
ECE 411 COMPUTER ORGANIZATION AND DESIGN

Lecture 2: Instruction Set Architecture

ack: Portions of these slides are derived from: CSCE430/830 by H. Jiang

2

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Instruction Set Architecture (ISA)
l serves as an interface b/w software and hardware.
l provides a mechanism by which the software tells the hardware what should

be done.

ISA

high level language code : C, C++, Java, Fortran,

HW

assembly language code: architecture specific statements

machine language code: architecture specific bit patterns

SW

compiler

assembler

3

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Interface Design
l a good interface:

ü lasts through many implementations (portability, compatability)
ü is used in many different ways (generality)
ü provides convenient functionality to higher levels
ü permits an efficient implementation at lower levels

interface imp 1

imp 2

imp 3

use

use

use

time

4

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Instruction Set Design Issues
l instruction set design issues include:

ü where are operands stored?
o registers, memory, stack, accumulator

ü how many explicit operands are there?
o 0, 1, 2, or 3

ü how is the operand location specified?
o register, immediate, indirect, . . .

ü what type & size of operands are supported?
o byte, int, float, double, string, vector. . .

ü what operations are supported?
o add, sub, mul, move, compare . . .

5
Evolution of Instruction Sets

Single Accumulator (EDSAC 1950, Maurice Wilkes)

Accumulator + Index Registers
(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model
from Implementation

High-level Language Based Concept of a Family
(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)

(MIPS,Sparc,HP-PA,IBM RS6000,PowerPC . . .1987)
CISC

Intel x86, Pentium

6

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Instruction Length
variable:

fixed:

x86 – Instructions vary from 1 to 17 Bytes long
VAX – from 1 to 54 Bytes

MIPS, PowerPC, and most other RISC’s:
all instruction are 4 Bytes long

7

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Instruction Length
l variable-length instructions (x86, VAX):

ü require multi-step, complex fetch and decode (-)
ü allow smaller binary programs that require less disk storage, less DRAM at

runtime, less memory, bandwidth and better cache efficiency (+)

l fixed-length instructions (RISC’s)
ü allow easy fetch and decode (+)
ü simplify pipelining and parallelism (+)
ü result in larger binary programs that require more disk storage, more DAM at

runtime, more memory bandwidth and lower cache efficiency (-)

8

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Magnetic Core Memory (1955-1975)

9

ECE 411 COMPUTER ORGANIZATION AND DESIGN

ARM Case Study
l ARM (Advanced RISC Machine)

ü started with fixed, 32-bit instruction length
ü added thumb instructions

o a subset of the 32-bit instructions
o all encoded in 16 bits
o all translated into equivalent 32-bit instructions within the processor pipeline

at runtime
o can access only 8 general purpose registers

ü motivated by many resource constrained embedded applications that require
less disk storage, less dram at runtime, less memory, bandwidth and better
cache efficiency

10

ECE 411 COMPUTER ORGANIZATION AND DESIGN

How many registers?
l most computers have a small set of registers

ü memory to hold values that will be used soon
ü a typical instruction use 2 or 3 register values

l advantages of a small number of registers:
ü it requires fewer instruction bits to specify which one.
ü less hardware
ü faster access (shorter wires, fewer gates)
ü faster context switch (when all registers need saving)

l advantages of a larger number:
ü fewer loads and stores needed
ü easier to express several operations in parallel

In 411, “load” means moving
data from memory to register,
“store” is reverse

11

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Where do operands reside?
when the ALU needs them?
l stack machine:

ü push loads memory into 1st register (“top of stack”), moves other regs down
ü pop does the reverse
ü add combines contents of first two regs, moves rest up

l accumulator machine:
ü only 1 register (called the “accumulator”)
ü instruction include “store” and “ACC¬ ACC + MEM”

l register-memory machine :
ü arithmetic instrs can use data in registers and/or memory

l load-store machine (aka register-register machine):
ü arithmetic instructions can only use data in registers.

12

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Classifying ISAs
Accumulator (before 1960, e.g. 68HC11):
1-address add A acc ¬ acc + mem[A]

Stack (1960s to 1970s):
0-address add tos ¬ tos + next

Memory-Memory (1970s to 1980s):
2-address add A, B mem[A] ¬ mem[A] + mem[B]
3-address add A, B, C mem[A] ¬ mem[B] + mem[C]

Register-Memory (1970s to present, e.g. 80x86):
2-address add R1, A R1 ¬ R1 + mem[A]

load R1, A R1 ¬ mem[A]

Register-Register (Load/Store) (1960s to present, e.g. MIPS):
3-address add R1, R2, R3 R1 ¬ R2 + R3

load R1, R2 R1 ¬ mem[R2]
store R1, R2 mem[R1] ¬ R2

13
Operand Locations in Four ISA Classes

GPR

14

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Comparing the ISA classes
code sequence for C = A + B

stack accumulator register-memory load-store

Push A Load A Load R1,A
Push B Add B Load R2,B
Add Store C

Add C, A, B

Add R3,R1,R2
Pop C Store C,R3

Java VMs DSPs VAX, x86 partially

15

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Four Instruction Sets
l Code Sequence C = A + B
Stack Accumulator Register

(register-memory)
Register (load-
store)

Push A
Push B
Add
Pop C

Load A
Add B
Store C

Load R1, A
Add R1, B
Store C, R1

Load R1,A
Load R2, B
Add R3, R1, R2
Store C, R3

memory memory
acc = acc + mem[C] R1 = R1 + mem[C] R3 = R1 + R2

16

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Four Instruction Sets
l A = X*Y + X*Z

Memory

A
X
Y
B
C
temp

?
12
3
4
5
?

Stack

R1

R2

R3

Accumulator

Stack Accumulator Register
(register-memory)

Register (load-
store)

17

ECE 411 COMPUTER ORGANIZATION AND DESIGN

More About General Purpose Registers
l why do almost all new architectures use GPRs?

ü registers are much faster than memory (even cache)
o register values are available immediately
o when memory isn’t ready, processor must wait (“stall”)

ü registers are convenient for variable storage
o compiler assigns some variables just to registers
o more compact code since small fields specify registers

(compared to memory addresses)

registers cache
memoryprocessor disk

18

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Stack Architectures
l instruction set:

ü add, sub, mult, div, . . .
ü push A, pop A

l example: A*B - (A+C*B)
ü push A
ü push B
ü mul
ü push A
ü push C
ü push B
ü mul
ü add
ü sub

A B
A

A*B
A*B

A*B
A*B

A
A
C

A*B
A A*B

A C B B*C A+B*C result

19

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Stacks: Pros and Cons
l pros

ü good code density (implicit top of stack)
ü low hardware requirements
ü easy to write a simpler compiler for stack architectures

l cons
ü stack becomes the bottleneck
ü little ability for parallelism or pipelining
ü data is not always at the top of stack when need, so additional instructions like

TOP and SWAP are needed
ü difficult to write an optimizing compiler for stack architectures

20

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Accumulator Architectures
l Instruction set:

ü add A, sub A, mult A, div A, . . .
ü load A, store A

l Example: A*B - (A+C*B)
ü load B
ü mul C
ü add A
ü store D
ü load A
ü mul B
ü sub D

B B*C A+B*C AA+B*C A*B result

acc = acc +,-,*,/ mem[A]

21

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Accumulators: Pros and Cons
l pros

ü very low hardware requirements
ü easy to design and understand

l cons
ü accumulator becomes the bottleneck
ü little ability for parallelism or pipelining
ü high memory traffic

22

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Memory-Memory Architectures
l instruction set:

(3 operands) add A, B, C sub A, B, C mul A, B, C
(2 operands) add A, B sub A, B mul A, B

l example: A*B - (A+C*B)
(3 operands) (2 operands)

mul D, A, B mov D, A
mul E, C, B mul D, B
add E, A, E mov E, C
sub E, D, E mul E, B

add E, A
sub E, D

23

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Memory-Memory: Pros and Cons
l pros

ü requires fewer instructions (especially if 3 operands)
ü easy to write compilers for (especially if 3 operands)

l cons
ü very high memory traffic (especially if 3 operands)
ü variable number of clocks per instruction
ü with two operands, more data movements are required

24

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Register-Memory Architectures
l Instruction set:

add R1, A sub R1, A mul R1, B
load R1, A store R1, A

l Example: A*B - (A+C*B)
load R1, A
mul R1, B /* A*B */
store R1, D
load R2, C
mul R2, B /* C*B */
add R2, A /* A + CB */
sub R2, D /* AB - (A + C*B) */

R1 = R1 +,-,*,/ mem[B]

25

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Memory-Register: Pros and Cons
l pros

ü some data can be accessed without loading first
ü instruction format easy to encode
ü good code density

l cons
ü operands are not equivalent (poor orthogonal)
ü variable number of clocks per instruction
ü may limit number of registers

26

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Load-Store Architectures
l Instruction set:

add R1, R2, R3 sub R1, R2, R3 mul R1, R2, R3
load R1, &A store R1, &A move R1, R2

l Example: A*B - (A+C*B)
load R1, &A
load R2, &B
load R3, &C
mul R7, R3, R2 /* C*B */
add R8, R7, R1 /* A + C*B */
mul R9, R1, R2 /* A*B */
sub R10, R9, R8 /* A*B - (A+C*B) */

R3 = R1 +,-,*,/ R2

27

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Load-Store: Pros and Cons
l pros

ü simple, fixed length instruction encodings
ü instructions take similar number of cycles
ü relatively easy to pipeline and make superscalar

l cons
ü higher instruction count
ü not all instructions need three operands
ü dependent on good compiler

28
Load/Store Architectures
can do:
add r1=r2+r3
load r3, m(address)
store r1, m(address)
forces heavy dependence on
registers, which works for today’s
cpus

cannot do
add r1=r2+m(address)

more instructions (-)
fast implementation (e.g., easy
pipelining) (+)
easier to keep instruction lengths
fixed (-)

29

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Registers: Advantages and Disadvantages
l advantages

ü faster than cache or main memory (no addressing mode or tags)
ü deterministic (no misses)
ü can replicate (multiple read ports)
ü short identifier (typically 3 to 8 bits)
ü reduce memory traffic

l disadvantages
ü need to save and restore on procedure calls and context switch
ü can’t take the address of a register (for pointers)
ü fixed size (can’t store strings or structures efficiently)
ü compiler must manage
ü limited number

every ISA designed after 1980 uses a load-store ISA (i.e RISC, to simplify
CPU design).

30

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Word-Oriented Memory Organization
l memory is byte addressed and

provides access for bytes (8 bits),
half words (16 bits), words (32 bits),
and double words(64 bits).

l addresses specify byte locations
ü address of first byte in word
ü addresses of successive words

differ by 4 (32-bit) or 8 (64-bit)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
words

bytes addr.

0012
0013
0014
0015

64-bit
words

addr
=
??

addr
=
??

addr
=
??

addr
=
??

addr
=
??

addr
=
??

0000

0004

0008

0012

0000

0008

31

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Byte Ordering
l how should bytes within multi-byte word be ordered in memory?
l conventions

ü Sun’s, Mac’s are “Big Endian” machines
o least significant byte has highest address

ü Alphas, PC’s are “Little Endian” machines
o least significant byte has lowest address

32

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Byte Ordering Example
l Big endian

ü least significant byte has highest address

l little endian
ü least significant byte has lowest address

l example
ü variable x has 4-byte representation 0x01234567
ü address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

33

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Reading Byte-Reversed Listings
l disassembly

ü text representation of binary machine code
ü generated by program that reads the machine code

l example fragment

l deciphering numbers
ü value: 0x12ab
ü pad to 4 bytes: 0x000012ab
ü split into bytes: 00 00 12 ab
ü reverse: ab 12 00 00

address instruction code assembly rendition
8048365: 5b pop %ebx
8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx
804836c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)

34

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Types of Addressing Modes (VAX)
Addressing Mode Example Action

1. Register direct Add R4, R3 R4 <- R4 + R3
2. Immediate Add R4, #3 R4 <- R4 + 3
3. Displacement Add R4, 100(R1) R4 <- R4 + M[100 + R1]
4. Register indirect Add R4, (R1) R4 <- R4 + M[R1]
5. Indexed Add R4, (R1 + R2) R4 <- R4 + M[R1 + R2]
6. Direct Add R4, (1000) R4 <- R4 + M[1000]
7. Memory Indirect Add R4, @(R3) R4 <- R4 + M[M[R3]]
8. Autoincrement Add R4, (R2)+ R4 <- R4 + M[R2]

R2 <- R2 + d
9. Autodecrement Add R4, (R2)- R4 <- R4 + M[R2]

R2 <- R2 - d
10. Scaled Add R4, 100(R2)[R3] R4 <- R4 + M[100 + R2 + R3*d]
Studies by [Clark and Emer] indicate that modes 1-4 account for 93% of all operands on the VAX.

35

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Types of Operations
l Arithmetic and Logic: AND, ADD
l Data Transfer: MOVE, LOAD, STORE
l Control BRANCH, JUMP, CALL
l System OS CALL, VM
l Floating Point ADDF, MULF, DIVF
l Decimal ADDD, CONVERT
l String MOVE, COMPARE
l Graphics (DE)COMPRESS

36
80x86 Instruction Frequency

Rank Instruction Frequency
1 load 22%
2 branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 sub 5%
8 register move 4%

9

9 call 1%
10 return 1%

Total 96%

37

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Relative Frequency of Control Instructions
l design hardware to handle branches quickly, since these occur most

frequently

Operation SPECint92 SPECfp92
Call/Return 13% 11%
Jumps 6% 4%
Branches 81% 87%

38

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Instruction formats
what does each bit mean?
l machine needs to determine quickly,

ü “This is a 6-byte instruction”
ü “Bits 7-11 specify a register”
ü ...
ü Serial decoding bad

l having many different instruction formats...
ü complicates decoding
ü uses instruction bits (to specify the format)

what would be a good thing about having many different instruction
formats?

39

ECE 411 COMPUTER ORGANIZATION AND DESIGN

LC-3b Instruction Formats
l ADD, AND (without Immediate)

l ADD, AND (with Immediate), NOT

Bit 0Bit 15

Opcode DR SR1 0 00 SR2

Bit 0Bit 15

Opcode DR SR1 1 Imm5

40

ECE 411 COMPUTER ORGANIZATION AND DESIGN

MIPS Instruction Formats

l for instance, “add r1, r2, r3” has
ü OP=0, rs=2, rt=3, rd=1, sa=0 (shift amount), funct=32
ü 000000, 00010, 00011, 00001, 00000, 100000

l opcode (OP) tells the machine which format

OP

OP

OP

rs rt rd sa funct

rs rt immediate

target

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

r format

i format

j format

if you want to know more about MIPS instruction set, please refer to:
https://en.wikipedia.org/wiki/MIPS_instruction_set

41

ECE 411 COMPUTER ORGANIZATION AND DESIGN

MIPS ISA Tradeoffs

l what if?
ü 64 registers
ü 20-bit immediate
ü 4 operand instruction (e.g., Y = AX + B)

think about how sparsely the bits are used

OP

OP

OP

rs rt rd sa funct

rs rt immediate

target

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

r format

i format

j format

42

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Conditional branch
l how do you specify the destination of a branch/jump?

ü theoretically, the destination is a full address
o 16 bits for LC3b
o 32 bits for MIPS

l studies show that almost all conditional branches go short distances from the
current program counter (loops, if-then-else)
ü we can specify a relative address in much fewer bits than an absolute address
ü e.g., beq $1, $2, 100=>if ($1 == $2) PC = PC + 100 * 4

l how do we specify the condition of the branch?

43

ECE 411 COMPUTER ORGANIZATION AND DESIGN

MIPS conditional branches
l beq, bne, beq r1, r2, addr=>if (r1 == r2) goto addr
l slt $1, $2, $3 => if ($2 < $3) $1 = 1; else $1 = 0
l these, combined with $0, can implement all fundamental branch conditions

ü always, never, !=, = =, >, <=, >=, <, >(unsigned), <= (unsigned), ...

if (i<j)
w = w+1;

else
w = 5;

slt $temp, $i, $j
beq $temp, $0, L1
add $w, $w, #1
beq $0, $0, L2
L1: add $w, $0, #5
L2:

44

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Jumps
l need to be able to jump to an absolute address sometimes

ü jump -- j 10000 => PC = 10000

l need to be able to do procedure calls and returns
ü jump and link--jal 100000 => $31 = PC + 4; PC = 10000

o used for procedure calls
ü jump register -- jr $31 => PC = $31

o used for returns, but can be useful for lots of other things

OP target

45

ECE 411 COMPUTER ORGANIZATION AND DESIGN

Announcement
l next lecture

ü performance, energy, and power metric

l MP assignment
ü MP0 due on 9/5

