
Semestralni prace ze KMA/MM

Modelovani sireni onemocneni - epidemiologicke

modely

Pavel Jirasek

March 1, 2008

1



Contents

1 Uvod 3

2 Znaceni 3

3 Predpoklady 3

4 Modely 4

5 Teoreticky rozbor 6

6 Ockovaci strategie 7
6.1 Stale ockovani . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6.2 Pulsni ockovani . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.3 Model SIR s pulsnim ockovanim . . . . . . . . . . . . . . . . 9
6.4 Porovnani ockovani . . . . . . . . . . . . . . . . . . . . . . . . 9

7 Ukazka modelu 10

2



1 Uvod

V teto praci bych chtel ctenare seznamit se zakladnimi teoretickymi znalostmi
z oblasti epidemiologie a modelovani. Modely je mozne pouzit i k modelovani
principialne blizkych procesu, jako je napriklad sireni ohne, invaze rostlin
do neobsazeneho prostoru, dynamika potravinoveho retezce. Cast prace se
bude tykat i moznym strategiim ockovani.

2 Znaceni

• skupina S (susceptible): obsahuje tu cast populace, ktera je nachylna
k onemocneni; tito jedinci netrpi chorobou, mohou vsak byt infikovani
pri styku s nemocnymi.

• skupina I (infected): obsahuje cast populace tvorenou infikovanymi
jedinci; tito jedinci vykazuji znamky onemocneni a rozsiruji nemoc
mezi cleny skupiny S.

• skupina R (removed): obsahuje tu cast populace, ktera je tvorena
jedinci, kteri byli drive infikovani, ale nyni jiz nemohou sirit chorobu;
jsou zde jedinci, kteri se uzdravili a zustali trvale imunni, jedinci, kteri
byli trvale izolovani, a v pripade smrtelne nemoci jedinci, kteri uhynuli.

3 Predpoklady

Predpokladame populaci citajici N jedincu bez vitalni dynamiky, tj. budeme
predpokladat, ze celkovy pocet jedincu se nemeni v case (jde o uzavrenou,
autonomni, populaci). Veliciny S, I, R jsou obecne funkcemi casu. V libo-
volnem casovem okamziku t plati (tzv. podminka autonomity systemu):

S(t) + I(t) + R(t) = N.

Dale predpokladame:

• nemoc se siri kontaktem mezi infikovanymi a zdravymi jedinci

• choroba nema latentni obdobi

• populace je homogenni, tj. vsichni ohrozeni jedinci jsou ohrozeni ste-
jne, vsichni infikovani jedinci jsou stejne infekcni atd.

• populace je autonomni, tj. nepredpokladame narozeni novych jedincu
ani migraci a vsichni zemreli jsou zahrnuti ve skupine R(t)

3



• rychlost presunu jedincu ze skupiny S do skupiny I je umerna poctu
setkani infikovanych jedincu s jedinci nachylnymi k onemocneni; tato
rychlost je tedy umerna soucinu S · I

• rychlost presunu jedincu ze skupiny I do skupiny R je umerna poctu
infikovanych jedincu

• jedinci, kteri se ocitli ve skupine R v teto skupine trvale zustavaji

Pocatecni podminky: Predpokladame, ze v pocatecnim case t = 0 existuje
pocet S0 jedincu, kteri jsou nachylni k onemocneni, dale ze se v populaci
vyskytuje pocet I0 jedincu, kteri jsou nemoci infikovani a jsou prenaseci
infekce a pocet R0 vylecenych (imunitnich) jedincu (pokud je tato skupina
populace v modelu zahrnuta).

4 Modely

• Model SIR
Model, jez vychazi z existence vsech tri vyse uvedenych skupin S(t),
I(t) a R(t), nazyame modelem SIR.

S′(t) = −r · S(t) · I(t),
I ′(t) = r · S(t) · I(t)− a · I(t),
R′(t) = a · I(t),

S(0) = S0 > 0,

I(0) = I0 > 0,

R(0) = R0 = 0,

r > 0,

a > 0.

Parametr r nazyvame koeficient sireni nakazy, ktery vyjadruje soucin
cetnosti vzajemnych kontaktu v populaci a pravdepodobnosti, s jakou
pri vzajemnem kontaktu jedince ze skupiny S(t) s jedincem ze skupiny
I(t) dojde k nakazeni. Parametr r se da interpretovat take jako mira
infekcnosti choroby a kvalita prevence proti dalsimu sireni.

Parametr a nazyvame koeficientem leceni, ktery popisuje rychlost, s
jakou se infikovany jedinec ze skupiny I(t) dostane do skupiny jedincu
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R(t), kteri jiz nejsou chorobou ohrozeni. Parametr a se da interpreto-
vat take jako mira vaznosti choroby a schopnost (spolecnosti ci jedince)
se s chorobou vyporadat.

• Model SI
Tento model se pouziva u pocatecnich stadii nekterych onemocneni,
kdy nas zajima dynamika pocatku infekce. Skupina R(t) je zcela
vynechana.

S′(t) = −r · S(t) · I(t),
I ′(t) = r · S(t) · I(t),

S(0) = S0 > 0,

I(0) = I0 > 0,

r > 0.

Parametr r nazyvame, stejne jako u modelu SIR, koeficient sireni
nakazy.

• Model SIS
V modelu SIS je zavedena zpetna vazba ze skupiny infikovanych jed-
incu I(t) do skupiny vnimavych jedincu S(t). Tento model se pouziva
u onemocneni, ktera nejsou smrtelna a pri kterych nevznika na danou
nemoc imunita. To znamena, ze jedinci, kteri se vyleci, prechazeji zpet
do skupiny nemoci ohrozenych. Jedna se tedy o bezne nemoci, jako je
napriklad chripka ci angina.

S′(t) = −r · S(t) · I(t) + a · I(t),
I ′(t) = r · S(t) · I(t)− a · I(t),

S(0) = S0 > 0,

I(0) = I0 > 0,

r > 0,

a > 0.

Parametry r a a interpretujeme stejne, jako v pripade SIR modelu.
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• Model SEIR
Az dosud uvedene modely nezahrnovaly inkubacni dobu, ktera uplyne
od nakazy do okamziku, kdy se stane infekcni. Je-li ovsem inkubacni
doba nemoci pomerne dlouha, je nezbytne model modifikovat naprik-
lad zavedenim nove dilci skupiny:

– skupina E(t): popisuje tu cast populace, ktera je infikovana, ale
zatim neni infekcni, nachazi se tedy v inkubacni dobe.

S′(t) = −r · S(t) · I(t),
E′(t) = r · S(t) · I(t)− b · E(t),
I ′(t) = b · E(t)− a · I(t),
R′(t) = a · I(t),

S(0) = S0 > 0,

E(0) = E0 ≥ 0,

I(0) = I0 > 0,

R(0) = R0 = 0,

r > 0,

b > 0,

a > 0.

Parametry r a a interpretujeme stejne, jako v pripade SIR modelu.
Parametr b urcuje miru, s jakou se nakazeni jedinci stavaji infekcnimi.

5 Teoreticky rozbor

V tomto odstavci se omezime na nasleduji model typu SIR.

S′(t) = m−m · S(t)− r · S(t) · I(t),
I ′(t) = −m · I(t) + r · S(t) · I(t)− a · I(t), (1)
R′(t) = −m ·R(t) + a · I(t),

S(t) + I(t) + R(t) = 1.

Velikost populace je jednotkova a tedy hodnoty promennych predstavuji ko-
lik procent z celkove populace do dane skupiny patri. Znaceni parametru
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odpovida predchozim kapitolam. Novy parametr m popisuje porodnost a
umrtnost (cislo 1/m odpovida stredni delce zivota). Nove narozeni jedinci
jsou zarazeni do skupiny S(t). Pro spalnicky muzeme brat nasledujici hod-
noty:

m = 0.02,

a = 100,

r = 1800.

Nejprve si muzeme vsimnout, ze dany system ma dva rovnovazne stavy.
Prvni je

S∗0 = 1,

I∗0 = 0.

a odpovida stavu, kdy neni nikdo nakazen tj. neexistuje zadna nakaza.(Hodnotu
R muzeme vypocitat z podminky S+I+R=1.)
Druhy je

S∗1 =
m + a

r
,

I∗1 =
m(R0 − 1)

r
,

kde

R0 =
r

m + a
.

V tomto rovnovaznem stavu existuje nenulova skupina nakazenych jedincu.
Tento stav budeme nazyvat epidemicka rovnovaha.

Dale plati, ze pokud R0 > 1, tak kazdy infikovany jedinec v prumeru
nakazi vice nez jednoho dalsiho clena populace. Skupina I(t) se tedy bude
rozsirovat. V tomto pripade je rovnovazny stav (S∗0 , I∗0 ) nestabilni, ale
(S∗1 , I∗1 ) je lokalne stabilni. Pokud R0 < 1, tak kazdy infikovany jedinec
v prumeru nakazi mene nez jednoho dalsiho clena populace. Tedy v tomto
pripade se skupina nemocnych bude zmensovat. (S∗0 , I∗0 ) je lokalne stabilni
a (S∗1 , I∗1 ) je nestabilni.

6 Ockovaci strategie

6.1 Stale ockovani

Predpokladame, ze kazdy nove narozeny jedinec bude ockovan. Ockovani
ma uspesnost p, kde 0 < p < 1. Prvni a treti rovnice soustavy (1) se zmeni
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na

S′(t) = (1− p) ·m−m · S(t)− r · S(t) · I(t),
R′(t) = p ·m−m ·R(t) + a · I(t).

Pokud nyni vysetrime stabilitu rovnovaznych stavu modelu se stalym ocko-
vacim, zjistime, ze existuje kriticka hodnota

pc = 1−R0.

Pokud p > pc, potom je stav, kdy neexistuji nakazeni jedinci, stabilni a ma
nove souradnice (S∗′0 = 1− p, I∗′0 = 0). Pro relativne slabsi ockovani p < pc

je stav epidemicke rovnovahy stabilni a ma souradnice

S∗
′

1 = S∗1 ,

I∗
′

1 = I∗1 −
m

m + g
p.

Vidime, ze zvysovani uspesnosti ockovani p linearne snizuje pocet infiko-
vanych v rovnovaznem stavu. Pro spalnicky plati zhruba

pc = 1− 100 + 0.02
1800

' 0.95.

To znamena, ze pro stavilizaci stavu bez nemocnych musi byt uspesne ock-
ovano 95% narozenych deti.

6.2 Pulsni ockovani

Namisto staleho ockovani vsech narozenych deti bude ockovana cast skupiny
S(t) kazdych T let. Predpokladame, ze ockovani dava celozivotni imunitu
a tedy ockovani v modelu presunuti ze skupiny S(t) do skupiny R(t). Po
kazdem ockovani se system vyvyji z noveho pocatecniho stavu az do dalsiho
pulsu. Myslenkou tohoto zpusobu ockovani je delat tak casto, aby byla
splnena podminka I ′(t) < 0, z cehoz vyplyva, ze I(t) je klesajici funkce.
Tato podminka bude splnena, pokud S(t) < Sc, kde

Sc =
m + a

r

je epidemicky prah.

8



6.3 Model SIR s pulsnim ockovanim

Upravou modelu (1) pomoci teorie z predchoziho odstavce dostavame

S′(t) = m−m · S(t)− r · S(t) · I(t)−
∞∑

n=0

S(nT−)δ(t− nT ),

I ′(t) = −m · I(t) + r · S(t) · I(t)− a · I(t),

R′(t) = −m ·R(t) + a · I(t) +
∞∑

n=0

S(nT−)δ(t− nT ),

S(t) + I(t) + R(t) = 1,

kde S(nT−) je levostranna limita limita S(t) v bode (nT ) a δ je Diracova
delta funkce. Vakcinace probiha v casech nT, n = 0, 1, 2 . . ..

Aby byl splnen pozadavek I ′(t) < 0 nesmi doba mezi ockovnimi T pre-
sahnout hodnotu

Tmax ' a p

r m(1− p/2− a/r)
.

6.4 Porovnani ockovani

Zavedeme funkci N , ktera bude ukazovat, kolik lidi je rocne ockovano. Tato
funkce zhruba odpovida ”cene” daneho ockovani. Pro konstantni ockovani

N = N(p) = m p.

Pro pulsni ockovani

N = N(p, T ) =
pm

p + mT
.

Pro dane p nabyva tato funkce minima v T = Tmax. Pro spalnicky muzeme
upravit na

N = N(p, Tmax) ' m− ma

r(1− p/2)
' m.

Je videt, ze stale ockovani je vyhodnejsi, ale u spalnicek musi platit p >
pc ' 0.95, aby byla epidemie kontrolovana. Rozdil mezi strategiemi ockovani
tedy neni velky. Vyhoda pulsniho ockovani je ta, ze dokaze stabilizovat stav
bez infikovanych jedincu i pro p < pc. V praxi muze byt jednodussi ockovat
mensi procento k nemoci nachylne populace kazdych nekolik let nez drzet
stale velmi vysoke procento ockovanych deti.
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7 Ukazka modelu

Model typu SEIR pro spalnicky:

S′(t) = m ·N −m · S(t)− r · S(t) · I(t)− ν · S(t),
E′(t) = r · S(t) · I(t) + ν · S(t)−m · E(t)− b · E(t),
I ′(t) = b · E(t)−m · I(t)− a · I(t),
R′(t) = a · I(t)−m ·R(t),

N = 1,

S(0) = 0.49,

E(0) = 0.01,

I(0) = 0.01,

R(0) = 0.49,

m = 0.02,

a = 55,
b = 50,
ν = 0.0001,
r = r0(1 + r1 cos(2πt)),

r0 = 1200,
r1 = 0.28.

Znaceni odpovida predchozim kapitolam. Parametr ν popisuje pravdepodob-
nost nakazy z prostredi tj. ne kontaktem s nakazenym. Infekcnost choroby
je v case promenna tj. r = r(t). t je cas v letech. Grafy reseni:
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Levy graf ukazuje vyvin pocatku nakazy, pravy nakazu vdelsim casovem
meritku. Modre je znazornena skupina S(t), zelene E(t), cervene I(t) a zlute
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R(t). Je videt, ze se v kratkem casovem obdobi nakazi vetsina populace a
pote se system ”ustali”.

Nyni do modelu pridame konstatni vakcinaci s uspesnosti p = 0.95.
Grafy reseni:
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Levy graf ukazuje vyvin systemu v delsim casovem obdobi. V pravem
grafu je skupina R(t) rozdelena na cast, ktera se nakazila a vylecila (cerne),
a na cast, ktera byla uspesne ockovana (zlute).
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