Technical report

Overview of parallel architectures for gearing robot

12 DoF planar parallel robot

The designed device is non-redundant planar parallel robot with two translational degrees of freedom (movement in the x axis - shifting up/down and movement in the y axis - shifting left/right), see Fig. 1. The robot is driven by two rotational drives (motors equipped with gears).
Let $\Theta=\left[\begin{array}{ll}\Theta_{A} & \Theta_{B}\end{array}\right]^{T}$ is the position (rotation) of the motors \mathbf{A}, \mathbf{B} (actuated joint coordinates) and $C=\left[\begin{array}{ll}C_{x} & C_{y}\end{array}\right]^{T}$ is the position of the end effector (generalized coordinates). We denote robot dimensions ${ }^{1}$

$$
\begin{align*}
l_{A_{1}} & =\left\|A A_{1}\right\|, & l_{A_{2}}=\left\|A A_{2}\right\| \tag{1}\\
l_{B_{1}} & =\left\|B B_{1}\right\|, & l_{B_{2}}=\left\|B B_{2}\right\| \\
l_{0} & =\|A B\| &
\end{align*}
$$

Fig. 1: 2DoF planar parallel robot (red dotted line shows possible variants)

1.1 Inverse kinematics

The relations giving the actuated joint coordinates Θ for given generalized coordinates C are called the inverse kinematics.

Let we denote

$$
\begin{align*}
& l_{A C}=\|A C\|=\sqrt{\left(C_{x}-A_{x}\right)^{2}+\left(C_{y}-A_{y}\right)^{2}} \tag{2}\\
& l_{B C}=\|B C\|=\sqrt{\left(C_{x}-B_{x}\right)^{2}+\left(C_{y}-B_{y}\right)^{2}}
\end{align*}
$$

[^0]The following holds for the angles $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$.

$$
\begin{align*}
& l_{A_{2}}^{2}=l_{A_{1}}^{2}+l_{A C}^{2}-2 l_{A_{1}} l_{A C} \cos \alpha_{1} \Rightarrow \alpha_{1}=\arccos \frac{-l_{A_{2}}^{2}+l_{A_{1}}^{2}+l_{A C}^{2}}{2 l_{A_{1}} A_{A C}} \tag{3}\\
& l_{B_{2}}^{2}=l_{B_{1}}^{2}+l_{B C}^{2}-2 l_{B_{1}} l_{B C} \cos \beta_{1} \Rightarrow \beta_{1}=\arccos \frac{-l_{B_{2}}^{2}+l_{B_{1}}^{2}+l_{B C}^{2}}{2 l_{B_{1}} l_{B C}} \\
& l_{B C}^{2}=l_{A C}^{2}+l_{0}^{2}-2 l_{A C} l_{0} \cos \alpha_{2} \Rightarrow \alpha_{2}=\arccos \frac{-l_{B C}^{2}+l_{A C}^{2}+l_{0}^{2}}{2 l_{A C} l_{0}} \\
& l_{A C}^{2}=l_{B C}^{2}+l_{0}^{2}-2 l_{B C} l_{0} \cos \beta_{2} \Rightarrow \beta_{2}=\arccos \frac{-l_{A C}^{2}+l_{B C}^{2}+l_{0}^{2}}{2 l_{B C} l_{0}}
\end{align*}
$$

Then the inverse kinematic mapping $\Theta=G(C)$ for 4 variants of the 2DoF planar parallel robot is:

- Variant A

$$
\Theta=\left[\begin{array}{c}
\Theta_{A} \tag{4}\\
\Theta_{B}
\end{array}\right]=\left[\begin{array}{c}
\alpha_{1}+\alpha_{2} \\
\pi-\left(\beta_{1}+\beta_{2}\right)
\end{array}\right]
$$

- Variant B

$$
\Theta=\left[\begin{array}{c}
\Theta_{A} \tag{5}\\
\Theta_{B}
\end{array}\right]=\left[\begin{array}{c}
\alpha_{2}-\alpha_{1} \\
\pi-\left(\beta_{2}-\beta_{1}\right)
\end{array}\right]
$$

- Variant C

$$
\Theta=\left[\begin{array}{c}
\Theta_{A} \tag{6}\\
\Theta_{B}
\end{array}\right]=\left[\begin{array}{c}
\alpha_{2}-\alpha_{1} \\
\pi-\left(\beta_{1}+\beta_{2}\right)
\end{array}\right]
$$

- Variant D

$$
\Theta=\left[\begin{array}{c}
\Theta_{A} \tag{7}\\
\Theta_{B}
\end{array}\right]=\left[\begin{array}{c}
\alpha_{1}+\alpha_{2} \\
\pi-\left(\beta_{2}-\beta_{1}\right)
\end{array}\right]
$$

Fig. 2: Variant of the 2DoF planar parallel robot

1.2 Direct kinematics

The relations giving the position of the end effector C for given actuated joint coordinates Θ is called the direct kinematics. The direct kinematic mapping can be solved analytically in a closed form and there are two solutions by virtue of the triangle $A_{1} B_{1} C$, see Fig. 3. Hereafter, we suppose only the solution of the direct kinematics of the 2 DoF planar parallel robot for which the point C lies above the line $A_{1} B_{1}$.

Therefore, the end effector position C is given by

$$
C=A_{1}+l_{A_{2}}\left[\begin{array}{ll}
\cos \Phi & \sin \Phi \tag{8}
\end{array}\right]^{T}
$$

positions of the points A_{1}, B_{1} are
$A_{1}=l_{A_{1}}\left[\begin{array}{ll}\cos \Theta_{A} & \sin \Theta_{A}\end{array}\right]^{T}+\left[\begin{array}{cc}-l_{0} / 2 & 0\end{array}\right]^{T}, \quad B_{1}=l_{B_{1}}\left[\begin{array}{ll}\cos \Theta_{B} & \sin \Theta_{B}\end{array}\right]^{T}+\left[\begin{array}{cc}l_{0} / 2 & 0\end{array}\right]^{T}$
and we denote

$$
\left\|A_{1} B_{1}\right\|=l_{A_{1} B_{1}}, \quad\left\|A B_{1}\right\|=l_{A B_{1}}
$$

Fig. 3: Scheme for computation of the direct kinematics (dotted line shows the second solution of the direct kinematics)

If we define the line p given by the vector $A B_{1}$ in slope intercept form $y=K x$, where $K=\frac{A B_{1 y}}{A B_{1 x}}$. The angle γ_{1} is computed by the Algorithm 1. Possible configurations of γ_{1} are illustrated in Fig. 4.

Fig. 4: Possible configurations of γ_{1}

- Algorithm 1 (Computation of γ_{1})

1. For $A B_{1 x}>0$ and $A B_{1 y}>0$ (Possibility 1)
if $\left[A_{1 y}-A_{y}\right]-K \cdot\left[A_{1 x}-A_{x}\right]>0$
then: $\gamma_{1}=\arccos \frac{-l_{A B_{1}}^{2}+l_{A_{1}}^{2}+l_{A_{1} B_{1}}^{2}}{2 l_{A_{1}} l_{A_{1} B_{1}}}, \quad$ else: $\gamma_{1}=2 \pi-\arccos \frac{-l_{A B_{1}}^{2}+l_{A_{1}}^{2}+l_{A_{1} B_{1}}^{2}}{2 l_{A_{1}} l_{1} B_{1}}$
2. For $A B_{1 x}<0$ and $A B_{1 y}>0$ (Possibility 2)
if $\left[A_{1 y}-A_{y}\right]-K \cdot\left[A_{1 x}-A_{x}\right]>0$
then: $\gamma_{1}=2 \pi-\arccos \frac{-l_{A B_{1}}^{2}+l_{A_{1}}^{2}+l_{A_{1} B_{1}}^{2}}{2 l_{A_{1}} l_{A_{1} B_{1}}}, \quad$ else: $\gamma_{1}=\arccos \frac{-l_{A B_{1}}^{2}+l_{A_{1}}^{2}+l_{A_{1} B_{1}}^{2}}{2 l_{A_{1}} l_{A_{1} B_{1}}}$
3. For $A B_{1 x}>0$ and $A B_{1 y}<0$ (Possibility 3)
if $\left[A_{1 y}-A_{y}\right]-K \cdot\left[A_{1 x}-A_{x}\right]>0$
then: $\gamma_{1}=\arccos \frac{-l_{A B_{1}}^{2}+l_{A_{1}}^{2}+l_{A_{1} B_{1}}^{2}}{2 l_{A_{1}} l_{A_{1} B_{1}}}, \quad$ else: $\gamma_{1}=2 \pi-\arccos \frac{-l_{A B_{1}}^{2}+l_{A_{1}}^{2}+l_{A_{1} B_{1}}^{2}}{2 l_{A_{1}} l_{A_{1} B_{1}}}$
4. For $A B_{1 x}<0$ and $A B_{1 y}<0$ (Possibility 4)
if $\left[A_{1 y}-A_{y}\right]-K \cdot\left[A_{1 x}-A_{x}\right]>0$
then: $\gamma_{1}=2 \pi-\arccos \frac{-l_{A B_{1}}^{2}+l_{A_{1}}^{2}+l_{A_{1} B_{1}}^{2}}{2 l_{A_{1}} l_{A_{1} B_{1}}}, \quad$ else: $\gamma_{1}=\arccos \frac{-l_{A B_{1}}^{2}+l_{A_{1}}^{2}+l_{A_{1} B_{1}}^{2}}{2 l_{A_{1}} l_{A_{1} B_{1}}}$

The angle γ_{2} is given by

$$
\begin{equation*}
\gamma_{2}=\arccos \frac{-l_{B_{2}}^{2}+l_{A_{2}}^{2}+l_{A_{1} B_{1}}^{2}}{2 l_{A_{2}} l_{A_{1} B_{1}}} \tag{11}
\end{equation*}
$$

The angle Φ is computed by the Algorithm 2. Possible configurations of Φ are illustrated in Fig. 5.

Fig. 5: Possible configurations of Φ

- Algorithm 2 (Computation of Φ)

1. if $A_{1 x}<B_{1 x}$ (Possibility 1)
then: $\Phi=\Theta_{A}-\pi+\left(\gamma_{1}+\gamma_{2}\right)$
else: $\Phi=\Theta_{A}-\pi+\left(\gamma_{1}-\gamma_{2}\right)$

The final direct kinematic mapping consist of the following steps:
Compute γ_{1} (Algorithm 1) \rightarrow compute $\gamma_{2}(11) \rightarrow$ compute Φ (Algorithm 2) \rightarrow compute position C of the end effector (8).

1.3 Differential kinematics

The differential kinematic mapping gives the relationship between the actuated joint velocities $\dot{\Theta}=\left[\begin{array}{ll}\dot{\Theta}_{A} & \dot{\Theta}_{B}\end{array}\right]^{T}$ and the generalized end effector velocities $\dot{C}=\left[\begin{array}{cc}\dot{C}_{x} & \dot{C}_{y}\end{array}\right]^{T}$.

The velocity vectors $\dot{A A_{1}}, B \dot{B}_{1}$ of the points A_{1}, B_{1} respectively can be considered as

$$
\begin{equation*}
\dot{A A_{1}}=E \cdot A A_{1} \cdot \dot{\Theta}_{A}, \quad \dot{B B_{1}}=E \cdot B B_{1} \cdot \dot{\Theta}_{B} \tag{12}
\end{equation*}
$$

where $E=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$.

Fig. 6: Differential kinematics
Then, for given position C of the end effector, the projection ${ }^{2}$ of the velocity vectors $A \dot{A}_{1}$ and \dot{C} on the direction $A_{1} C$ have to be equal. Analogously it holds for the vectors $B \dot{B}_{1}, \dot{C}$ and the direction $B_{1} C$, see Fig. 6 .

$$
\begin{align*}
& \left(A \dot{A}_{1}, A_{1} C\right)=\left(\dot{C}, A_{1} C\right) \tag{13}\\
& \left(B \dot{B}_{1}, B_{1} C\right)=\left(\dot{C}, B_{1} C\right)
\end{align*}
$$

Substituting (12) into (13) we get the differential kinematic mapping

$$
\begin{align*}
A(C) \cdot \dot{\Theta} & =B(C) \cdot \dot{C} \tag{14}\\
\dot{\Theta} & =\underbrace{A^{-1}(C) \cdot B(C)}_{J^{-1}(C)} \cdot \dot{C},
\end{align*}
$$

where

$$
A(C)=\left[\begin{array}{cc}
\left(E \cdot A A_{1}, A_{1} C\right) & 0 \tag{15}\\
0 & \left(E \cdot B B_{1}, B_{1} C\right)
\end{array}\right], \quad B(C)=\left[\begin{array}{c}
A_{1} C^{T} \\
B_{1} C^{T}
\end{array}\right]
$$

The matrix $J^{-1}(C)$ is so called inverse jacobian. By applying of the principle of virtual work it can be proven that the relationship between the motors torque $M=\left[\begin{array}{ll}M_{A} & M_{B}\end{array}\right]^{T}$ and the end effector force $F=\left[\begin{array}{ll}F_{x} & F_{y}\end{array}\right]^{T}$ is

$$
\begin{equation*}
M=J^{T}(C) \cdot F \tag{16}
\end{equation*}
$$

1.4 Optimization of the robot dimensions

The requirements on the robot's end effector (point C) are listed in Tab 1. Three variants of the robot are discussed further.

[^1]| Maximal force in the x axis | 400 | N |
| :---: | :---: | :---: |
| Maximal force in the y axis | 150 | N |
| Maximal speed in the x axis | 2 | $\mathrm{~m} / \mathrm{s}$ |
| Maximal speed in the y axis | 1 | $\mathrm{~m} / \mathrm{s}$ |
| Maximal movement range x | $300+50$ | mm |
| Maximal movement range y | $150+20$ | mm |

Tab. 1: Requirements on the robot end effector

Required reachable area W (rectangle $350 \times 170 \mathrm{~mm}$, see tab. 1) is placed in the robot workspace ${ }^{3}$ $W_{\text {robot }}$ so that for the criterion $K(C)$

$$
K(C)=1 / \operatorname{cond}\{J(C)\}=1 / \operatorname{cond}\left\{J(C)^{-T}\right\} \in\langle 0,1\rangle
$$

holds

$$
W_{\text {opt }}=\underset{W \in W_{\text {robot }}}{\arg \max }\left[\min _{C \in W}[K(C)]\right]
$$

The optimization was always performed for one set of robot dimensions $\left(l_{A_{1}}=l_{B_{1}}, l_{A_{2}}=l_{B_{2}}\right.$, l_{0}) from a bounded set of admissible dimensions and the robot variant with the workspace maximizing $\min _{C \in W_{\text {opt }}}[K(C)]$ was chosen.
The results of the optimization process for three variants (A, B, C) of the 2DoF planar parallel robot is shown below.

[^2]
Variant A

Robot dimensions and requirements on the motors reflecting the optimal force-speed ratios between motors and robot's end effector:

Robot dimensions		
l_{0}	203	mm
$l_{A_{1}}=l_{B_{1}}$	185	mm
$l_{A_{2}}=l_{B_{2}}$	300	mm

Requirements on the motors			
Max. motor torque A	83	$N m$	
Max. motor torque B	83	Nm	
Max. motor speed A	191	ot. $/$ min.	
Max. motor speed B	191	ot. $/$ min.	

Tab. 2: Robot dimensions and requirements on the motors (variant A)

The robot workspace and the optimal placement of the required reachable area (see Tab. 1) and the physical robot workspace for the end effector movement restricted to the required reachable area.

Fig. 7: Robot workspace (left) and physical robot workspace. Blue rectangle - required reachable area. (variant A)

Variant B

Robot dimensions and requirements on the motors reflecting the optimal force-speed ratios between motors and robot's end effector:

Robot dimensions		
l_{0}	208	$m m$
$l_{A_{1}}=l_{B_{1}}$	395	mm
$l_{A_{2}}=l_{B_{2}}$	276	mm

Requirements on the motors			
Max. motor torque A	183	Nm	
Max. motor torque B	183	Nm	
Max. motor speed A	67	ot. $/$ min.	
Max. motor speed B	67	ot. $/$ min.	

Tab. 3: Robot dimensions and requirements on the motors (variant B)

The robot workspace and the optimal placement of the required reachable area (see Tab. 1) and the physical robot workspace for the end effector movement restricted to the required reachable area.

Fig. 8: Robot workspace (left) and physical robot workspace. Blue rectangle - required reachable area. (variant B)

Variant C

Robot dimensions and requirements on the motors reflecting the optimal force-speed ratios between motors and robot's end effector:

Robot dimensions		
l_{0}	379	mm
$l_{A_{1}}=l_{B_{1}}$	216	mm
$l_{A_{2}}=l_{B_{2}}$	290	mm

Requirements on the motors			
Max. motor torque A	87	Nm	
Max. motor torque B	120	Nm	
Max. motor speed A	277	ot. $/$ min.	
Max. motor speed B	258	ot. $/$ min.	

Tab. 4: Robot dimensions and requirements on the motors (variant C)

The robot workspace and the optimal placement of the required reachable area (see Tab. 1) and the physical robot workspace for the end effector movement restricted to the required reachable area.

Fig. 9: Robot workspace (left) and physical robot workspace. Blue rectangle - required reachable area. (variant C)

22 DoF spatial parallel robot

Fig. 10: Gear robot layout

The Gear robot, see Fig. 10 consists of two active legs, which are attached to the base at the points O, A, B. From a kinematic viewpoint, the legs are represented by the prismatic joints (linear actuators).

We denote the length of the active legs as the actuated joint coordinates

$$
\begin{equation*}
\Theta=\left[l_{A} l_{B}\right]^{T} \tag{17}
\end{equation*}
$$

And the position of the end effector as the generalized coordinates

$$
E=\left[\begin{array}{lll}
E_{x} & E_{y} & E_{z} \tag{18}
\end{array}\right]^{T}
$$

We suppose robot dimensions, see Fig. 11.

$$
\begin{equation*}
l_{1}=0.05 \mathrm{~m}, l_{2}=0.35 \mathrm{~m}, l_{3}=0.5 \mathrm{~m}, l_{4}=0.4 \mathrm{~m}, l_{5}=1 \mathrm{~m} \tag{19}
\end{equation*}
$$

Fig. 11: Gear robot (dimensions)

2.1 Inverse kinematics

The relations giving the actuated joint coordinates for given generalized coordinates are called the inverse kinematics. Note that the end effector can never leave sphere surface with radius $L=|O E|$.
Therefore

$$
\begin{equation*}
E_{z}=\sqrt{L^{2}-E_{x}^{2}-E_{y}^{2}} \quad \text { and } \quad L^{2} \geq E_{x}^{2}+E_{y}^{2} \tag{20}
\end{equation*}
$$

It holds for actuated joint coordinates

$$
\begin{align*}
l_{A} & =\left\|A O+O E+R \cdot E M_{R}\right\| \tag{21}\\
l_{B} & =\left\|B O+O E+R \cdot E N_{R}\right\|
\end{align*}
$$

The vectors $E M_{R}, E N_{R}$ are (from the dimensions of the gear robot) the known coordinate vectors with respect to the moving frame $E-x_{R} y_{R} z_{R}$ and R is the rotation matrix from the moving frame to the reference frame $O-x y z$. The rotation matrix $R(22)$ consists of the elementary rotations (23), (24), which depend on the given generalized coordinates E. The rotation of the moving frame with respect to the reference frame is described by the $X Y$ Euler angles α, β,

$$
\begin{equation*}
R(E)=R_{x}(E) \cdot R_{y^{\prime}}(E), \tag{22}
\end{equation*}
$$

where

$$
\begin{align*}
& R_{x}(E)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right] ; \alpha=\arctan \frac{E_{y}}{-E_{z}} \tag{23}\\
& R_{y^{\prime}}(E)=\left[\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right] ; \beta=\arctan \frac{E_{x}^{\prime}}{E_{z}^{\prime}} \tag{24}\\
& E^{\prime}=\left[\begin{array}{lll}
E_{x}^{\prime} & E_{y}^{\prime} & E_{z}^{\prime}
\end{array}\right]^{T}=R_{x}^{T}(E) \cdot\left[\begin{array}{lll}
E_{x} & E_{y} & E_{z}
\end{array}\right]^{T}
\end{align*}
$$

The inverse kinematics ${ }^{4}$ may be written as

$$
\begin{equation*}
\Theta=G(E) \tag{27}
\end{equation*}
$$

2.2 Differential kinematics

The differential kinematic mapping gives the relationship between the actuated joint velocities $\dot{\Theta}=\left[\begin{array}{cc}\dot{l_{A}} & \dot{l_{B}}\end{array}\right]^{T}$ and the generalized end effector velocities $\dot{E}=\left[\begin{array}{cc}\dot{E}_{x} & \dot{E}_{y}\end{array}\right]^{T}$. Note that by differentiating (20) with respect to time we get

$$
\dot{E}_{z}=\left[\begin{array}{ll}
\frac{-E_{x}}{\sqrt{L^{2}-E_{x}^{2}-E_{y}^{2}}} & \frac{-E_{y}}{\sqrt{L^{2}-E_{x}^{2}-E_{y}^{2}}}
\end{array}\right] \cdot\left[\begin{array}{c}
\dot{E}_{x} \tag{28}\\
\dot{E}_{y}
\end{array}\right]
$$

The differential kinematic mapping may be formulated as

$$
\begin{equation*}
\dot{\Theta}=\underbrace{\frac{\partial G(E)}{\partial E}}_{J^{-1}(E)} \cdot \dot{E} \tag{29}
\end{equation*}
$$

where the matrix $J^{-1}(E)$ is an inverse jacobian.
Due to complexity of the kinematic constraints (27), the partial derivatives in (29) have to be solved by the help of a computation software and lead to a very long terms which make this approach practically unusable. Therefore we suppose only the estimation of the inverse jacobian $\hat{J}^{-1}(E)$ as

$$
\hat{J}^{-1}(E)=\left[\begin{array}{ll}
\mathbb{C}_{1} & \mathbb{C}_{2} \tag{30}
\end{array}\right],
$$

[^3]where $\mathbb{C}_{1}, \mathbb{C}_{2}, \mathbb{C}_{3}$ are columns of the inverse jacobian matrix
\[

$$
\begin{aligned}
& \mathbb{C}_{1}=\left(G\left(E+\left[\begin{array}{lll}
h & 0 & 0
\end{array}\right]^{T}\right)-G(E)\right) / h \\
& \mathbb{C}_{2}=\left(G\left(E+\left[\begin{array}{lll}
0 & h & 0
\end{array}\right]^{T}\right)-G(E)\right) / h
\end{aligned}
$$
\]

Parameter h is chosen according to required accuracy of the estimation.

2.3 Direct kinematics

The relations giving the position of the end effector for given actuated joint coordinates is called the direct kinematics. Note that the kinematic constraints given by (27) is complicated non-linear function and in principle it is hard to find inverse function $G^{-1}(\Theta)$ analytically.
Otherwise, we can use the kinematic constraints from (27). Suppose the difference e between the measured actuated joint coordinates Θ_{m} and recomputed actuated joint coordinates Θ from computed (estimated) generalized coordinates E.

Let

$$
\begin{equation*}
e=\Theta_{m}-\Theta=\Theta_{m}-G(E) \tag{31}
\end{equation*}
$$

be the expression of such difference. The time derivative of error (31) is:

$$
\begin{equation*}
\dot{e}=\dot{\Theta}_{m}-J^{-1}(E) \cdot \dot{E} \tag{32}
\end{equation*}
$$

Where $J^{-1}(E)=\left.\frac{\partial G(E)}{\partial E}\right|_{E}$ denote as a inverse Jacobian in the terminology of the parallel robots. The relation (32) between the generalized velocities \dot{E} and the actuated joint velocities $\dot{\Theta}$ gives a differential equation, which describes difference evolution over time. Now, it is necessary to choose a relation between \dot{e} and E that ensures convergence of the difference to zero. Assume a choice:

$$
\begin{equation*}
\left.\dot{e}=\dot{\Theta}_{m}-J^{-1}(E) \cdot \dot{E} \stackrel{!}{=}-K\left[\Theta_{m}-G(E)\right)\right]=-K \cdot e \tag{33}
\end{equation*}
$$

that leads to linear system

$$
\begin{equation*}
\dot{e}+K e=0 \tag{34}
\end{equation*}
$$

If K is a positive definite matrix, the linear system (34) is asymptotically stable. Consequently, the difference e converges to zero, the recomputed actuated joint coordinates Θ converge to the measurement joint coordinates Θ_{m} and the computed generalized coordinates E converge to the actual position of the end effector. Suppose that the inverse jacobian $J^{-1}(E)$ is nonsingular for all positions E of the end effector through the whole workspace. It means that the robot has not any parallel singularities in the workspace. Consequently, final dynamic system solving the direct kinematics can be written from (33):

$$
\begin{equation*}
\dot{E}=J(E)\left[\dot{\Theta}_{m}+K\left[\Theta_{m}-G(E)\right]\right] \tag{35}
\end{equation*}
$$

2.4 Workspace

We can say that the end effector position E of the robot belongs to the workspace if

- the extension of the actuators l_{A}, l_{B} lie within a given interval $\left\langle l_{\min } l_{\max }\right\rangle$
- the slope angle at the universal joints $(O, A, B$,$) and spherical joints (M, N)$ is smaller or equal γ

Fig. 12 shows workspace of the 2 DoF spatial parallel robot for the dimensions (19). The local dexterity index is suppose to be $\eta(E)=1 / \operatorname{cond}\left[\hat{J}^{-1}(E)\right]$.

Fig. 12: Workspace of the 2DoF spatial parallel robot

[^0]: ${ }^{1}$ vector $A B=\left[\begin{array}{cc}B_{x}-A_{x} & B_{y}-A_{y}\end{array}\right]^{T} ; A_{x}, A_{y}$ denotes components of the point $A ; A B_{x}, A B_{y}$ denotes components of the vector $A B$

[^1]: ${ }^{2}(x, y)$ denotes a dot product of the vector x and y.

[^2]: ${ }^{3}$ The area where the robot end effector can move.

[^3]: ${ }^{4}$ The mapping $E \mapsto \Theta$ is often called kinematic constraints.

