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croarchitecture (1)
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Figure 4-6. The complete block diagram of our example mi-
croarchitecture, the Mic-1.
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ic-1: Microarchitecture (2
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Figure 4-6. The complete block diagram of our example mi-
croarchitecture, the Mic-1.
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The data path

From/ —F WwRrR = Mg'stelry * 32 blt reg|SterS with exception of

Te T G VBR, Which is a 8 bit register)
Memory || * * * B bus to drive data to

= the ALU

* C bus to drive data from
EAEAN FSenvmn the ALU to registers
| treees o H register as A-input of

EL 05 i: e
the AL.U
* ALU with 6 control

6 l . = S I g n a I S (and 2 outputs, N to test for Negative

ALU z numbers and Z to test for Zero)

: Shifter control

Figure 4-1. The data path of the example microarchitecture used in this chapter.
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ALU Control Signals

F, | F, | ENA | ENB | INVA | INC | Function

0 1 1 0 0 0 A

0 1 0 1 0 0 B

0 1 1 0 1 0 A

1 0 1 1 0 0 B

1 1 1 1 0 0 A+B

1 1 1 1 0 1 A+B+1

1 1 1 0 0 1 A+ 1

1 1 0 1 0 1 B+ 1

1 1 1 1 1 1 B—A

1 1 0 1 1 1 B—1

1 1 1 0 1 1 —A

0| O 1 1 0 0 A AND B

0 1 1 1 0 0 AORB

0 1 0 0 0 0 0
1|1 0 0 0 1 1

0 1 0 0 1 0 —1

Figure 4-2. Useful combinations of ALU signals and the function performed.
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The data path

Registers have control signals to enable/disable
reading from them (put value on the B bus) and
writing to them (store value from the C bus)

It is possible to read only from one register at
time: so we can use a 4 -> 16 bit decoder

It is possible to write to one or more registers at

the same time: so we need 9 control signals for
the C bus.
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Data path synchronization (1)

““““ Registers loaded
<—f—1 MAR Shifter instantaneously from
Memory output C bus and memory on
control Cycle 1 stable rising edge of clock
-Ia-cr)ld S —>1 MR A EEpe ittt starts /
from = here Clock cycle 1 >l Clock cycle 2 ——»
memory < ——— PC ——>
A ST New MPC used to
______ ~—load MIR with next
—— MB_R_?];FE B A< @ Ay Az microinstruction here
A x| g gAVF;ﬁab'e
A Control signals to drive shifter here
data path
CPP — T 2ble onto B bus
A : : Drive H Propagation
4 wiite C D¥gegister and from shifter
TOS = B bus to registers
576 .. Control signals stabilize
B 2. A register value is put on the B bus
1. 1. .. ALU and shifter operate

. + Result propagate on the C bus
S . . Result is written in the registers on the
Nk raising edge of the next clock pulse

Figure 4-1. The data path of the example microarchitecture used in this chapter.
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Data path synchronization (2)
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Figure 4-1. The data path of the example microarchitecture used in this chapter.
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Data path synchronization (3)

Registers loaded
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I. 1. ALU and shifter operate
6
. Result propagate on the C bus
I Result is written in the registers on the
? Shifter control

raising edge of the next clock pulse

Figure 4-1. The data path of the example microarchitecture used in this chapter.
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Data path synchronization (4)
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output C bus and memory on
1 stable rising edge of clock

New MPC used to
<—load MIR with next
microinstruction here

Clock cycle 1 / - Clock cycle 2 ——

—~————

] } MPC
Setup ALU :
signals a available
to drive shifter here
data path

Drive H Propagation
and from shifter
B bus to registers

Control signals stabilize

Register's value is put on the B bus
ALU and shifter operate

Result propagate on the C bus

Result is written in the registers on the
raising edge of the next clock pulse

Figure 4-1. The data path of the example microarchitecture used in this chapter.
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Data path synchronization (4)
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Figure 4-1. The data path of the example microarchitecture used in this chapter.
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MIAR and MDR (1)

MDR -

2
32 bit registers connected to the main memory

MAR = Memory Address Register
MDR = Memory Data Register
MAR has only one control signal (input from C)

Two memory operations: read and write
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MAR and MDR (2)

it MAR (counts in words)

32-Bi
dddddddd ¢

Wl

Figure 4-4. Mapping of the bits in MAR to the address bus.

Data is word (4*8bit = 32bit in our ISA)
addressed!

=>MAR addresses are shifted 2bit left ( = * 4)




Wemory Access

A memory read initiated at cycle k delivers data
that can be used only in cycle k+2 or later!

Registers loaded

Shifter instantaneously from
output C bus and memory on
Cycle 1 stable rising edge of clock

starts

here Clock cycle 1 - Clock cycle 2 ———

e bl il
~<——|0a Wi nex
<AW, <AX> i sl & ‘AZ; microinstruction here

* * MPC
Set up ‘ ot ‘ available

signals and

fojdinve 4 1 et fichi . MARis loaded
OriveH  Propagation . Memory access
Bl - ot ;. MDR is loaded with data
Figure 4-3. Timing diagram of one data path cycle. read from memory

. Data in MDR is available
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Wemory Access

A memory read initiated at cycle k delivers data
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Wemory Access

A memory read initiated at cycle k delivers data
that can be used only in cycle k+2 or later!
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Wemory Access

A memory read initiated at cycle k delivers data
that can be used only in cycle k+2 or later!
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Memeory Access (2)

Until start of cycle k+2 the MDR register contains
old data

It is possible to issue consecutive requests, for
example at time k and k+1: corresponding results
will be available at k+2 and k+3
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PC and MBR

77

8 bit reqgisters connected to the main memory used to read
(fetch) ISA instructions

PC = Program Counter
MBR = Memory Buffer Register
Access also requires one clock cycle (k -> k+2)

MBR has two control signals for the B bus, for signed or
unsigned operations

One memory operation: fetch

(20)



H register

— H

TlLA\_/
9\\ ALU

Is the A-input of the ALU

Has only one control signal; output to the ALU
Is always enabled
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1SA, IJVM, Microarchitecture

ISA = Instruction Set Architecture
(defines instructions, memory model, available
registers,...)

IJVM = An example ISA (it's stack based
architecture)

The IJVM (Integer Java Virtual Machine) level
executes the IJVM Instruction set

The IJVM is (in this case) implemented by the
Mic-1 Microarchitecture
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Mie=1 implementation

The Mic-1 is a microprogrammed architecture:
each IJVM instruction (Macroinstruction) is
divided one or more steps.

In each step, a microinstruction is executed by
the Mic-1.

Microinstructions are simpler than ISA
macroinstructions.
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Control section

..... 4 | B
p— 4-t0-16 .
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:
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| | |
Figure 4-6. The complete block diagram of our example mi-

croarchitecture, the Mic-1.
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Miecroinstructions

36bit wide microinstructions

Microinstructions are “executed” in the control
section (“a CPU in the CPU")

Microinstructions basically drive control signals
for the data path.

To avoid the need for a real (micro)Program
Counter each microinstruction specifies the
address of the following one.

Microinstruction addresses are 9-bit wide
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Microinstruction format (1)

Bits 9

WZm

OTVO

nO-

TTOO| ©
< r-

> Z M
LZ—
OZ

NEXT_ADDRESS

OV«
ZZPp— | W
NZ P>
orrw
> 00

W
OT
A0Z

Ar» <
mM——x0

OrmA|w
TO—mm
ny)

bus

O~

" YA .y
Addr JAM ALU

Mem

1=PC

2 = MBR
3 = MBRU
4=SP

<

Figure 4-5. The microinstruction format for the Mic-1.

W <

B bus registers

0 = MDR

5=LV
6 = CPP
7=TOS
8 =0PC
9-15 none
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Microinstruction format (2)

Bits 9

OUTVZ <
ZZPp | w
NZ >

corrw
=~ >0W

> Z M

mZm
>Z—

OZ—

OTVO
no-d

TTOUO| ©

< r-

W
OT
A0Z

Pl
m——xa=
O>rmAO| w
TO—mm

w

bus

JAM

Addr: Address of
the next
microinstruction

ALU

O~

<

Mem

W <

B bus registers

0 = MDR
1=PC
2 =MBR
3 =MBRU
4 =SP

Figure 4-5. The microinstruction format for the Mic-1.

5=LV
6 = CPP
7=TOS
8 =0PC
9-15 none
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Microinstruction format (3)

Bits 9 3 8 9 3 4
JIJIJIS|SIF|F/|E|E]| I Hlo|lT|C|L|S|P|M|IM|WIRI|F
MIAIAILIR N[{N[IN|N POPVPCDA'?E% B
NEXT_ADDRESS [|P|MIM|L[A AlBlv|C] |C|sS|P RIRIT|AIC] &
CIN|Z]|s |1 A E|D|H us
Addr ALU C Mem B
B bus registers
0=MDR 5=LV
. 1=PC 6 = CPP
JAM: Determines 2=MBR 7=TOS
how to choose next SZMBRU 820PC

microinstruction

Figure 4-5. The microinstruction format for the Mic-1.
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Microinstruction format (4)

Bits 9

mZm

> Z M
LZ—
OZ

NEXT_ADDRESS

OV«
ZZPp— | W
NZ P>
orrw
> 00

OTVO
no-d

TTUO | ©

oW
O

<
A0Z

> =
m——xa=

OrmA|w
TO—mm
ny)

bus

Addr JAM

ALU: Control
signals to choose
ALU operations

O~

<

Mem

0 = MDR
1=PC

2 =MBR

3 = MBRU
4=SP

Figure 4-5. The microinstruction format for the Mic-1.

W <

B bus registers

5=LV
6 = CPP
7=TOS
8 =0PC
9-15 none
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Microinstruction format (5)

Bits 9 3 8 9 3 4
JIJ|JISIS|F|F/|E|E]| I HlO|T|C|L|S|[P|IMIMJW|R|F
MIAJAIL(IR N[{N[IN|N POPVPCDA'?E% B
NEXT _ADDRESS [P|M|M|L|A AlBlvicl |cls|P RIRIT|AIC] &
cIN|z]s]|1 A E|D|H us
Addr JAM ALU Mem B
B bus registers
0=MDR 5=LV
4 6 = CPP
C: Enables writing :  7=70s
U 8=0PC
from C bus to the 9-15 none

selected registers

Figure 4-5. The microinstruction format for the Mic-1.
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Microinstruction format (6)

Bits 9 3 8 9 3 4
JIJlJIS|S|F|F/|E|E]| I H|o|T|C|L|S|P|IM|MIWIR|E

MIAJAIL(IR N[{N[IN|N POPVPCDA'?E% B

NEXT ADDRESS [P|M|MIL]|A AlBlv|cl [c|s|P RIRIT|AIC] ©

cIN|Zz]ls |1 A E|D|H us

Addr JAM ALU C B

B bus rediters
0=MDRE 5=Lv
Mem: Controls
memory
read/write/fetch

. o _ operations
Figure 4-5. The microinstruction format for the Mic-1.
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Microinstruction format (7)

Bits 9 3 8 9 3 4
JIJlJIS|S|F|F/|E|E]| I H|o|T|Cc|L|S|P|IM|M|WI|R|F
MIAJAIL(IR N[{N[IN|N POPVPCDA'?E%
NEXT ADDRESS [P|M|MIL]|A AlBlv|cl [c|s|P RIRIT[A]|C
CIN|Zz]l8 |1 A E|D|H
Addr JAM ALU C Mem

B bus registers

0=MDR 5=1H

- B: Controls which

‘register can write to
the B bus

Figure 4-5. The microinstruction format for the Mic-1.
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Driving control signals

Memory control signals (rd, wr, fetch)
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< Control
6 N [1[11-bit flip—flop signals
ALU 4 Enable
z onto
‘ B bus
Shifter +
2
o f Write
C bus
to register

Figure 4-6. The complete block diagram of our example mi-
croarchitecture, the Mic-1.
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Figure 4-3. Timing diagram of one data path cycle.

MIR is loaded on the falling
edge of the clock based on the
MPC address, control signals
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ALU Operation: N and Z values
available and saved



Driving control signals

Memory control signals (rd, wr, fetch)
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A
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A
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Figure 4-6. The complete block diagram of our example mi-
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available and saved



Driving control signals
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Next microinstruction (1)

MPC 9

B bus

A

812 &
control s
for hold
8 4 the micropi
JMPC ﬂ
|

Addr |J| ALU
I

Addr[8]
JAMN/JAMZ

High
bit ¢

/

2
$ %1—bit flip—flop

V4

Addr (the address of the next
microinstruction coded in the current

microinstruction) is copied in the MPC
(lower 8 bits, high bit is 0)

If J is 000 the next address is in the MPC
and the next microinstruction can be read
from the control store (Note:
microinstruction are not stored in the same
order as Figure 4-17)

If J is not 000 it is necessary to compute
the next microaddress depending on the
values of J, N and Z (whose value has
been saved in flip-flop because the ALU
returns correct result as long as data is

passing through it)

(36)



Next microinstruction (2)

MPC 9

812 &
control s
for hold
8 & the micropi
JMPC ﬂ
|

Addr [J| ALU

] I
Addr[8]
JAMN/JAMZ
B bus E'iltgh < '2
7N |$ [l“]’l—bit flip—flop
/

V4

If JAMN or JAMZ are set to 1, the 'High bit'
function computes the value of the high bit
of the MPC as follows:

F = (JAMZ and Z) or (JAMN and N) or
Addr[8]

(To avoid confusion: Addr[8] is in fact the 9™ bit, the highest, of
Addr, as bits count start from 0)

So the MPC can assume either the value
of Addr or the value of Addr with the high
bit ORred with 1

(37)



Next microinstruction (3)

__ Lo 9 F = (JAMZ and Z) or (JAMN and N) or
| E | Addr{8]

] %]ﬁfoi An example:
- 81 themicor | et Addr <= OxFF (or we would get the

wpc ﬂ same value, OxFF in either case)

AL Let JAMZ = 1 (or JAMN = 1)

Addr[8]
JAMN/JAMZ Let Z=1 (or N=1)
High in this case MPC is Addr + 0x100 (for

B bus bit [ 2 example: if Addr=0x92, MPC = 0x92 + 0x100 = 0x192)
' 1-bit flip—flo
7 - $ % pp Note: 0x100 = 256
- Z

(38)



Microinstructions (4)

...but why is all that stuff required to determine
the next microinstruction ?

Reason: efficiency

In case of conditional jumps (if..then..else) we normally need two
jump addresses as parameter.

To uniform the microinstruction format we want all instruction to
have the same length: either we make all microinstruction
contain two addresses (-> waste of space) or (better solution) we
specify only one address and compute the second one as Addr +
Constant Value (in Mic-1 Constant Value = 0x100)

(39)



Next microinstruction (9)

MPC 9

B bus

A

812 &
control s
for hold
8 4 the micropi
JMPC ﬂ
|

Addr |J| ALU
I

Addr[8]
JAMN/JAMZ

High
bit ¢

/

2
$ %1—bit flip—flop

V4

If JMPC = 0, Addr is copied to MPC

If JIMPC =1, the lower 8-bits of Addr are
ORred with the MBR value, and the result
IS put in the MPC

Normally when JMPC = 1, Addr is set to
either 0x000 or 0x100

JMPC is used to jump to the address
specified by the MBR, which, as we will
see, contains the opcode of the ISA
instruction: in fact, microinstruction for
each macroinstruction are stored
starting from the position determined by
the opcode of the latter.

(40)



Next microinstruction (6)

MPC 9

B bus

A

Example

l

ISA instruction:

512 x5t
control s

oy BIPUSH opcode is 0x10

High

bit ¢

/

2
$ %1—bit flip—flop

V4

8 1 the
MPC__ ﬂ corresponding microinstructions starts at
adar 0] acu. address 0x10 in the control store
|
Addr(8] For the reasons explained in the previous
JAMN/JAMZ slides, it is clear that the next

microinstruction can be determined only
when the MBR, N and Z are ready, i.e.
starting from the successive clock pulse)

(41)
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