
ECE 411 COMPUTER ORGANIZATION AND DESIGN 

Lecture 2: Instruction Set Architecture

ack: Portions of these slides are derived from: CSCE430/830 by H. Jiang
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Instruction Set Architecture (ISA)
l serves as an interface b/w software and hardware.
l provides a mechanism by which the software tells the hardware what should 

be done.

ISA

high level language code : C, C++, Java, Fortran,

HW

assembly language code: architecture specific statements 

machine language code: architecture specific bit patterns 

SW

compiler

assembler
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Interface Design
l a good interface:

ü lasts through many implementations (portability, compatability)
ü is used in many different ways (generality)
ü provides convenient  functionality to higher levels
ü permits an efficient implementation at lower levels

interface imp 1

imp 2

imp 3

use

use

use

time
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Instruction Set Design Issues
l instruction set design issues include:

ü where are operands stored?
o registers, memory, stack, accumulator

ü how many explicit operands are there?     
o 0, 1,  2,  or 3 

ü how is the operand location specified?
o register, immediate,  indirect, . . . 

ü what type & size of operands are supported?
o byte, int, float, double, string, vector. . .

ü what operations are supported? 
o add, sub, mul, move, compare . . .
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Evolution of Instruction Sets

Single Accumulator (EDSAC 1950, Maurice Wilkes)

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
from Implementation

High-level Language Based Concept of a Family
(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(MIPS,Sparc,HP-PA,IBM RS6000,PowerPC . . .1987)
CISC

Intel x86, Pentium
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Instruction Length
variable:

fixed:

x86 – Instructions vary from 1 to 17 Bytes long
VAX – from 1 to 54 Bytes

MIPS, PowerPC, and most other RISC’s: 
all instruction are 4 Bytes long
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Instruction Length
l variable-length instructions (x86, VAX):

ü require multi-step, complex fetch and decode (-)
ü allow smaller binary programs that require less disk storage, less DRAM at 

runtime, less memory, bandwidth and better cache efficiency (+)

l fixed-length instructions (RISC’s) 
ü allow easy fetch and decode (+)
ü simplify pipelining and parallelism (+)
ü result in larger binary programs that require more disk storage, more DAM at 

runtime, more memory bandwidth and lower cache efficiency (-)
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Magnetic Core Memory (1955-1975)
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ARM Case Study
l ARM (Advanced RISC Machine)

ü started with fixed, 32-bit instruction length
ü added thumb instructions

o a subset of the 32-bit instructions
o all encoded in 16 bits
o all translated into equivalent 32-bit instructions within the processor pipeline 

at runtime
o can access only 8 general purpose registers

ü motivated by many resource constrained embedded applications that require 
less disk storage, less dram at runtime, less memory, bandwidth and better 
cache efficiency
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How many registers? 
l most computers have a small set of registers

ü memory to hold values that will be used soon
ü a typical instruction use 2 or 3 register values

l advantages of a small number of registers:
ü it requires fewer instruction bits to specify which one.
ü less hardware
ü faster access (shorter wires, fewer gates)
ü faster context switch (when all registers need saving)

l advantages of a larger number:
ü fewer loads and stores needed
ü easier to express several operations in parallel

In 411, “load” means moving 
data from memory to register,
“store” is reverse
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Where do operands reside?
when the ALU needs them?
l stack machine:

ü push loads memory into 1st register (“top of stack”), moves other regs down
ü pop does the reverse
ü add combines contents of first two regs, moves rest up

l accumulator machine:
ü only 1 register (called the “accumulator”)
ü instruction include “store” and “ACC¬ ACC + MEM”

l register-memory machine :
ü arithmetic instrs can use data in registers and/or memory  

l load-store machine  (aka register-register machine):
ü arithmetic instructions can only use data in registers.
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Classifying ISAs
Accumulator (before 1960, e.g. 68HC11):
1-address add A acc ¬ acc + mem[A]

Stack (1960s to 1970s):
0-address add tos ¬ tos + next

Memory-Memory (1970s to 1980s):
2-address add A, B mem[A] ¬ mem[A] + mem[B]
3-address add A, B, C mem[A] ¬ mem[B] + mem[C]

Register-Memory (1970s to present, e.g. 80x86):
2-address add R1,  A R1 ¬ R1 + mem[A]

load R1, A R1 ¬ mem[A]

Register-Register (Load/Store) (1960s to present, e.g. MIPS):
3-address add R1, R2, R3 R1 ¬ R2 + R3

load R1, R2 R1 ¬ mem[R2]
store R1, R2 mem[R1] ¬ R2
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Operand Locations in Four ISA Classes

GPR
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Comparing the ISA classes
code sequence for  C = A + B

stack accumulator register-memory load-store

Push A Load  A Load  R1,A
Push B Add   B Load  R2,B
Add Store C

Add C, A, B

Add   R3,R1,R2
Pop  C Store C,R3

Java VMs DSPs VAX, x86 partially
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Four Instruction Sets
l Code Sequence  C = A + B
Stack Accumulator Register

(register-memory)
Register (load-
store)

Push A
Push B
Add
Pop C

Load A
Add B
Store C

Load R1, A
Add R1, B
Store C, R1

Load R1,A
Load R2, B
Add R3, R1, R2
Store C, R3

memory memory
acc =  acc + mem[C] R1 =  R1 + mem[C] R3 =  R1 + R2
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Four Instruction Sets
l A = X*Y + X*Z

Memory

A
X
Y
B
C
temp

?
12
3
4
5
?

Stack

R1

R2

R3

Accumulator

Stack Accumulator Register
(register-memory)

Register (load-
store)
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More About General Purpose Registers
l why do almost all new architectures use GPRs?

ü registers are much faster than memory (even cache)
o register values are available immediately
o when memory isn’t ready, processor must wait (“stall”)

ü registers are convenient for variable storage
o compiler assigns some variables just to registers
o more compact code since small fields specify registers

(compared to memory addresses)

registers cache
memoryprocessor disk
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Stack Architectures
l instruction set: 

ü add, sub, mult, div, . . .
ü push A, pop A

l example: A*B - (A+C*B)
ü push A
ü push B
ü mul
ü push A
ü push C
ü push B
ü mul
ü add
ü sub

A B
A

A*B
A*B

A*B
A*B

A
A
C

A*B
A A*B

A C B B*C A+B*C result
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Stacks: Pros and Cons
l pros

ü good code density (implicit top of stack)
ü low hardware requirements
ü easy to write a simpler compiler for stack architectures

l cons
ü stack becomes the bottleneck
ü little ability for parallelism or pipelining
ü data is not always at the top of stack when need, so additional instructions like 

TOP and SWAP are needed
ü difficult to write an optimizing compiler for stack architectures
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Accumulator Architectures
l Instruction set: 

ü add A, sub A, mult A, div A, . . .
ü load A, store A

l Example: A*B - (A+C*B)
ü load B
ü mul C
ü add A
ü store D
ü load A
ü mul B
ü sub D

B B*C A+B*C AA+B*C A*B result

acc =  acc +,-,*,/ mem[A]
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Accumulators: Pros and Cons
l pros

ü very low hardware requirements
ü easy to design and understand

l cons
ü accumulator becomes the bottleneck
ü little ability for parallelism or pipelining
ü high memory traffic
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Memory-Memory Architectures
l instruction set: 

(3 operands) add A, B, C sub A, B, C mul A, B, C
(2 operands) add A, B sub A, B mul A, B

l example: A*B - (A+C*B)
(3 operands) (2 operands)

mul D, A, B mov D, A
mul E, C, B mul D, B
add E, A, E mov E, C
sub E, D, E mul E, B

add E, A
sub E, D
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Memory-Memory: Pros and Cons
l pros

ü requires fewer instructions (especially if 3 operands)
ü easy to write compilers for (especially if 3 operands)

l cons
ü very high memory traffic (especially if 3 operands)
ü variable number of clocks per instruction
ü with two operands, more data movements are required



24

ECE 411 COMPUTER ORGANIZATION AND DESIGN 

Register-Memory Architectures
l Instruction set: 

add R1,  A sub R1, A mul R1, B
load R1, A store R1, A

l Example: A*B - (A+C*B)
load R1, A
mul R1, B /* A*B */
store R1, D
load R2, C
mul R2, B /* C*B */
add R2, A /* A + CB */
sub R2, D /* AB - (A + C*B) */

R1 =  R1 +,-,*,/ mem[B]
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Memory-Register: Pros and Cons
l pros

ü some data can be accessed without loading first
ü instruction format easy to encode
ü good code density

l cons
ü operands are not equivalent (poor orthogonal)
ü variable number of clocks per instruction
ü may limit number of registers
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Load-Store Architectures
l Instruction set: 

add R1,  R2, R3 sub R1, R2, R3 mul R1, R2, R3
load R1, &A store R1, &A move R1, R2

l Example: A*B - (A+C*B)
load R1, &A
load R2, &B
load R3, &C
mul R7, R3, R2 /* C*B */
add R8, R7, R1   /* A + C*B */
mul R9, R1, R2 /* A*B */
sub R10, R9, R8 /* A*B - (A+C*B) */

R3 =  R1 +,-,*,/ R2
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Load-Store: Pros and Cons
l pros

ü simple, fixed length instruction encodings
ü instructions take similar number of cycles
ü relatively easy to pipeline and make superscalar

l cons
ü higher instruction count 
ü not all instructions need three operands
ü dependent on good compiler
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Load/Store Architectures
can do:
add r1=r2+r3
load r3, m(address)
store r1, m(address)
forces heavy dependence on 
registers, which works for today’s 
cpus

cannot do
add r1=r2+m(address)

more instructions (-)
fast implementation (e.g., easy 
pipelining) (+)
easier to keep instruction lengths 
fixed (-)
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Registers: Advantages and Disadvantages
l advantages

ü faster than cache or main memory (no addressing mode or tags)
ü deterministic (no misses)
ü can replicate (multiple read ports)
ü short identifier (typically 3 to 8 bits)
ü reduce memory traffic

l disadvantages
ü need to save and restore on procedure calls and context switch
ü can’t take the address of a register (for pointers)
ü fixed size (can’t store strings or structures efficiently)
ü compiler must manage
ü limited number

every ISA designed after 1980 uses a load-store ISA (i.e RISC, to simplify 
CPU design).
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Word-Oriented Memory Organization
l memory is byte addressed and 

provides access for bytes (8 bits), 
half words (16 bits), words (32 bits), 
and double words(64 bits).

l addresses specify byte locations
ü address of first byte in word
ü addresses of successive words 

differ by 4 (32-bit) or 8 (64-bit)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
words

bytes addr.

0012
0013
0014
0015

64-bit
words

addr
=
??

addr
=
??

addr
=
??

addr
=
??

addr
=
??

addr
=
??

0000

0004

0008

0012

0000

0008
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Byte Ordering
l how should bytes within multi-byte word be ordered in memory?
l conventions

ü Sun’s, Mac’s are “Big Endian” machines
o least significant byte has highest address

ü Alphas, PC’s are “Little Endian” machines
o least significant byte has lowest address
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Byte Ordering Example
l Big endian

ü least significant byte has highest address

l little endian
ü least significant byte has lowest address

l example
ü variable x has 4-byte representation 0x01234567
ü address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01
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Reading Byte-Reversed Listings
l disassembly

ü text representation of binary machine code
ü generated by program that reads the machine code

l example fragment

l deciphering numbers
ü value: 0x12ab
ü pad to 4 bytes: 0x000012ab
ü split into bytes: 00 00 12 ab
ü reverse: ab 12 00 00

address instruction code assembly rendition
8048365: 5b                   pop    %ebx
8048366: 81 c3 ab 12 00 00    add    $0x12ab,%ebx
804836c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)
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Types of Addressing Modes (VAX)
Addressing Mode Example Action

1. Register direct Add R4, R3 R4 <- R4 + R3
2. Immediate Add R4, #3 R4 <- R4 + 3
3. Displacement Add R4, 100(R1) R4 <- R4 + M[100 + R1]
4. Register indirect Add R4, (R1) R4 <- R4 + M[R1]
5. Indexed Add R4, (R1 + R2) R4 <- R4 + M[R1 + R2]
6. Direct Add R4, (1000) R4 <- R4 + M[1000]
7. Memory Indirect Add R4, @(R3) R4 <- R4 + M[M[R3]]
8. Autoincrement Add R4, (R2)+ R4 <- R4 + M[R2]

R2 <- R2 + d
9. Autodecrement Add R4, (R2)- R4 <- R4 + M[R2]

R2 <- R2 - d
10. Scaled Add R4, 100(R2)[R3] R4 <- R4 + M[100 + R2 + R3*d]
Studies by [Clark and Emer] indicate that modes 1-4 account for 93% of all operands on the VAX. 
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Types of Operations
l Arithmetic and Logic: AND, ADD
l Data Transfer: MOVE, LOAD, STORE
l Control BRANCH, JUMP, CALL
l System OS CALL, VM 
l Floating Point ADDF, MULF, DIVF
l Decimal ADDD, CONVERT
l String MOVE, COMPARE
l Graphics (DE)COMPRESS
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80x86 Instruction Frequency 

Rank Instruction Frequency
1 load 22%
2 branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 sub 5%
8 register move 4%

9

9 call 1%
10 return 1%

Total 96%
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Relative Frequency of  Control Instructions 
l design hardware to handle branches quickly, since these occur most 

frequently

Operation SPECint92 SPECfp92
Call/Return 13% 11%
Jumps 6% 4%
Branches 81% 87%
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Instruction formats
what does each bit mean?
l machine needs to determine quickly, 

ü “This is a 6-byte instruction”
ü “Bits 7-11 specify a register” 
ü ... 
ü Serial decoding bad

l having many different instruction formats...
ü complicates decoding 
ü uses instruction bits (to specify the format)

what would be a good thing about having many different instruction 
formats?
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LC-3b Instruction Formats
l ADD, AND (without Immediate)

l ADD, AND (with Immediate), NOT

Bit 0Bit 15

Opcode DR SR1 0 00 SR2

Bit 0Bit 15

Opcode DR SR1 1 Imm5
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MIPS Instruction Formats

l for instance,   “add r1, r2, r3”  has
ü OP=0, rs=2, rt=3, rd=1, sa=0 (shift amount), funct=32
ü 000000, 00010, 00011, 00001, 00000, 100000

l opcode (OP) tells the machine which format

OP

OP

OP

rs rt rd sa funct

rs rt immediate

target

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

r format

i format

j format

if you want to know more about MIPS instruction set, please refer to:
https://en.wikipedia.org/wiki/MIPS_instruction_set



41

ECE 411 COMPUTER ORGANIZATION AND DESIGN 

MIPS ISA Tradeoffs

l what if?
ü 64 registers
ü 20-bit immediate
ü 4 operand instruction (e.g., Y = AX + B)

think about how sparsely the bits are used

OP

OP

OP

rs rt rd sa funct

rs rt immediate

target

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

r format

i format

j format
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Conditional branch
l how do you specify the destination of a branch/jump?

ü theoretically, the destination is a full address 
o 16 bits for LC3b
o 32 bits for MIPS

l studies show that almost all conditional branches go short distances from the 
current program counter (loops, if-then-else)
ü we can specify a relative address in much fewer bits than an absolute address
ü e.g., beq $1, $2, 100=>if ($1 == $2) PC = PC + 100 * 4

l how do we specify the condition of the branch?
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MIPS conditional branches
l beq, bne, beq r1, r2, addr=>if (r1 == r2) goto addr
l slt $1, $2, $3  =>  if ($2 < $3) $1 = 1; else $1 = 0
l these, combined with $0, can implement all fundamental branch conditions

ü always, never, !=, = =, >, <=, >=, <, >(unsigned), <= (unsigned), ...

if (i<j)
w = w+1;

else
w = 5;

slt $temp, $i, $j
beq $temp, $0, L1 
add $w, $w, #1
beq $0, $0, L2
L1: add $w, $0, #5
L2:
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Jumps
l need to be able to jump to an absolute address sometimes

ü jump -- j 10000  => PC = 10000

l need to be able to do procedure calls and returns
ü jump and link--jal 100000 => $31 = PC + 4; PC = 10000

o used for procedure calls
ü jump register -- jr $31 => PC = $31

o used for returns, but can be useful for lots of other things

OP target
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Announcement
l next lecture

ü performance, energy, and power metric 

l MP assignment
ü MP0 due on 9/5


