<u>Řešení soustavy n rovnic o n neznámých pomocí matic</u> <u>a jejich řešení v Excelu</u>

Řešení soustavy n rovnic o n neznámých si ukážeme na jednoduchém příkladu:

$$3x_1 - 5x_2 + 6x_3 = -20$$
$$-x_1 + 2x_2 + 5x_3 = 1$$

 $7x_1 - 10x_2 - 19x_3 = -7$

Soustavu lze řešit několika způsoby. Ze střední školy nejspíš znáte metodu dosazovací a sčítací. Příklad si nejdříve vypočteme pomocí metody dosazovací.

$$3x_{1} - 5x_{2} + 6x_{3} = -20$$

$$-x_{1} + 2x_{2} + 5x_{3} = 1 \Rightarrow x_{1} = 2x_{2} + 5x_{3} - 1$$

$$7x_{1} - 10x_{2} - 19x_{3} = -7$$

$$3(2x_{2} + 5x_{3} - 1) - 5x_{2} + 6x_{3} = -20$$

$$7(2x_{2} + 5x_{3} - 1) - 10x_{2} - 19x_{3} = -7$$

$$6x_{2} + 15x_{3} - 3 - 5x_{2} + 6x_{3} = -20$$

$$14x_{2} + 35x_{3} - 7 - 10x_{2} - 19x_{3} = -7$$

$$x_{2} + 21x_{3} = -17 \Rightarrow x_{2} = -21x_{3} - 17$$

$$4x_{2} + 16x_{3} = 0$$

$$4(-21x_{3} - 17) + 16x_{3} = 0$$

$$-84x_{3} - 68 + 16x_{3} = 0$$

$$-68x_{3} = 68$$

$$x_{3} = -1$$

$$x_{2} = -21x_{3} - 17 = -21 \cdot (-1) - 17 = 21 - 17 = 4$$

$$x_{1} = 2x_{2} + 5x_{3} - 1 = 2 \cdot 4 + 5 \cdot (-1) - 1 = 8 - 5 - 1 = 2$$
Výsledek rovnice je: [2; 4; -1]

Soustavu *n* rovnic o *n* neznámých lze řešit i pomocí matic. Soustavu rovnic lze obecně zapsat následujícím způsobem:

$$a_{11}x_1 \dots a_{1n}x_n = b_1$$
$$a_{21}x_1 \dots a_{2n}x_n = b_2$$
$$a_{m1}x_1 \dots a_{mn}x_n = b_m$$

Tento zápis lze přepsat pomocí matic a vektorů následovně:

Matice
$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$

Vektor $\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$
A vektor $\vec{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$

Kde *m* a *n* se rovnají a představují počet rovnic a neznámých.

Soustavu pak lze zapsat zjednodušeně pomocí maticového zápisu následovně:

$$A \cdot \vec{x} = \vec{b}$$

Jelikož hledáme x_1 až x_n , vyjádříme si vektor \vec{x} :

$$\vec{x} = \frac{\vec{b}}{A}$$

Jelikož u maticového počtu není dělení standartní operace, provedeme jednoduchou úpravu, kdy převedeme matici A na inverzní matici A^{-1} .

$$\vec{x} = \vec{b} \cdot A^{-1} = A^{-1} \cdot \vec{b}$$

A teď zkusíme řešení soustavy rovnic pomocí sw MS Excel. MS Excel standardně umí výpočty s maticemi a je mezi nimi i výpočet inverzní matice a součin matic (případně matic a vektorů).

Postup výpočtu v Excelu:

Nejprve si přepíšeme rovnici do maticového zápisu do Excelu (nemusíme si matice pojmenovávat, na výpočet to nemá vliv):

2							
3							
4		3	-5	6		-20	
5	A=	-1	2	5	b=	1	
6		7	-10	-19		-7	
7							
8							

V dalším kroku musíme určit inverzní matici k matici A. Použijeme k tomu vzorec INVERZE(pole), kde pole je oblast, kde je zapsaná původní matice. Vzorec může vypadat např. =INVERZE(\$C\$4:\$E\$6). Pevné odkazy (např. \$C\$4) používáme, protože musíme vytvořit pole stejně velké jako původní matice.

3							
4		3	-5	6		-20	
5	A=	-1	2	5	b=	1	
6		7	-10	-19		-7	
7							
8		-0,17647	-0,17647	-0,17647			
9	inverzní A=	-0,17647	-0,17647	-0,17647			
10		-0,17647	-0,17647	-0,17647			
11							

Jelikož se ale jedná o výpočet s maticemi, musíme v Excelu označit, kde matici nalezne. Uděláme to následujícím postupem:

- 1. Označíme si celou matici v našem případě celou inverzní matici
- 2. Přepneme se do editace pomocí stisknutí klávesy F2
- 3. A nakonec označíme pomocí stisknutí kláves CTRL+SHIFT+ENTER

Jestli se nám povedlo úspěšně matici označit, poznáme tak, že je celý vzorec ve složených závorkách (např. {=INVERZE(\$C\$4:\$E\$6)}). Výsledek vypadá následovně:

	3	-5	6		-20
A=	-1	2	5	b=	1
	7	-10	-19		-7
	-0,17647	2,279412	0,544118		
inverzní A=	-0,23529	1,455882	0,308824		
	0,058824	0,073529	-0,01471		

Posledním krokem celého výpočtu je určení neznámých *x*. Provedeme ho pomocí vzorce SOUČIN.MATIC(pole1;pole2), kde pole1 je inverzní matice a pole2 je vektor *b*. Vzorec může vypadat např. =SOUČIN.MATIC(\$C\$8:\$E\$10;\$H\$4:\$H\$6). Výsledek pak vypadá následovně:

	3	-5	6		-20
A=	-1	2	5	b=	1
	7	-10	-19		-7
	-0,17647	2,279412	0,544118		2
inverzní A=	-0,23529	1,455882	0,308824	x=	4
	0,058824	0,073529	-0,01471		-1

Pomocí výpočtu v Excelu jsme zjistili totožné hodnoty a to jednodušeji a rychleji.