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 Diskrétní modely jednodruhových populací

Modelování znamená nahrazení určitého reálného jevu nějakým jiným (zpravidla jednodušším) jevem, který dokážeme lépe popsat za použití konkrétních (dosažitelných) nástrojů. Vytváříme tedy jakýsi obraz skutečnosti. Při použití matematického aparátu jsme schopni vytvořit obraz reálných dějů a tyto děje s určitou přesností předpovídat. 
Jen je důležité nezapomínat, že se stále jedná o pouhý model, který kvantifikujeme jen s pomocí (zpravidla) několika málo parametrů. Je dobré si uvědomovat  (zejména při vyhodnocování vypočítaných výsledků), že – slovy klasika „nejlepším modelem černé kočky padající z okna je … černá kočka padající z okna“. (V tomto případě je oním klasikem náš pan Holeček.)

 V našem případě se budeme zabývat popisem vývoje biologických populací. Budeme se pokoušet odhadnout, jak se v závislosti na námi zadaných počátečních podmínkách určitá populace vyvíjí, zda se dostane po nějakém čase do stavu rovnováhy a zda-li v něm i zůstane, nebo se naopak bude chovat zcela chaoticky. Jedná se tedy zejm. o kvalitativní odhady (často budeme využívat normovacího „triku“).
Cílem našeho studia populačních modelů by mělo být především porozumění souvislostí mezi velikostí populace jako takovou a vnějšími faktory, které ji ovlivňují. Dokážeme-li předpovědět vývoj nějakého biologického druhu a budeme-li se řídit takovými podmínkami, které zaručí, že ani náš nepřirozený zásah (např. vylovení poloviny populace na daném stanovišti) výrazně neovlivní dlouhodobou rovnováhu této populace, jistě nejen pomůžeme zachovat ve svém okolí život, ale nakonec i konečný (dlouhodobý) zisk pravděpodobně značně převýší krátkodobé ovlivnění. Nebo naopak zamezí (marným) pokusům o plošnou likvidaci škůdců. Pokud si dostatečně uvědomíme, jak dokáže i malý zásah do populačního vývoje po nějaké době vyvolat katastrofální důsledky, budeme snad schopni těmto okolnostem předejít (zde se jeví jako zejména důležité odhalit, které parametry jsou citlivé a vůči kterým se zas populace chová poměrně stabilně).
 Na závěr naší krátké exkurze do světa populačních modelů si přiblížíme praktickou aplikaci nasbíraných poznatků. Ukážeme si, jak lze aplikovat matematický model na světovou populaci velryb a pomoci tak při praktické regulaci jejich lovu tak, aby bylo možno ochránit tento vzácný druh proti vyhynutí (či naopak proti přemnožení ;-) ).

Jednoduché modely
Diferenciální rovnice popisují kontinuální modely. V mnoha případech se následující generace nepřekrývají, a proto populace roste v diskrétních krocích (např. dělení buňky). Kontinuální modely řeší diskrétní populační modely jen přibližně. Krok mezi jednotlivými generacemi může být různě dlouhý. Běžné jsou řádově roky. V modelech máme zvolený časový krok aby byl 1. Tedy v modelech existuje vztah mezi populací v čase t+1 označenou Nt+1 a v čase t označenou Nt. Tyto úvahy vedou ke studiu diferenčních rovnic a to vyjadřuje tato forma
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je obecně nelineární funkce Nt. Navíc existuje počáteční stav N0. Tyto rovnice se obvykle nedají řešit analyticky, ale i tak můžeme dostat poměrně mnoho informací o dynamice populace bez analytického řešení. Když známe funkci Nt, tak si rekurzivně vypočítáme Nt+1. Grafické řešení má téže velmi vypovídací schopnost. Funkce Nt by měla být nezáporná (neb popisuje velikost populace ~ počet zvířat).

Pro popis systému musíme vycházet z vypozorovaných faktů, odhadneme relevantní parametry, zvolíme model a na jeho základě sestrojíme nějakou funkci
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. Abychom to provedli zodpovědně, musíme buď porozumět efektům podílejících se na změně funkce
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 a její parametrů, nebo řešení „fitujeme“ na naměřené hodnoty (a to tak, že funkce musí splňovat experimentální údaje, nebo se k nim se alespoň blížit.

Není přesná shoda mezi diferenčními a diferenciálními rovnicemi. Diferenční rovnice by ale měly v konečné aproximaci dospět k rovnicím diferenciálním.

Předpokládáme funkci 
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. Populace v následujícím kroku bude násobek aktuálního stavu. Platí tedy vztah
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Populace zde roste geometrickou řadou. Když se populace rozrůstá je r > 1, když vymírá je r < 1. Tento model není ale skutečný pro většinu populací a již vůbec neodpovídá pro delší období. Můžeme ho však použít pro počáteční stádia růstu bakterií a všude tam, kde je dostatek „surovin“ (potravy, místa, nedostatek predátorů…).

Musíme také započítat, že ne všechny bakterie přežijí. Zobecníme vzorec na
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(NS jsou všechny bakterie co přežijí a můžou se množit, b vyjadřuje úmrtnost)

Relativně častý graf závislosti následujícího stavu populace na aktuálním (vyjádřeno diferenční rovnicí): Na začátku pro malé hodnoty Nt je růst relativně největší – nic nebrání k množení, pak postupně začnou vymírat, protože se přemnoží (nedostatek potravy).

Vzhledem k růstu a samoregulaci (žádný strom neroste do nebe) očekáváme, že má funkce nějaké maximum.

Tyto dva modely popisují praktické situace v biologii.
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 Verhulstův proces pro velká Nt nabývá záporných hodnot:
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Tuto upravenou verzi s exponenciálou lze již použít i pro velká Nt, protože funkce bude stále kladná.
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Tady exponenciála 
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vyjadřuje faktor úmrtnosti v závislosti na čase (dále ukážeme i vliv prodlení při stárnutí populace). Pro malé hodnoty Nt je význam exponenciály malý (lineární charakter), pro velké hodnoty Nt je již její velikost určující.

Cobwebbing „pavučinování“: Grafický postup řešení
Mnoho informací o růstu populace a jejím chování můžeme dostat jednoduše grafickou metodou. Rovnovážné stavy popisuje následující forma
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Graficky jsou rovnovážné stavy průsečíky křivky 
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případ, kdy je maximum křivky
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Dynamický vývoj řešení Nt získáme následující grafické metodou. Předpokládáme počáteční podmínku N0. Následující N1 získáme tak, že se pohybujeme svisle od N0, dokud neprotneme křivku
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 převádí funkční hodnotu na argument, abychom z bodu N1 dostali N2. Vidíme, že Nt jde monotónně k rovnovážnému stavu N*, když 
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Tato derivace v bodě N* je důležitým parametrem a nazveme ji vlastní hodnotou ( rovnováhy N*. Když malá výchylka okolo N* slábne k nule, říkáme N* lineární stabilní rovnovážný stav.
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Uvažujme nyní případ, kdy
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. Případy lokálního chování pro malé poruchy, kdy: a) 
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je stabilní rovnovážný stav N* (oscilace klesají), b) 
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 je neutrální stav N* (periodické oscilace), 
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 je nestabilní stav N* (oscilace roste). Dynamické chování populace tedy závisí na geometrii průsečíku křivky
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Vlastní hodnota
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 je rozhodující předpovědní parametr pro lokální chování okolo rovnovážné polohy.
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Shrnutí: rovnováha je stabilní pro 
[image: image48.wmf]1

1

<

<

-

l

, to nazýváme atraktorem řešení (attracting equilibrium). Kritická bifurkační hodnota pro 
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, řešení Nt mění charakter chování. Pro 
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 jde o tečnou bifurkaci (křivka 
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 jde o vidlovou bifurkaci.


[image: image54.png]




[image: image55.png]t

12 3 456 7 89





Parametr ( může napovědět i kvantitativně globální chování. Jestliže je rovnovážný stav nestabilní, může to předpovídat zajímavé chování řešení. Na obrázku je 
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. Grafické řešení nekonverguje do rovnovážné polohy (lokálně nestabilní). Ale zajímavé je, že je populace je ohraničená hodnotou Nmax a Nmin, ať startujeme z kterýchkoli počátečních podmínek (globálně stabilní). Z obrázku se zdá, že řešení „náhodně“ cestuje kolem nedefinovatelné hodnoty. Toto je nazýváno chaosem.

Grafické řešení nám může hodně pomoci při analýze modelu. Je užitečný pro naznačení jeho vývoje. Nyní pojďme zkoumat takové rovnice analyticky.

Diskrétní logistický model: Chaos
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Vezměme si nelineární model 
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,  r > 0. Zajímá nás řešení ut ( 0, to odpovídá intervalu 0 < u0 < 1. Stabilní stav a odpovídající vlastní hodnoty jsou: 
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První bifurkace přichází když r = 1 pro nestabilní u* = 0. Od r > 1 je stabilním stavem 
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 > 0.      Stabilní stav je pro –1 < ( < 1, čili pro 1 < r < 3.

Další bifurkace je v r = 3. Tam je vlastní hodnota ( = –1, protože je v průsečíku derivace –1. Takže blízko u* je periodické řešení ( viz obr b) na předchozí straně). 

Je zřejmé, že platí


[image: image66.wmf])

(

0

1

u

f

u

=

,             
[image: image67.wmf])

(

))

(

(

0

2

0

2

u

f

u

f

f

u

=

=

, …,           
[image: image68.wmf])

(

0

u

f

u

t

t

=

.

Podle toho je patrné, že pro
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První iterace sleduje závislost stability na proměnné r. Kdy vlastní hodnota
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se snižuje zvyšováním r až do ( = –1 pro r = 3. 


Druhá iterace, kde dosadíme ut+2 = ut = u2*. A vyjde
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Rozpadá se na řešení 
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Vidíme, že pro r > 3 existují další 2 reálné stabilní stavy. Viz obr. A, B, C jsou rovnovážné body u2*, kde B je rovno 
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 ležící mezi 2 novými řešeními, které se objevily, když r > 3.

(B > 1,    –1 < (A < 1, –1 < (C < 1  --  stabilní stav pro druhou iteraci.

              Jestliže začneme v bodě A, dostaneme po 2. iteraci
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Vlastně 
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            Při každé bifurkaci se předchozí stav stává nestabilním (přerušovaná čára).Úsek stabilního řešení má periodu 2, 22, 23,… 

Příklad 4-cyklého periodického řešení, kde r4 < r <r8.

Jak se r zvyšuje, vlastní hodnota ( v A a C překoná –1, a tak se i tyto 2 periodická řešení stávají nestabilními. Na tento stav se díváme jako na 4. iterativní a (právem) očekáváme, že ut+4 jako funkce ut bude mít již 4 kritické body ve srovnání s 2. iterací a objeví se 4cyklé periodické řešení. Tak jak r pochází skrz řadu bifurkačních hodnot charakterizujících řešení ut, dochází k rozdvojování stabilního řešení. To nazýváme vidlová bifurkace. Např. pro 3 < r < r4, kde r4 je bifurkační hodnota odpovídající 4periodickému řešení.

V našem obrázku je příklad 4cyklého periodického řešení, které je v oblasti r4 < r < r8. Hodnoty ut nám dají průniky křivek rovnovážných stavů se svislou přímkou, procházející hodnotou r.
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Tak jak se r zvyšuje, následující bifurkace s p-periodickým řešením se rozvětví do 2p-periodickým řešením. To se stane, když r je vlastní hodnotou p-periodického řešení překročí –1. Vzdálenosti mezi bifurkačními větvemi se zmenšují. Přibývá tak pravděpodobných řešení v intervalu (0,1). Jednotlivá stabilní řešení se pak prolínají.

Existuje limitní hodnota rC, ve kterém jsou nestabilní všechny periodická řešení periody 2n. (Pro r > rc  , k je liché)
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V našem příkladě je model s kritickým parametrem rc, kde jsou možné 3-periodické řešení. Zde má 3. iterace 
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To jsou řešení ut modelu 2 pro různá r. Případy: a), b) a c) Tvoří 2, 4 a 8-cyklá periodické řešení, d), f) chaotické řešení, e) a 3-cyklé periodické řešení., f) populační exploze - zpětný úhyn - návrat

Sarkovskii (1964) uveřejnil zajímavé studie na jednoprostorovém diagramu, které přímo souvisely s naším obrázkem s 3-periodickým řešením. Prokázal mimo jiné, že jestliže řešení liché periody (( 3). existuje pro hodnotu rc, pak neperiodické chaotické řešení existuje pro r > rc. Takové řešení osciluje patrně náhodným způsobem. Taková bifurkace při rc je nazývána tečná, viz. obr. s 3-periodickým řešením.

Sarkovskiiho teorém byl později rozšířen Stefanem (1977). Liovy a Yorkeovy (1975) výsledky - že jestliže perioda 3 řešení existuje, pak řešení periody n existuje pro všechny n ( 1, je zvláštní případ Sarkovskiiho teorému.

Ačkoli jsme se soustředili na logistický model, tento druh chování je typický pro diferenční modely s dynamikou jako
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. Všechny představují bifurkace pro vyšší periodické řešení eventuálně vedou k chaosu.
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Modely s příklady d) – f) zobrazuje zajímavé hledisko cesty k chaosu. Jak se r zvyšuje z hodnoty dávající neperiodické řešení v d), dostaneme opět periodické řešení jako v e). Pro větší r neperiodického řešení se opět objeví jako je v f). Tak jak se r zvyšuje přes místo, kde se objevil první chaos, jsou tam okna hodnot parametrů, kde se řešení chová periodicky. Tam jsou takové parametry periodických oken propleteny s okny neperiodickými. Obrázek ukazuje typický případ získaný, když iterativní diagram běží po delší čas – v počtu až několika tisíc iterací, během kterých byly hodnoty ut zmapovány a vyneseny do grafu.

Poukažme nyní na obrázek -  vezměme v úvahu efekt řešení při zvyšování r. Pro r2 < r < r4 řešení ut jednoduše osciluje mezi dvěma body A a B, které jsou průsečíkem vertikály s diagramem v příslušném r. Pro r4 < r < r8 představuje ut 4-periodické řešení. Pro rc < r < rp je řešení chaotické. Pro malé okno hodnoty r větší než rp řešení opět ukazuje pravidelný periodické řešení po kterém jsou opět neperiodické. Opakuje se posloupnost periodicita - neperiodicita - periodicita. Jestliže se podíváme na vložku, která je zvětšeninou malého obdélníku, vidíme, že se opakuje stejný sled bifurkace ve fraktálním duchu.

Zájem není omezen jen na diskrétní modely. Výzkum chaosu vytvářel mnoho zajímavých a neočekávaných výsledků spojených i s takovými modely jako o kterých jsme s tu již zmiňovali, jmenovitě ty, které představovaly periodické rozdvojování. Například, jestliže r2, r4, … r2n, … jsou sledem periodického zdvojení bifurkačních hodnot. Feigenbaum (1978) prokázal, že
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Ukázal, že ( je univerzální konstanta.

Jednoduchou, praktickou a rychlou cestu ukazující existenci chaosu poskytl Li (1982). Prokázal, že jestliže pro některé ut a žádné
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, pak existuje liché periodické řešení, které tak naznačuje chaos. Například 
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, jestliže r = 3 a u0 = 0,1 a vypočítané první členy ukážou 
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, že je n = 5 v nerovnovážné podmínce. Z tohoto důvodu je
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Stabilita, periodické řešení a bifurkace

Všechny důležité ekologické modely zahrnují nejméně jeden parametr, obvykle nazývaný r. Tímto parametrem se mění řešení obecného modelu rovnice 
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. Bude obvykle podroben bifurkaci v určité hodnotě r. Taková bifurkace může mít periodické řešení s postupně vyšší periodou, která nakonec tvoří chaotické řešení pro r větší než konečný kritický rc. Z grafické analýzy nastává taková bifurkace, když příslušná vlastní hodnota ( přejde 1 nebo –1. Zde hovoříme o několika analytických výsledcích spojených s bifurkací. Pro algebraickou jednoduchost budeme často vynechávat r v 
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Rovnovážné body jsou řešením
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Zkoumáním lineární stability u* píšeme
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a rozšířením vt, použitím Taylorovy řady dostaneme
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Jelikož 
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, dostaneme lineární rovnici, která určujeme lineární stabilitu u*
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kde ( je vlastní hodnota první iterace 
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Čili u* je
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Jestliže je u* stabilní, každá malá perturbace z rovnovážné polohy slábne k nule, monotónně jestliže 
[image: image118.wmf]1

)

(

0

*

<

¢

<

u

f

, nebo s klesajícími oscilacemi jestliže 
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Na druhé straně, jestliže je u* nestabilní, každá perturbace roste monotónně, jestliže 
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Z modelu 
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dostaneme přeškálováním 
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 (1)
Zde jsou stabilní stavy u* = 0 nebo 
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Čili odpovídající vlastní hodnoty jsou 
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 pro r > 0 a tak je u* = 0 nestabilní; 
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.  Proto je u* = 1 stabilní pro 0 < r < 1 s monotónní konvergencí, pro 1 < r < 2 s oscilacemi vracejícími se k rovnovážné poloze. Je nestabilní s rostoucími oscilacemi pro r > 2. Pro r = 2 jde o první bifurkační hodnotu. Na základě výše uvedeného očekáváme periodické řešení bifurkace z u* = 1 jakmile r překročí bifurkační hodnotu r = 2. Pro 
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 a což píšeme ve tvaru 


[image: image129.wmf]]

1

[

)

1

(

1

t

t

t

U

U

r

U

-

+

=

+

,              
[image: image130.wmf]r

u

r

U

t

t

+

=

1

.


Zde vidíme, že se objevilo stabilní periodické řešení s periodou 2 v první bifurkaci. V případě (1) nastává 4-periodické řešení v r = r4 ( 2,45 a 6-periodické v r = r6 ( 2,54 a chaotický chování pro r > rc ( 2,57. Následující bifurkační hodnota r pro opětné zdvojení periody nastává postupně blíž. Citlivost řešení na malou odchylku v toto modelu při r > 2 je značně velká.

Pro t-iteraci u0 je 
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Řekneme, že bod u0 je m-periodický, jestliže
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Body u0, u1, …, um-1 tvoří m-cyklus.

Pro stabilitu řešení požadujeme vlastní hodnotu: pro rovnovážný stav u* to bylo jednoduše 
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Pak je vlastní hodnota (m m-cyklu definována jako
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a tak 
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Shrnutí: Bifurkace nastane v hodnotě parametru r0, jestliže existuje kvalitativní změna v dynamice řešení pro r < r0 a r > r0. Z výše uvedeného očekáváme, že bude z 1-periodického řešení do jiného s různou periodou. Když sled souměrných periodických bifurkací směřuje do lichého periodického řešení, Sarkovskiiho teorém říká, že existují cykly každé celočíselné periody, což naznačuje chaos. Bifurkace s 
( = -1 jsou vidlicové bifurkace, zatímco s ( = 1 jsou tečné bifurkace.

Použitím jednoho z několika počítačových programů běžně dostupných, kterých provádí algebraické zpracování, pak je z výše uvedeného jednoduché vypočítat vlastní hodnotu ( pro každou iteraci a dále sled bifurkačních hodnot r. 
Diskrétní modely s prodlevou

Všechny diskrétní modely, o kterých jsme doposud diskutovali, jsou založeny na předpokladu, že populace v čase t+1 je přímo závislá na populaci v čase t+1. Jinak řečeno, všichni nově narození členové populace jsou ihned schopni produkovat nové potomky. Toto je často přijatelné u modelování průběhu vývoje populace například hmyzu, ale ne mnoho dalších druhů zvířat.Zvláště u těch, kde je podstatně dlouhé období dospívaní k sexuální zralosti. Čili populační dynamický model v takovém případě musí zahrnovat efekt prodlevy.Pak je významné začlenění i věkové struktury. Jestliže je tato prodleva k dospělosti T, pak dospějeme ke studiu diferenční rovnice s prodlevou, typu
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V modelu pro velryby, o kterém mluvíme níže, je prodleva T v řádu několika let (tzn. několika kroků).

Uvažujme nyní model
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Vyšetřením rovnováhy zjistíme, že tyto stavy jsou u* = 0 a u* = 1. Rovnovážný stav u* = 0 je nestabilní, jednoduše  vyšetřením linearizací kolem u* = 0.

A co druhá rovnovážná poloha? Linearizujeme úpravou kolem u* = 1, 
obvyklým způsobem,   
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Po dosazení dostáváme
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Hledáme řešení diferenční rovnice ve formě vt = zt    

(    z2 – z + r = 0,

což po vyřešení dá 2 hodnoty z1 a z2
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Pak řešení vt má tvar
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kde A a B jsou libovolné konstanty.

Rozeberme nyní toto řešení v závislosti na parametru r:

Jestliže 0 < r < 1/4, z1 a z2 jsou reálná, 0 < z1 < 1, 0 < z2 < 1, a tak z 2.27 je vt ( 0 pro t ( ( a z toho důvodu rovnovážná poloha u* = 1 je lineárně stabilní. Kromě toho je návrat do rovnovážné polohy po malé perturbaci monotónní.

Jestliže r > 1/4, z1 a z2 jsou komplexní čísla, 
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 a, poněvadž to musí být reálné, pak 
[image: image165.wmf]A

B

=

 a s uvážením předchozích řešení z bude reálné řešení vt :
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Když r ( 1 
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Řešení diferenční rovnice s prodlevou. a) 6-periodické řešení co bifurkuje mimo stacionární stavy v r = rc. b) zde známky 6-cyklu stále existují (nepravidelnost), ale v c) zmizeli (náznak chaosu).

Když r přechází přes kritický bod rc = 1, 
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1

>

z

, a tak vt roste neomezeně s t ( ( a u* je pak nestabilní. 

Vyšší periody řešení jsou často charakterizovány velkými populačními výkyvy a jestliže zpětný pád do nízké populační hladiny z předchozí velmi vysoké je dostatečně prudký populace jednoznačně zanikne. 

K zakončení tohoto referátu krátce popíšeme praktický model používaný Mezinárodní velrybářskou komisí (IWC) pro lov velryb. Cíl IWC je řídit velrybí populaci vůči přemnožení nebo vyhynutí (resp. Regulovat a rozdělovat povolený lov verlyb). Provést požadavky reálným způsobem vyžaduje především solidně znát dynamiku velrybí populace a její ekologii.

Model pro nyní chráněné velryby, který IWC použila, je založený na diskrétním modelu s prodlevou:  
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Zde (1-()Nt, s  0 < ( < 1, je přežívající část velryb o rok později a R(Nt-T) je číslo, o které zvětšuje sexuálně dospělá zralá populace narozená o T let dříve populaci v následujícím roce (kroku). Prodleva T je čas sexuální zralosti a je řádově 5 – 10 let. Tento model předpokládá, že poměr pohlaví je 1:1 a úmrtnost stejná pro obě pohlaví. Podstata modelu spočívá ve formě posilnění členu R(Nt-T), která je v IWC modelu
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Zde je K rovnovážná hustota lovu, P je plodnost samic na hlavu při N = K  s Q maximálním zvýšením možné plodnosti když populační hustota padá do nižší úrovně, a z je míra obtížnosti se kterou jde hustota registrovat. Nakonec 1 - ( je pravděpodobnost, se kterou přežije nový velrybí přírůstek každý rok, a tak (1-()T je část přeživších do dospělosti po potřebných T letech: 1/2 je, protože polovina velryb jsou samice, a tak plodnost samic musí být násobený N/2. 

Parametry (, T a P však nejsou nezávislé. Uvažujme rovnovážný stav:
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jenž, právě tak jako definované h, závisí na plodnosti P, úmrtnosti ( a prodlevě T. Nezávislé měření těchto parametrů dá hrubě sladěnou kontrolu. 

Jestliže nyní přeškálujeme model s 
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kde h je výše definované  a 
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Linearizací okolo rovnovážného stavu u* = 1 napsáním 
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 je rovnice pro perturbaci 
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Opět předpokládáme řešení vt ve tvaru st ,získáme: 
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Rovnovážný stav přejde do nestabilního, když 
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. Zde jsou 4 parametry (, T, h a qz. Ačkoli je to velice složité, můžeme stanovit podmínky na parametrech, takové, že 
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, jak se dá očekávat, řešení ukazuje bifurkace do periodických cyklů s pokračující vyšší periodou,což  vede nakonec k chaosu.

Hospodářský model rybářství

Diskrétní modely se používají v rybářském hospodářství značnou dobu. Dokázaly být velice užitečné při vyhodnocování různých strategiích zejména s ohledem na optimalizaci ekonomického přínosu a k jeho udržení. Následující model je vhodný v zásadě na jakékoliv obnovitelné zdroje, které se loví; podrobný rozbor platí na jakoukoli populaci, jejíž dynamika může být popsána diskrétním modelem.

Předpokládejme, že hustota populace se řídí vztahem 
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 - bez přítomnosti lovu. Uvažujeme-li úlovek populace ht v čase t, který vytváří další populaci v t+1, pak je tvar modelu pro populační dynamiku 
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Klademe si dvě otázky:

1) Jaké je maximum trvalé biologické produkce?

2) Jaké je maximum ekonomických výnosů?

Z rovnováhy plyne

Nt = Nt+1 = N*, ht = h*, platí 
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Maximum trvalých rovnovážných stavů výnosů YM je když N* = NM, kde
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Zajímá nás pouze situace, kdy je průběh 
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Hospodářská strategie by mohla být jednoduše založena na udržování populace tak, aby se získalo maximum výnosu YM. Poněvadž je těžké znát, jaká je současná rybí populace, může to být těžké v praxi uskutečnit. Co je známé, je současný výnos a jak velké úsilí to dalo. Tak je lepší formulovat optimalizaci problému podmínky výnosu a úsilí.

Předpokládejme, že jednotka úsilí chytit rybu má za následek lov c.N z populace N. Konstanta c je zachytitelný parametr, který je nezávislý na hustotě populace N. Část jednotky úsilí chytit jednu rybu je
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Pro přechod do spojité funkce si sumu vyjádříme integrálem, a tak
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Předpokládejme, že vývoj populace bez zásahu lovu, se řídí tímto modelem 
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Uvážením podmínky
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 lze dojít k hodnotě Nm:
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Po dosazení dostaneme
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V tomto případě můžeme dostat zřejmý vztah mezi YM a EM, vyloučením NM
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Obr. a) ukazuje vztah YM – EM. Použitím tohoto, je klíčové hledisko hospodářské strategie je znamením, že když se přírůstkem úsilí sníží výnosy, pak je maximum trvalých výnosů překročeno, a úsilí má být omezeno tak, aby se populace mohla obnovit. Úsilí pak může být zas postupně obnoveno.

Tato analýza je pro maximální trvalé biologické přírůstky. Dále se budeme zabývat modelem s uvažováním jak výnosů tak ekonomických investic
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, kde p je cena za jednotku výnosu a k je cena za jednotku úsilí. Použitím vztahů pro YM(NM) a EM(NM) dostaneme R(NM), který musíme maximalizovat. Dostaneme křivku pro maximum výnosu R jako funkci úsilí E: to je zobrazeno na v grafu.

           Výsledky takového modelu nesmí být brány příliš vážně jestliže se nepodepřou o skutečná pokusná pozorování (viz černá kočka). Můžou však dát alespoň nějaké důležité (přinejmenším) kvalitativní ukazatele. Náš rozbor se zde zakládá na skutečnosti, že lov populace má rovnovážné stavy. Zejména ryby mají vysokou rychlost růstu na hlavu, která souvisí s parametrem r. Očekávali bychom tudíž, že rybí populace ukazuje periodické kolísání. Je možné, že rychlost růstu je dostatečně vysoká, že lov může (případně) být v chaotickém režimu. Poněvadž má lov smysl účinného snižování rychlosti množení, je možné, že může mít i stabilizující účinek, například z chaotického do periodického nebo dokonce rovnovážného stavu. Nebo tak by si to alespoň leckdy sami rybáři představovali.
Murray: Mathematical Biology, 1989
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