Calculate the flow rate given Cd =
0.88.

SOLUTION

2g(H1 —-H,

Bl
B I

2g(0.05)

- =0324m’/3
| 0.6x0.55
1.2x0.6

=0.88x0.6x0.55

Q= Cde Hz
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SELF ASSESSMENT EXERCISE No.4

Show that for critical flow with a Froude Number of 1 in a rectangular channel, the depth of
flow yc is related to the specific energy head H by the expression H = 3y,/2

Describe with sketches a broad crested weir and a venturi flume.

Show that for both structures the flow rate is related to the critical depth by the relationship
Q =1.705C, H*?

Note the symbols are not the same as in the notes and are the ones used typically in the EC
exam.
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ENGINEERING COUNCIL EXAM

HYDROLOGY D204

TUTORIAL 13 - PIPE NETWORKS

In this tutorial you will

e Revise pipe friction equations.
e Derive iterative balance equations for nodes and loops.
e Solve problems about networks with a common junction.

e Solve problems about networks with connected loops.

Students are advised to complete tutorial 1 and study the flow in pipes before doing
this tutorial.
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BRIEF REVISION OF PIPE FLOW

PIPE FRICTION
. . . . . 4CLu?
When a fluid flows in a pipe the friction head is defined by the Darcy equation h; = Z—Dm
g

h¢ = friction head

u, = mean velocity = Q/A

D = pipe bore

L = pipe length

R = Reynolds number = pu,,D/p
R = Hydraulic resistance

The friction coefficient Cr is dependent on the surface roughness and degree of turbulence and there
are many theories about its relationship. The most common method for finding Cy is from the
Moody Chart or from one of many developed formulae such as :

BLASIUS C;=0.0791 R®

LEE C;=0.0018 + 0.152 R,
6.9

1.11
HAALAND L -3.6log,, _+(LJ
JC, R, (3.71

For laminar flow n = 1 and C¢= 16/R.
Basically we are saying hy oc u,,"and n is only 2 for complete turbulent flow.

We must remember that C; depends on the Reynolds number. In this case we would need to think
about recalculating Cr every time we change the flow.

In terms of flow rate Q hs=R Q"

32C,L

R (or often K) is the fluid resistance. Whenn=2 R = e
gn

and when n is not 2, Cr and hence
R changes with the flow rate. The units of R are s*/m”.

MINOR LOSSES

Minor losses occur at Entry and exit from a reservoir, at sudden changes in sections and sharp
bends. In general these are small compared to pipe friction when the pipes are long and are

neglected for short connections they are important. In terms of pressure head the losses are usually
formulated as:

. . k . .
h, = RQ? where the resistance is given by R = ?—U‘where k is a factor that depends on the pipe
T

sizes and can be found in literature.

The Moody chart and other details concerning pipe losses can be found in tutorial 1.
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GUESSING and CORRECTING

Starting with hy =R Q" differentiate to get dh, = nRQ"'dQ = nRQdQ and since R Q" = h¢
dh, = Q- g = Qhe
' Q nh

nh8Q s - Qs

If this relationship holds approximately true for finite changes then dh, =

These equations are used to make corrections in the guessing game that follows.

NETWORKS WITH A COMMON JUNCTION

The diagram shows a typical example with four reservoirs A, B, C and D connected to a common
junction J. The problem is to find the pressure head h at the junction.

» Ai‘k_

J
ZA 7

C D ¥ |zp

Z T 7
ze — D
¥ Datum Level v ¥ ¥

For a system such as that illustrated, suppose that we need to find the flow in each pipe but we don't
know the pressure at the junction.

We could do four simultaneous equations in order to find the flow in each pipe but these days with
fast computational methods it is relatively easier to guess at values and make corrections.

Applying Bernoulli between the free surface of any reservoir and the junction gives:
h+z+u2g=h;+z+u?2g+h;

At the free surface h =0 and u = 0 (This is an assumption normally made).
z =hy +Zj+u_[2/2g+hf hf =z-h; ‘Zj-UJZ/zg

Many sources of information ignore the velocity term and state hy = z - z; - hy and this will be so
here. For a given pipe we calculate the hydraulic resistance R (or K) and get the form hy=R Q"

Hence for any pipehy =RQ"=z—z—h; Q= {(z-2z—h)"/R}

Suppose we guess at the value of hy (or more likely hy + z;). With a suitable programme such as
Excel™ it is easy to guess the head and keep changing it until £Q = 0.

The point is that at the junction the total or net flow rate must be zero so each time we guess
we add up the total flow until ZQ = 0. If it is not very close to zero then we guess again.

A more systematic method of arriving at the correct answer is to make a correction after each guess
based on the error formula derived previously.

Using the guessed value of head we work out Q for each pipe. Any error in the guess will produce
Qoh, nh6Q
nh,

for each

an error in the flow of 6Q = and the correction to the head must be oh; =

pipe.
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For four pipes A, B, C and D the total error is:

h, 5Q nh, 5Q nh, 6Q nh, 5Q n8Q
(%) (29) (28] (28) Ta-g2
2.9 [ o , /U e , U a kU 2.0 > Qh,

This method is called the nodal balance method.

WORKED EXAMPLE No.1

Based on the diagram previous, the following data applies.
za=143 m zg=134m zc=120m zp=100m z;=80

Da=04m Dg=03m Dc=05m Dp=04m
LA =4200 m Lg=1200m Lc=1250m Lp=1200m
C¢=0.005 for all pipes. The constant n is 2.

Find the pressure head at the junction by guessing and hence the flow rate in or out of each
reservoir.

SOLUTION
_ 32C;L
gnzD5

Calculate R for each pipe. R = 0.001653%

RA=677.8
Rg =816
Rc=66.1
Rp=193.7

The following solution was done on a spread sheet. Remember that on the spread sheet the
values in the table will automatically change when you change hy in the programme. Adjusting
hy until ZQ = 0 gives the following.

PIPE R z-7; he=z-7-h Q=Vhy/R AQ/Ah;  Guess hy = 39.998
A 677.8 63  23.002 0.18422 0.00801
B 816 54 14.002 0.13099 0.00936
C 66.1 40  0.002 0.0055 2.75033
D 193.7 20  -19.998 03213 0.01607

2Q =-0.0006 X =2.78376

Note that if Q is minus it is implied that hy is minus but this will cause a problem in the
calculations so use Q = \Modulus(hy/R)

In Excel the formula would be entered =SQRT(ABS(celll/cell2))*(cell3/ABS(cell3)) where cell 1
and cell2 are the cells containing hr and R and cell3 contains hy.

The final values of flow rate are
Qa =0.18422 m’/s
Qg = 0.13099 m’/s
Qc =0.13099 m*/s
Qp=-0.3213 m’/s
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In an examination you may not have access to a suitable programmable calculator so you would
have to keep repeating all the calculations with an adjustment to the value of h; each time.

WORKED EXAMPLE No.2

Repeat the last worked example but use iteration to arrive at the answer.
n 6Q
> Qg

With this formula you can calculate the adjustment each time. With no other data, a good idea
for the starting value is the mean height of the reservoirs. Also note that the height of the
junction is not normally given but if we guess at hy + z; we get the same result but do not know
the static head at J. Also note that K is commonly used instead of R. A good starting guess
might be hy = (63 + 54 + 40 + 20)/4 =44 m

The correction to be made after each iteration is th =

PIPE R Z-17y hf Q Q/hf

A 6778 63 19 0.16743 0.00881
B 816 54 10 0.1107 0.01107
C 66.1 40 -4 -0.246 0.0615
D 193.7 20 -24 -0.352 0.01467

¥=-0.3199 X=0.09605
Now find the correction

ZSh = 29Q = 2x(-0.3199) =—6.66 Change the values of hy to 37.34 and repeat.
£ > Qmh  0.09605

PIPE R Z-7 hf Q Q/hf

A 677.8 63 25.66  0.19457 0.00758
B 816 54 16.66 0.14289 0.00858
C 66.1 40 2.66 0.2006 0.07542
D 193.7 20 -17.34  -0.2992 0.01725

>=0.23886 >=0.10883
Now find the correction

28Q  2x(0.23886)
D 8h; = =
> Q/h, 0.10883

=4.39 Change the values of hy to 41.73 and repeat.

PIPE R Z-17) hy Q Q/hf

A 677.8 63 21.27  0.17715 0.00833
B 816 54 12.27  0.12262 0.00999
C 66.1 40 -1.73 -0.1618 0.09351
D 193.7 20 -21.73  -0.3349 0.01541

¥=-0.1969 X=0.12725
Now find the correction

ZShf = 29Q = 2x(-0.1969) =-3.09 Change the values of hy to 38.6 and repeat.
> Qh;  0.1273

PIPE R Z -7y hy Q Q/hf

A 677.8 63 24.64  0.19066 0.00774
B 816 54 15.64  0.13844 0.00885
C 66.1 40 1.64 0.15751 0.09605
D 193.7 20 -18.36  -0.3079 0.01677

2=0.17875 2=0.1294

28Q  2x(0.17875)
> 5h; = =
> Q/, 0.1294

The number of iterations depends on how accurate you want the answer to be but you can see
the answer is converging on 40 m.

=2.76 Change the values of h; to 41.4 and repeat.

© D.J.DUNN www.freestudy.co.uk 5




WORKED EXAMPLE No.3 (EC Exam Standard)

The table shows the data for the network of pipes shown connecting four reservoirs to a
common junction.

Reservoir Water Level K for Pipe

(m) abovea  connecting B
datum to J (s*/m°)

A 50 4.0 o

B 45 3.0 : )

C 40 2.0

D 30 2.0 .

Calculate the flow in each pipe using iteration until the final head correction at the junction is
less than 0.1 m.

SOLUTION

The height of the datum is not given so we can only calculate the combined head and height.
The best guess is usually the mean height of the reservoirs which is (50 + 45 + 40 + 30)/4 =
41.25

1st ITERATION

PIPE K z Ahy Q Q/hg Guess hytz;
A 4 50 8.75 1.47902 0.16903 41.25

B 3 45 3.75 1.11803 0.29814

C 2 40 -1.25 -0.7906 0.63246

D 2 30 -11.25  -2.3717 0.21082

-0.5652 1.31045
Zﬁhf = 20Q _ 2x(-0.5652) =—-0.863 =Correct hy+ z;=40.4

> Qhy 1310
2nd ITERATION
PIPE R V4 Ahg Q Q/ hy Guess hytz;
A 4 50 9.6 1.54919 0.16137 41.25
B 3 45 4.6 1.23828 0.26919
c 2 40 0.4 -0.4472 1.11803
D 2 30 2104 -2.2804 0.21926

0.05991 1.76786

=(.0678 This is less than 0.1 so meets the answer

28Q  2x(0.5991)
D 6h; = =
> Q/h, 1.76786

Qa=155m’s Qp=124m’/s Qc=-0.45m’/s Qp=-2.28 m’/s

© D.J.DUNN www.freestudy.co.uk 6




SELF ASSESSMENT EXERCISE No.1

The table shows the data for the network of pipes shown connecting four reservoirs to a
common junction.

Reservoir Water Level K for Pipe
(m) abovea  connecting

datum to J (s/m°)
A 120 420
B 90 316
C 60 250
D 40 120

Calculate the flow in each pipe using iteration until the final head correction at the junction is
less than 0.1 m.

(0.36, 0.27, -0.16 and-0.47 m’/s)
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NETWORKS

Consider a small network laying in the horizontal plane as
shown in the diagram. There are three nodes A, B and C
and three pipes AB, BC and AC. The purpose is to find
the flow in each pipe.

Suppose the pressure head at node A is hy. Assume the
flow is clockwise around the loop.

The pressure head at node B must be ha + hs(AB).

The pressure head at node C must be ha + h¢(AB) + hy(BC).

The pressure head at node A must be ha + hs(AB) + h¢(BC) + h¢(CB).

We are back to where we started so ha =ha + hs(AB) + he(BC) + hs(CB).

It follows that hy(AB) + hy(BC) + hy(CB) =0
If the flow in any pipe is the opposite way, then hr will be negative and all is taken care of.
If we went anti-clockwise around the loop, the same would be true.

Notation is clockwise is positive (opposite to maths convention, typical engineering)
Anti- clockwise is negative.

The solution is based on calculating the total h¢ for either the clockwise or anti-clockwise flow and
adjusting the Q values until Zhy is zero.
2 hn

Znhﬂ/Q

The correction to the flow in each pipe is 8Q =

We start by guessing the flow in each pipe (ensuring balance at each node) and calculating the
friction head for each. We add up the friction heads and if it is not close to zero we correct our
guess and do it again.

The method is known as the Hardy Cross method or Loop Balance.

IMPORTANT NOTE — the correction must be SUBTRACTED
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WORKED EXAMPLE No.4

In the simple network shown Q; = 0.8 m3/s, Q=-1.2 m’/s.
The resistance of each pipe is as follows.

Pipe AB R =50 s*/m’
Pipe BC R=30s*m’
Pipe AC R =60sm’

Determine the flow in the three pipes. Take n =2
SOLUTION
By conservation of flow, Qs = 0.4 m’/s

Guess the flow in each pipe bearing in mind the total flow at a node is zero. Clockwise is
positive. The starting guess is:

Q(AB)=0.6 Q(BC)=-0.6 Q(BC)=-04
First iteration
PIPE R Q h¢ h/Q
AB 50 0.6 18 30
BC 30 -0.6 -10.8 18
AC 60 -0.2 2.4 12
-0.2 4.8 60

50 - dhy 48

= = =0.04 Correct the Q values by subtractin
25 h/Q  2x60 Q Y 8

Second iteration

PIPE R Q hy h/Q
AB 50 0.56 15.68 28
BC 30 -0.64 -12.288 19.2
AC 60 -0.24 3456 144
-0.32 -0.064  61.6
0Q = zhﬂ _ 032 =-0.000524 Correct the Q values by subtracting

2> hy/Q 2x61.6

Third iteration

PIPE R Q hy hy/Q

AB 50 0.56052 15.708  28.025
BC 30 -0.6395 -12.2688 19.185
AC 60 -0.2395 -3.44162 14.37

-0.3185 -0.00005 61.58

This is one iteration more than we need. The head loss is so close to zero that this is the correct
answer.

Q (AB)=0.56052m’/s, Q (BC)=-0.6395 m’/s and Q (AC)=-0.2395 m’/s

If we check the flow into each node we will see that the original figures have been maintained.
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MULTIPLE LOOPS

When a network contains multiple loops, there will be pipes common to adjoining loops with a
clockwise flow in one loop appearing as anti-clockwise in the other. Each loop must be identified
and the corrections made systematically to each loop in turn. The correction to the flows must be
made each time before moving on to the next loop. For more than two loops in a network, the

process becomes very elaborate and computer methods need to be used.

WORKED EXAMPLE No. 5

The diagram shows a water supply network
with the demands indicated at the nodes.

The value of K for each pipe is 1000 s*/m’
except for BE which is 7500 s*/m”.

The supply pressure head at A is 50 m above
the ground elevation for the area served which
is flat and level. Calculate the pressure head
at each node.

SOLUTION

The problem must be solved as two loops
with a common pipe BE.

First make a guess at the flow rates.

The supply must be

0.02 + 0.05 +0.03 + 0.03 + 0.05 + 0.02 = 0.2 m’/s

Bear in mind that the net flow is zero at all nodes.

0.05
A
0.02 0.03
Supply =
PP Y B
F E D
0.05
0.05
4
0.08 0.02
Supply . Y = C
0l 0.01 4 0.01
F 008 E 004 D
. 002 v 0.03
0.05

Data shown for initial guess

_ 2hy

_-925

2> hy/Q  2x335

=-0.01386

335 Correct all flows in this loop by adding 0.01386.

0.03

Start with loop ABEFA
PIPE R Q hy hy/Q
AB 1000 0.08 6.4 80
3Q
BE 7500 0.01 0.75 75
EF 1000 -0.08 -6.4 80
FA 1000 -0.1 -10 100
-9.25
0.05
0.02 4
0.0033 0.02
Supply =

0.2
0.08619

0.02

A B

0.023351

F 006619 |g

0.01

0.04 D

¥
0.05

0.03

Data after first correction to left loop
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Now do loop BCDEB

PIPE R

BC 1000
CD 1000
DE 1000
BE 7500

Q
0.02

-0.01
-0.04
-0.02381

hy

04

-0.1
-1.6
-4.2504
-5.550

0.02

L

Supply
0.2
0.08619

0.02

-5.55

=-0.01117

hy/Q
20 Q= Z by -
40
178.5
248.5 Correct all flows in this loop by adding 0.01117.
0.05
I 0.03
0.0938 0.03117
A 5 e
0.01264 000117
F 0.06619 E D
0.02883
Y 0.03
0.05

Data after first correction to the right loop

This completes the first iteration so now do loop ABEFA again.

PIPE R

AB 1000
BE 7500
EF 1000
FA 1000

Q
0.09381

0.01264
-0.0662
-0.0862

hf
8.79956
1.19829
-4.38165
-7.42941
-1.81321

Data after second correction

to the left loop

Now do loop BCDEB again.

PIPE R Q hy

BC 1000 0.03117 0.971311

CD 1000 0.00117 0.001359

DE 1000 -0.0288 -0.83141

BE 7500 -0.0153 -1.7554
-1.61414

Data after second correction

to right loop

hf/Q
93.80597  §Q= 2hy _ZI8132 ) 00266
94.80084 2> hy/Q  2x34l
66.19403
86.19403
340.9949 Correct all flows by adding 0.00266
0.03
0.02 4 0.03
0.09646 0.03117
Sl(l)])}))l}-’ n Y > = * c
0.08354 | 00053 | 0.00117
" 0.02583
0.03
hy/Q
316586 soo_2Mn_ L1400
1.165859 23" hy/Q 2x175.9
28.83414
114.7411
175.907 Correct all flows by adding 0.00459
0.05
0.02 4 e
0.09646 0.03575
Supply - e E ;
02 A B C
0.08354 0.0107 | 1 0.00575
p 006334 |p 002425
0.05
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We need to keep going until hy is very small. Our initial guess was not very good.

Do ABEFA Again
> hy -0.849
0Q = = =-0.00131
PIPE R Q by hy/Q Q 2> h,/Q  2x323.866
AB 1000 0.09646 9.30543 96.46467
BE 7500 0.01071 0.8604  80.33071
EF 1000 -0.0635 -4.03674 63.53533
FA 1000 -0.0835 -6.97815 83.53533
-0.84905 323.866  Correct all flows by adding 0.00131
0.03
0.02 4 oS
Data after third correction _— 0.09778 0.03575
Supply - "
to the left loop - A B C
0.08222 | 0.01201 T 0.00575
F 006222 |p 002425
o v 0.03
Do BCDEB again L
PIPE R Q hy hy/Q
BC 1000 0.03575 1.278342 35.75391 5Q = thl __-0.3603 _ _0.00116
CD 1000 0.00575 0.033107 5.75391 ZZhﬂ/Q 2x155.916 ‘
DE 1000 -0.0242 -0.58787 24.24609
BE 7500 -0.012  -1.08389 90.16178
-0.36031 155.9157 Correct all flows by adding 0.00116
0.03
0P $ 0.03
0.00778 0.03691
Supply y > > -
0.2 4 B ¢
0.08222 0.01085 | 0.00691
F 0.06222
0.02300
0.02 v 0.03

0.05
Final flow rates

We have a total friction head of less than 1 metre in both loops so we will end here.
To find the pressure head at each node we must evaluate the friction heads with these flows.

PIPE R Q hy

AB 1000  0.09778 9.56004
BE 7500  0.01087 0.88554
EF 1000  -0.0622 -3.87189
FA 1000  -0.0822 -6.76087
BC 1000  0.03691 1.362302
CD 1000  0.00691 0.047739
DE 1000  -0.0231 -0.53318
BE 7500  -0.0109 -0.88554

Pressure at B=50-9.6 =404 m
Pressure at F=50-6.8=432m
Pressure at C=404—-14=39m

Pressure at E=40.4-09=395m
Pressure at E =43.2 — 3.9 = 39.3 m (check)
Pressure at D =39 - 0.05=39 m

Pressure at D =39.4 — 0.5 = 38.9 m (check)
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SELF ASSESSMENT EXERCISE No.2

1. The diagram shows a simple pipe network in the horizontal plane with nodes at A, B, C and D
with flow rates as indicated. The hydraulic resistance of each pipe is as follows:

AB 500 s*/m’ 1.5m3/s
BC 500 s*/m’ l
CD 1200 s*/m’ N

DA 1200 s¥/m’ /'\3
BD 600 s*/m’ 0.5m3/s - D » 0.8 m3 /s

Determine the flow in each pipe

The answers are shown next. -
0.2 m>/s

1.5m3/e

0.5m3/s 0.8 m3/s

02m3/

2. The diagram shows a water supply network with the demands indicated at the nodes.
The value of K for each pipe is 500 s*’m’ except for BE which is 600 s*/m’.
The supply pressure head at A is 120 m above the ground elevation for the area served which is
flat and level. Calculate the flow rate in each pipe and the pressure head at each node.

0.1
0.1 4 0.1
Supply = . N C
F E D
0.1 ¥ 0.2
0.2
ANSWERS
Qm3/s hym Node hm
AB  0.373 69.6 A 120
BE 0.126 9.6 B 50.4
EF -0.227 -25.7 C 354
FA  -0.327 -53.4 D 32.7
BC 0.173 15.0 E 40.7
CD 0.0732 2.7 F 66.6

DE  -0.127 -8.0
BE  -0.126 -9.6
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