Technická zpráva

Katedra kybernetiky, Fakulta aplikovaných věd Západočeská univerzita v Plzni

Kinematika manipulátorů

10. 9. 2011

Martin Švejda msvejda@kky.zcu.cz

Reprez	zentace ob	pecného pohybu v robotice	3
1.1	Reprezer	ntace polohy	3
1.2	Reprezer	ntace rychlosti a zrychlení	8
Úmluv	y pro pop	pis kinematiky manipulátorů	10
2.1	Denavit-	Hartenbergova úmluva (D-H)	10
2.2	Khalil-K	leinfingerova úmluva (K-K)	13
Poloho	vé závislo	osti manipulátorů	20
3.1	Přímý ki	inematický problém pro sériové manipulátory	20
3.2	Inverzní	kinematický problém pro sériové manipulátory	22
	3.2.1	Přímé analytické řešení jednoduchých architektur manipulátorů .	23
	3.2.2	Specializované metody pro řešení konkrétních variant architektur	
		manipulátorů	28
	3.2.3	Metody pro řešení obecných architektur manipulátorů $\ .\ .\ .$	31
	Reprez 1.1 1.2 Úmluv 2.1 2.2 Poloho 3.1 3.2	Reprezentace of 1.1 Reprezent 1.2 Reprezent Úmluvy pro pop 2.1 Denavit- 2.2 Khalil-K Polohové závislo 3.1 Přímý ki 3.2 Inverzní 3.2.1 3.2.2 3.2.3	Reprezentace obecného pohybu v robotice1.1Reprezentace polohy1.2Reprezentace rychlosti a zrychleníÚmluvy pro popis kinematiky manipulátorů2.1Denavit-Hartenbergova úmluva (D-H)2.2Khalil-Kleinfingerova úmluva (K-K)Polohové závislosti manipulátorů3.1Přímý kinematický problém pro sériové manipulátory3.2Inverzní kinematický problém pro sériové manipulátory3.2.1Přímé analytické řešení jednoduchých architektur manipulátorů3.2.3Metody pro řešení obecných architektur manipulátorů

Pod pojmem kinematika manipulátorů rozumíme závislosti mezi obecnými polohami, rychlostmi, zrychleními či vyššími derivacemi polohy jednotlivých částí manipulátoru bez ohledu na síly a silové momenty tyto závislosti ovlivňující. Vyšetřování kinematických závislostí proto řadíme mezi nejvíce podstatné oblasti při analýze a syntéze manipulátorů. Lze obecně říci, že kinematika v podstatě každého manipulátoru je založena na základní myšlence využít jednoduchého pohybu lineárních či rotačních aktuátorů a prostřednictvím vhodného mechanismu jej převézt na komplexní rovinný či prostorový pohyb. Takový mechanismus si je pak, společně s aktuátory, možné představit jako mechatronický počítač, kde jeho program je ukryt v jeho mechanické konstrukci. V posledních letech se začíná ve světě objevovat názor, že kinematika manipulátorů je již postupně upadajícím oborem robotiky, většina důležitých problémů je již dávno vyřešena a díky stále se zdokonalujím a zlevňujícím komponentám (výkonné počítače, inteligentní čidla a pohony), které mohou snadno kompenzovat nedokonalosti při jejím návrhu, nehraje zvlášť významnou roli. Jean Paul Merlet, jeden z předních odborníků, zejména pak v oblasti paralelní robotiky, představil v roce 2000 na konferenci IEEE-International Conference on Robotics zajímavý příspěvek s příznačným názvem "Kinematics' not dead!", viz [24], ve kterém argumentuje právě proti zmíněnému názoru následujícími poznatky:

- náklady na mechanickou část manipulátoru nepřesahují zpravidla 20-30 %celého systému
- měření chyb v mechanické konstrukci je sice možné, nicméně vývoj řídícího systému pro jejich následnou kompenzaci je velmi obtížné a zdlouhavé
- výpočetní výkon by měl být využit především na vývoj "inteligence"manipulátoru bez nutnosti jej využívat pro zásah do chování manipulátoru dané jeho architekturou

Dále zmiňuje některé doposud otevřené problémy v robotice, které dodnes nejsou uspokojivě řešeny, zejména pak problém syntézy a optimalizace manipulátorů.

1 Reprezentace obecného pohybu v robotice

Pro popis pohybu manipulátorů, jako systému složeného s pevných hmotných ramen a nehmotných kloubů, byla zavedena celá řada metodik (jinými slovy úmluv), z nichž dvě nejpoužívanější budou detailně zmíněny v Kapitole 2. Všechny úmluvy však vychází z myšlenky vzájemné transformace polohy souřadných systémů, umístěných v jednotlivých ramenech manipulátoru. Zabývejme se proto nejprve reprezentací polohy, rychlosti a zrychlení obecného tělesa představující jedno rameno manipulátoru.

1.1 Reprezentace polohy

Předpokládejme dvojici souřadných systémů (dále jen s.s.), z nichž první s.s. $F_1 = \{O_1 - x_1y_1z_1\}$ je pevně spojen s ramenem *Link* 1 a druhý s.s $F_2 = \{O_2 - x_2y_2z_2\}$ s ramenem *Link* 2, viz Obrázek 1.1.

Obrázek 1.1: Transformace souřadných systémů

Vzájemné translace s.s. F_1 a F_2 je zřejmě dána vektorem translace $r_{1,2}^1 = O_2^1 - O_1^1 = O_2^1$. Jejich vzájemná rotace může být vyjádřena maticí rotace R_2^1 , pro kterou platí následující¹:

• \mathbf{R}_2^1 je reálná matice rozměru [3x3], jejíž sloupce reprezentují souřadnice jednotkových směrových vektorů s.s. F_2 v s.s. (či vzhledem k s.s.) F_1 .

$$oldsymbol{R}_2^1 = egin{bmatrix} oldsymbol{x}_2^1 & oldsymbol{y}_2^1 & oldsymbol{z}_2^1 \end{bmatrix}$$

• \mathbf{R}_2^1 je ortogonální maticí (její sloupce jsou vzájemně ortogonální-kolmé). Tedy nutně platí:

$$(\mathbf{R}_{2}^{1})^{T} \cdot \mathbf{R}_{2}^{1} = \mathbf{I} \quad \Rightarrow \quad (\mathbf{R}_{2}^{1})^{-1} = (\mathbf{R}_{2}^{1})^{T} = \mathbf{R}_{1}^{2}$$
 (1.1)

kde \mathbf{R}_1^2 je matice rotace, jejíž sloupce reprezentují souřadnice jednotkových směrových vektorů s.s. F_1 v s.s. F_2 .

$$oldsymbol{R}_1^2 = egin{bmatrix} oldsymbol{x}_1^2 & oldsymbol{y}_1^2 & oldsymbol{z}_1^2 \end{bmatrix}$$

Poznamenejme, že prvky matice rotace jsou vzájemně závislé. Lze ukázat, že minimální počet parametrů pro popis obecné rotace je tři (viz např. Eulerovy úhly).

Nechť P^1 označuje souřadnice bodu P v s.s. F_1 a P^2 souřadnice stejného bodu v s.s. F_2 , pak:

$$P^{1} = r_{1,2}^{1} + R_{2}^{1} \cdot P^{2} \quad \text{a zároveň, viz (1.1)} \quad P^{2} = -R_{1}^{2} \cdot r_{1,2}^{1} + R_{1}^{2} \cdot P^{1}$$
(1.2)

- Rozlišujeme tři základní elementární rotace dvou s.s.
 - Rotace kolem osy \boldsymbol{x}_1 s.s. F_1 o úhel α
 - Tedy s.s. F_2 vznikne natočením souřadného systému F_1 kolem osy \boldsymbol{x}_1 o úhel α .

$$\boldsymbol{R}_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos(\alpha) & -\sin(\alpha)\\ 0 & \sin(\alpha) & \cos(\alpha) \end{bmatrix}$$
(1.3)

– Rotace kolem os
y \boldsymbol{y}_1 s.s. F_1 o úhel β Tedy s.s.
 F_2 vznikne natočením souřadného systém
u F_1 kolem osy \boldsymbol{y}_1 o úhel
 $\beta.$

$$\boldsymbol{R}_{y}(\beta) = \begin{bmatrix} \cos(\beta) & 0 & \sin(\beta) \\ 0 & 1 & 0 \\ -\sin(\beta) & 0 & \cos(\beta) \end{bmatrix}$$
(1.4)

¹Dolní index označuje konkrétní vektor (bod), zatímco horní index vyjadřuje, v souřadnicích kterého souřadného systému je tento vektor (bod) vyjádřen. Např.: $r_{1,2}^1$ a $r_{1,2}^2$ označuje ten samý vektor, ale jeho souřadnice jsou jednou uvažovány vzhledem k s.s. F_1 a podruhé k s.s. F_2 .

– Rotace kolem osy \boldsymbol{z}_1 s.s. F_1 o úhel γ Tedy s.s. F_2 vznikne natočením souřadného systému F_1 kolem osy \boldsymbol{z}_1 o úhel γ .

$$\boldsymbol{R}_{z}(\gamma) = \begin{bmatrix} \cos(\gamma) & -\sin(\gamma) & 0\\ \sin(\gamma) & \cos(\gamma) & 0\\ 0 & 0 & 1 \end{bmatrix}$$
(1.5)

- Úhly α, β, γ se nazývají Eulerovské úhly a tvoří jeden ze známých možností popisů rotace těles v prostoru.
- Obecnou rotaci můžeme vyjádřit skládáním rotací elementárních, a to dvěma základními postupy:
 - Postupná rotace kolem os souřadných systémů Například podle schématu XYZ²:
 - Odrotuj s.s. F_1 okolo osy x_1 o úhel $\alpha \Rightarrow$ vzniká nový souřadný systém F'_1 (matice rotace $\mathbf{R}_x(\alpha)$).
 - Odrotuj s.s. F'_1 okolo os
y y'_1 o úhel $\beta \Rightarrow$ vzniká nový souřadný systém
 F''_1 (matice rotace $\mathbf{R}_y(\beta)$).
 - Odrotuj s.s. F_1'' okolo os
y \mathbf{z}_1'' o úhel $\gamma \Rightarrow$ vzniká výsledný souřadný systém
 F_2 (matice rotace $\mathbf{R}_z(\gamma)$).

Výslednou matici rotace můžeme tak psát jako:

$$\boldsymbol{R}_{2}^{1} = \boldsymbol{R}_{x}(\alpha) \cdot \boldsymbol{R}_{y}(\beta) \cdot \boldsymbol{R}_{z}(\gamma)$$
(1.6)

- 2. Rotace kolem os souřadného systému F_1 (fixované osy rotace) Opět podle schématu XYZ:
 - Odrotuj s.s. F_1 okolo osy \boldsymbol{x}_1 o úhel $\alpha \Rightarrow$ vzniká nový souřadný systém F'_1 (matice rotace $\boldsymbol{R}_x(\alpha)$).
 - Odrotuj s.s. F'_1 okolo os
y \boldsymbol{y}_1 o úhel $\beta \Rightarrow$ vzniká nový souřadný systém
 F''_1 (matice rotace $\boldsymbol{R}_{\boldsymbol{y}}(\beta)$).
 - Odrotuj s.s. F_1'' okolo os
y z_1 o úhel $\gamma \Rightarrow$ vzniká výsledný souřadný systém
 F_2 (matice rotace $\mathbf{R}_z(\gamma)$).

Lze ukázat, že výslednou matici rotace můžeme tak psát jako:

$$\boldsymbol{R}_{2}^{1} = \boldsymbol{R}_{z}(\gamma) \cdot \boldsymbol{R}_{y}(\beta) \cdot \boldsymbol{R}_{x}(\alpha) \tag{1.7}$$

■ Poznámka 1.1 (Singularity v transformaci: matice rotace - Eulerovy úhly)

Je zřejmé, že ze známých Eulerových úhlů α , β , γ lze bez jakýchkoliv potíží vždy vypočítat matici rotace $\mathbf{R}_2^1(\alpha, \beta, \gamma)$, viz vztah (1.6,1.7), mluvíme o tzv. dopředné transformaci.

Zpětnou transformací pak rozumíme stanovení Eulerovských úhlů α, β, γ ze známé matice rotace

$$\boldsymbol{R}_{2}^{1}(\alpha, \ \beta, \ \gamma) = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$
(1.8)

²Schéma XYZ označuje posloupnost rotací kolem jednotlivých os, často používané schéma je např. ZYZ.

Budeme-li uvažovat schéma XYZ s postupnou rotací kolem os souřadných systémů, matice rotace je dána podle (1.6):

$$\begin{aligned} \boldsymbol{R}_{2}^{1}(\alpha, \ \beta, \ \gamma) &= \\ \begin{bmatrix} \cos\left(\beta\right)\cos\left(\gamma\right) & -\cos\left(\beta\right)\sin\left(\gamma\right) & \sin\left(\beta\right) \\ \sin\left(\alpha\right)\sin\left(\beta\right)\cos\left(\gamma\right) + \cos\left(\alpha\right)\sin\left(\gamma\right) & -\sin\left(\alpha\right)\sin\left(\beta\right)\sin\left(\gamma\right) + \cos\left(\alpha\right)\cos\left(\gamma\right) & -\sin\left(\alpha\right)\cos\left(\beta\right) \\ -\cos\left(\alpha\right)\sin\left(\beta\right)\cos\left(\gamma\right) + \sin\left(\alpha\right)\sin\left(\gamma\right) & \cos\left(\alpha\right)\sin\left(\beta\right)\sin\left(\gamma\right) + \sin\left(\alpha\right)\cos\left(\gamma\right) & \cos\left(\alpha\right)\cos\left(\beta\right) \\ \end{bmatrix} \end{aligned} \right]$$
(1.9)

Porovnáním rovnice (1.9) a (1.8) lze určit Eulerovy úhly následovně³: **Pro** $\beta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \cos \beta \geq 0$:

$$\alpha = \operatorname{atan2}(-r_{23}, r_{33})$$

$$\beta = \operatorname{atan2}(r_{13}, \sqrt{(r_{23}^2 + r_{33}^2)})$$

$$\gamma = \operatorname{atan2}(-r_{12}, r_{11})$$

Pro $\beta \in (\frac{\pi}{2}, \frac{3}{2}\pi), \cos \beta < 0$:

$$\alpha = \operatorname{atan2}(r_{23}, -r_{33})$$

$$\beta = \operatorname{atan2}(r_{13}, -\sqrt{(r_{23}^2 + r_{33}^2)})$$

$$\gamma = \operatorname{atan2}(r_{12}, -r_{11})$$

Pro $\beta = -\frac{\pi}{2}$ matice rotace degeneruje na matici:

$$\boldsymbol{R}_{2}^{1}(\alpha, \beta, \gamma) = \begin{bmatrix} 0 & 0 & -1 \\ -\sin(\alpha - \gamma) & \cos(\alpha - \gamma) & 0 \\ \cos(\alpha - \gamma) & \sin(\alpha - \gamma) & 0 \end{bmatrix}$$

Lze určit jen úhel $\phi = \alpha - \gamma$.

Pro $\beta = \frac{\pi}{2}$ matice rotace degeneruje na matici:

$$\boldsymbol{R}_{2}^{1}(\alpha, \ \beta, \ \gamma) = \begin{bmatrix} 0 & 0 & 1\\ \sin\left(\alpha + \gamma\right) & \cos\left(\alpha + \gamma\right) & 0\\ -\cos\left(\alpha + \gamma\right) & \sin\left(\alpha + \gamma\right) & 0 \end{bmatrix}$$

Lze určit jen úhel $\phi = \alpha + \gamma$.

Jinými slovy, úhel $\beta = \pm \frac{\pi}{2}$ představuje singularitu v reprezentaci rotace pomocí Eulerových úhlů, neboť osa \boldsymbol{x}_1 a \boldsymbol{z}''_1 jsou rovnoběžné (opačné či shodné) a nelze tak jednoznačně určit úhly α, γ . Jednoznačně lze určit jen jejich rozdíl, či součet ϕ .

Pro popis rotace dvou souřadných systémů se ještě využívají krom matice rotace další způsoby reprezentace. Mezi nejznámější patří zejména:

1. Reprezentace pomocí obecné osy rotace

Každou obecnou rotaci lze převézt na rotaci okolo obecné osy \boldsymbol{r} o úhel θ . Zatímco přímá transformace $\{\boldsymbol{r}, \theta\} \mapsto \boldsymbol{R}_2^1(\boldsymbol{r}, \theta)$ lze opět vypočítat vždy, pro inverzní transformaci $\boldsymbol{R}_2^1(\boldsymbol{r}, \theta) \mapsto \{\boldsymbol{r}, \theta\}$ dochází k singulárnímu případu pro $\theta = 0$ a $\theta = \pi$, kdy nelze jednoznačně určit směr vektoru \boldsymbol{r} .

³Funkce $\phi = \operatorname{atan2}(x, y)$ zohledňuje znaménka argumentů x
aya vrací korektní řešení ve všech kvadrantech
 $\phi \in <0, \ 2\beta>$

2. Reprezentace pomocí jednotkového kvaternionu

Jednotkový quaternion \mathcal{Q} lze stanovit z úhlu θ a osy rotace r jako:

$$\mathcal{Q} = \{\eta, \epsilon\} = \{\cos\left(\frac{\theta}{2}\right), \sin\left(\frac{\theta}{2}\right) \cdot r\}$$

Výhodou jednotkového kvaternionu je, že umožňuje popsat rotaci okolo obecné osy r pro úhel $\theta \in \langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$ přičemž nevykazuje žádné singularity.

Detailní popis přímé a inverzní transformace pro výše uvedené reprezentace rotace lze nalézt např. v [19], [40].

Homogenní transformační matice

K celkovému popisu polohy (rotace a translace) s.s. lze s výhodou využít tzv. *homogenních souřadnic*. Zavedení homogenních souřadnic úzce souvisí s problematikou geometrické projekce (jedná se v podstatě o projektivní transformaci) a podrobné vysvětlení včetně řady názorných animací lze nalézt např. v [30].

Polohu s.s. F_2 vzhledem k s.s. F_1 lze pomocí homogenní transformační matice T_2^1 psát jako, viz Obr. 1.1:

$$\boldsymbol{T}_{2}^{1} = \begin{bmatrix} \boldsymbol{R}_{2}^{1} & & \boldsymbol{r}_{1,2}^{1} \\ & \boldsymbol{r}_{0}^{-} & \boldsymbol{r}_{0}^{-} & \boldsymbol{r}_{1}^{-} \\ & \boldsymbol{r}_{0}^{-} & \boldsymbol{r}_{0}^{-} & \boldsymbol{r}_{1}^{-} \end{bmatrix}$$
(1.10)

Je zřejmé, že pomocí homogenní transformační matice T_2^1 lze homogenní souřadnice bodu P v s.s. F_1 vyjádřit pomocí jeho homogenních souřadnic v s.s. F_2 jako, viz (1.2):

$$\begin{bmatrix} \mathbf{P}^1 \\ -\mathbf{1} \end{bmatrix} = \mathbf{T}_2^1 \cdot \begin{bmatrix} \mathbf{P}^2 \\ -\mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{r}_{1,2}^1 + \mathbf{R}_2^1 \cdot \mathbf{P}^2 \\ -\mathbf{1} \end{bmatrix}$$
(1.11)

Homogenní transformační matice nám tak zahrnuje informaci o obecné poloze tělesa v prostoru, a to jeho rotaci $T_2^1[1:3,1:3] = \mathbf{R}_2^1$ a translaci $T_2^1[1:3,4] = \mathbf{r}_{1,2}^1$ najednou⁴.

Vyjádříme-li nyní z rovnice (1.11) souřadnice \mathbf{P}^2 v závislosti na souřadnicích \mathbf{P}^1 , s ohledem na platnost (1.1), dostáváme inverzní transformační vztah:

$$\begin{bmatrix} \mathbf{P}^{2} \\ -1 \end{bmatrix} = \begin{bmatrix} -(\mathbf{R}_{2}^{1})^{T} \cdot \mathbf{P}^{1} - (\mathbf{R}_{2}^{1})^{T} \cdot \mathbf{r}_{1,2}^{1} \\ -1 \end{bmatrix} = \underbrace{(\mathbf{T}_{2}^{1})^{-1}}_{\mathbf{T}_{1}^{2}} \cdot \begin{bmatrix} \mathbf{P}^{1} \\ -1 \end{bmatrix}$$
(1.12)

kde

$$(\boldsymbol{T}_{2}^{1})^{-1} = \boldsymbol{T}_{1}^{2} = \begin{bmatrix} (\boldsymbol{R}_{2}^{1})^{T} & | & -(\boldsymbol{R}_{2}^{1})^{T} \cdot \boldsymbol{r}_{1,2}^{1} \\ & -(\boldsymbol{R}_{2}^{1})^{T} \cdot \boldsymbol{r}_{1,2}^{1} \\ & -(\boldsymbol{R}_{2}^{1})^{T} \cdot \boldsymbol{r}_{1,2}^{1} \end{bmatrix}$$
(1.13)

je inverze homogenní transformační matice T_2^1 . Poznamenejme, že pro homogenní transformační matici již neplatí, že její inverze lze nahradit její transpozicí (nesplňuje podmínky ortogonality!) $(T_2^1)^{-1} \neq (T_2^1)^T$.

⁴Zápis X[a:b,c:d] označuje submatici (subvektor), který se skládá z a. až b. řádku a c. až d. sloupce matice X.

Skládání transformací s.s.

Uvažujme trojici s.s. F_1 , F_2 , F_3 a odpovídající homogenní transformační matice mezi s.s. F_1 , F_2 : T_2^1 a F_2 , F_3 : T_3^2 . Potom výsledná homogenní transformační matice mezi s.s. F_1 , F_3 lze psát:

$$T_{3}^{1} = \begin{bmatrix} \mathbf{R}_{3}^{1} & \mathbf{r}_{2,3}^{1} \\ \hline \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix} = \mathbf{T}_{2}^{1} \cdot \mathbf{T}_{3}^{2} = \\
 = \begin{bmatrix} \mathbf{R}_{2}^{1} & \mathbf{r}_{1,2}^{1} \\ \hline \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{R}_{3}^{2} & \mathbf{r}_{2,3}^{2} \\ \hline \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{2}^{1} \mathbf{R}_{3}^{2} & \mathbf{R}_{2}^{1} \mathbf{R}_{2,3}^{2} \\ \hline \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix} (1.14)$$

Tedy pro skládání rotací s.s. platí:

$$R_3^1 = R_2^1 R_3^2$$

A pro skládání translací s.s.:

$$\boldsymbol{r}_{1,3}^1 = \boldsymbol{r}_{1,2}^1 + \boldsymbol{R}_2^1 \boldsymbol{r}_{2,3}^2$$

Transformace souradnice bod versus vektor mezi s.s.

Často je velmi výhodné transformovat souřadnice bodu či vektoru z jednoho s.s. do jiného. Přesto, že po formální stránce je bod a vektor velmi podobný, v případě jejich transformací mezi s.s. se tato dvojice geometrických objektů chová diametrálně odlišně. Předpokládejme opět dva s.s. F_1 a F_2 se vzájemnou homogenní transformační maticí T_2^1 a dva libovolné body P a Q jednoznačně definující vektor v = Q - P.

• Transformace souřadnic bodu P ze s.s. F_2 do s.s. F_1

$$\begin{bmatrix} \mathbf{P}^1 \\ -\mathbf{1}^- \end{bmatrix} = \mathbf{T}_2^1 \cdot \begin{bmatrix} \mathbf{P}^2 \\ -\mathbf{1}^- \end{bmatrix} = \begin{bmatrix} \mathbf{r}_{1,2}^1 + \mathbf{R}_2^1 \cdot \mathbf{P}^2 \\ -\mathbf{1}^- \end{bmatrix} \quad \text{viz (1.11)}$$

Tedy:

$$P^1 = r_{1,2}^1 + R_2^1 \cdot P^2$$

• Transformace souřadnic vektoru v ze s.s. F_2 do s.s. F_1

$$v^1 = Q^1 - P^1 = r_{1,2}^1 + R_2^1 \cdot Q^2 - r_{1,2}^1 - R_2^1 \cdot P^2 = R_2^1 \cdot (Q^2 - P^2)$$

Tedy:

$$oldsymbol{v}^1 = oldsymbol{R}_2^1 \cdot oldsymbol{v}^2$$

1.2 Reprezentace rychlosti a zrychlení

Rychlost respektive zrychlení bodu P v s.s. F_1 lze, v závislosti na jeho rychlosti respektive zrychlení v s.s. F_2 , snadno získat časovou derivací vztahu (1.11):

$$\begin{bmatrix} \dot{\boldsymbol{P}}^{1} \\ - & 0 \end{bmatrix} = \dot{\boldsymbol{T}}_{2}^{1} \cdot \begin{bmatrix} \boldsymbol{P}^{2} \\ - & 1 \end{bmatrix} + \boldsymbol{T}_{2}^{1} \cdot \begin{bmatrix} \dot{\boldsymbol{P}}^{2} \\ - & 0 \end{bmatrix}$$
(1.15)

$$\begin{bmatrix} -\frac{\ddot{\boldsymbol{P}}^1}{0} \end{bmatrix} = \ddot{\boldsymbol{T}}_2^1 \cdot \begin{bmatrix} -\frac{\boldsymbol{P}^2}{1} \end{bmatrix} + 2\dot{\boldsymbol{T}}_2^1 \cdot \begin{bmatrix} -\frac{\dot{\boldsymbol{P}}^2}{0} \end{bmatrix} + \boldsymbol{T}_2^1 \cdot \begin{bmatrix} -\frac{\ddot{\boldsymbol{P}}^2}{0} \end{bmatrix}$$
(1.16)

kde

Časová derivace translačního vektoru $r_{1,2}^1$ je zřejmá a vyjadřuje translační rychlost respektive zrychlení s.s. F_2 v s.s. F_1 . Je intuitivně jasné, že časová derivace matice rotace \mathbf{R}_2^1 bezpochyby souvisí s vektorem úhlové rychlosti ω_2^1 .

Z ortogonality matice rotace (1.1) plyne

$$\boldsymbol{R}_{2}^{1} \cdot (\boldsymbol{R}_{2}^{1})^{T} = \boldsymbol{I} \quad \rightarrow \text{derivací podle času} \rightarrow \quad \dot{\boldsymbol{R}}_{2}^{1} \cdot (\boldsymbol{R}_{2}^{1})^{T} + \boldsymbol{R}_{2}^{1} \cdot (\dot{\boldsymbol{R}}_{2}^{1})^{T} = \boldsymbol{0}$$

Zavedením matice $\mathbf{S} = \dot{\mathbf{R}}_2^1 \cdot (\mathbf{R}_2^1)^T$ dostáváme $\mathbf{S} + \mathbf{S}^T = \mathbf{0}$ (tedy \mathbf{S} je antisymetrická matice). Časovou derivaci matice rotace \mathbf{R}_2^1 lze tedy pomocí zatím nespecifikované antisymetrické matice \mathbf{S} vyjádřit jako:

$$\dot{\boldsymbol{R}}_{2}^{1} = \boldsymbol{S} \cdot \boldsymbol{R}_{2}^{1} \tag{1.17}$$

Uvažujme nyní konstantní vektor \mathbf{P}^2 (bod \mathbf{P} je pevně spojen se s.s. F_2) a předpokládejme, že se s.s. F_2 vzhledem k s.s. F_1 pouze otáčí úhlovou rychlostí $\boldsymbol{\omega}_2^1 = \begin{bmatrix} \omega_x & \omega_y & \omega_z \end{bmatrix}^T$ (neposouvá se $\mathbf{r}_{1,2}^1 = \mathbf{konst.}$) a jejich okamžitou orientaci popisuje matice rotace \mathbf{R}_2^1 . Tedy časovou derivaci vektoru \mathbf{P}^1 v s.s. F_1 lze psát jako, viz (1.15):

$$\dot{\boldsymbol{P}}^1 = \dot{\boldsymbol{R}}_2^1 \cdot \boldsymbol{P}^2 \tag{1.18}$$

Ze zákonitostí kinematiky plyne, že rychlost konstantního vektoru P^2 lze v s.s. F_1 psát také jako:

$$\dot{\boldsymbol{P}}^{1} = \boldsymbol{\omega}_{2}^{1} \times \boldsymbol{R}_{2}^{1} \cdot \boldsymbol{P}^{2} \quad \Rightarrow \quad \dot{\boldsymbol{P}}^{1} = \boldsymbol{\omega}_{2}^{1} \times \boldsymbol{P}^{1}$$
(1.19)

Dosadíme-li vztah (1.17) pro časovou derivaci matice rotace do rovnice (1.18) a následně porovnáme s rovnicí (1.19)

$$\dot{\boldsymbol{P}}^{1} = \boldsymbol{S} \cdot \boldsymbol{R}_{2}^{1} \cdot \boldsymbol{P}^{2} = \boldsymbol{S} \cdot \boldsymbol{P}^{1} \quad \longleftrightarrow \quad \dot{\boldsymbol{P}}_{1} = \boldsymbol{\omega}_{2}^{1} \times \boldsymbol{P}^{1}$$
(1.20)

je zřejmé, že násobení vektoru P^1 maticí S je ekvivalentní vektorovému součinu vektoru úhlové rychlosti ω_2^1 a vektoru P^1 . Z definice vektorového násobení tedy plyne tvar matice S:

$$\boldsymbol{S} = \boldsymbol{S}(\boldsymbol{\omega}_2^1) = \begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix}$$
(1.21)

Závislosti mezi polohou, rychlostí a zrychlením s.s. F_2 vzhledem k s.s. F_1 lze pak znázornit pomocí následujících simulačních schémat:

(a) Translační poloha, rychlost a zrychlení

(b) Úhlové zrychlení, úhlová rychlost, matice rotace, viz rovnice (1.17), (1.21)

Někdy bývá vhodné úhlovou rychlost s.s. F_2 v s.s. F_1 vyjádřit místo vektoru úhlové rychlosti ω_2^1 časovou derivací Eulerových úhlů $\dot{\boldsymbol{X}} = \begin{bmatrix} \dot{\alpha} & \dot{\beta} & \dot{\gamma} \end{bmatrix}^T$ (dle daného schématu rotace, např. XYZ). Tuto transformaci řeší tzv. *Eulerovy kinematické rovnice*. Přímou časovou derivací matice \boldsymbol{R}_2^1 , viz (1.9), z definice matice $\boldsymbol{S}(\boldsymbol{\omega}) = \dot{\boldsymbol{R}}_2^1 \cdot (\boldsymbol{R}_2^1)^T$ lze ukázat, že pro schéma rotace XYZ platí:

$$\boldsymbol{\omega}_{2}^{1} = \boldsymbol{H}\left(\boldsymbol{X}\right) \cdot \dot{\boldsymbol{X}} \tag{1.22}$$

kde

$$\boldsymbol{H}(\boldsymbol{X}) = \begin{bmatrix} 1 & 0 & \sin \beta \\ 0 & \cos \alpha & -\sin \alpha \cos \beta \\ 0 & \sin \alpha & \cos \alpha \cos \beta \end{bmatrix}$$

2 Úmluvy pro popis kinematiky manipulátorů

Pro popis geometrického uspořádání ramen a kloubů manipulátorů bylo zavedeno mnoho metod. Ty se pokouší jednoduchou a systematickou cestou rekurzivně definovat souřadné systémy reprezentující jednotlivá ramena manipulátoru a jejich vzájemnou polohovou transformaci. Polohová transformace dvou po sobě jdoucích s.s. závisí na daných konstantních geometrických parametrech (zahrnují geometrický tvar ramen, kloubů a jejích vzájemnou konfiguraci) a kloubových souřadnicích Θ (zahrnují aktuální polohu kloubů manipulátoru). Mezi nejznámější takové úmluvy patří tzv. *Denavit-Hartenbergova úmluva* [8] a *Khalil-Kleinfingerova úmluva* [17]. Obě úmluvy budou demonstrovány na antropomorfním manipulátoru se sférickým zápěstím (AM+SZ)(n = 6), viz [38].

2.1 Denavit-Hartenbergova úmluva (D-H)

Dnes snad nejznámější úmluva pro elegantní popis geometrie sériových manipulátorů. Předpokládejme dvě ramena manipulátoru $Link \ i - 1$ a $Link \ i$, která jsou spojena kloubem $Joint \ i$ s jedním stupněm volnosti, viz Obr. 2.1.

Obrázek 2.1: D-H úmluva

Definice s.s. $F_i = \{O_i - x_i y_i z_i\}$ za předpokladu znalosti s.s. $F_{i-1} = \{O_{i-1} - x_{i-1} y_{i-1} z_{i-1}\}$ dle D-H úmluvy je vyjádřena následovně:

- Zvol osu z_i podél osy rotace, resp. translace kloubu *Joint* i + 1 a osu z'_i podél osy rotace, resp. translace kloubu *Joint* i
- Umísti počátek O_i s.s. F_i do průsečíku osy z_i a normály⁵ os z_{i-1} a z_i . Umísti počátek O'_i s.s. $F'_i = \{O'_i x'_i y'_i z'_i\}$ do průsečíku osy z_{i-1} a téže normály.
- Zvol osu x_i a x'_i podél normály ve směru od kloubu *Joint i* do kloubu *Joint i* + 1.
- Zvol osu y_i a y'_i tak, aby výsledné s.s. byly pravotočivé.

Lze snadno ukázat, že D-H úmluva nedefinuje jednoznačně umístění s.s. v následujících případech.

- Pro s.s. $F_0 = \{ \boldsymbol{O}_0 \boldsymbol{x}_0 \boldsymbol{y}_0 \boldsymbol{z}_0 \}$ je určena jednoznačně pouze osa \boldsymbol{z}_0 (podle osy rotace, resp. translace prvního kloubu manipulátoru *Joint* 1). Osu \boldsymbol{x}_0 a počátek \boldsymbol{O}_0 lze proto volit libovolně. Osa \boldsymbol{y}_0 je pak určena tak, aby výsledný systém byl opět pravotočivým.
- Pro s.s. $F_n = \{O_n x_n y_n z_n\}$, kde *n* je počet kloubů s jedním stupněm volnosti uvažovaného manipulátoru není jednoznačně určena osa z_n , neboť kloub *Joint* n + 1 již neexistuje. Osa x_n však musí zůstat kolmá k ose z_{n-1} .
- Pokud jsou dvě po sobě jdoucí osy kloubů ($z_{i-1} \ge z_i$) paralelní, jejich normála není jednoznačně definována (může být libovolně posunuta ve směru os kloubů).
- Pokud se dvě po sobě jdoucí osy kloubů ($z_{i-1} \ge z_i$) protínají (normála je nulové délky), osa x_i bude volena tak, aby byla kolmá k rovině definované osami $z_{i-1} \ge z_i$. Její kladný směr však může být volen libovolně.

Nyní může být vzájemná poloha s.s. F_{i-1} a F_i popsána pouze pomocí čtyř D-H parametrů:

- $a_i \dots$ vzdálenost mezi počátky O_i a O'_i
- $d_i \ldots$ vzdálenost mezi počátky O_{i-1} a O'_i
- $\alpha_i \dots$ úhel mezi osami \boldsymbol{z}_{i-1} a \boldsymbol{z}_i daný pootočením s.s. F'_i podél osy \boldsymbol{x}'_i
- $\theta_i \dots$ úhel mezi osami \boldsymbol{x}_{i-1} a \boldsymbol{x}_i daný pootočením s.s. F_i podél osy \boldsymbol{z}_{i-1}

Je zřejmé, že pro základní typy kloubů s jedním stupněm volnosti platí:

- kloub Joint i je typu P proměnná definující pohyb kloubu je d_i , proměnné a_i , α_i , θ_i jsou konstanty definující geometrické uspořádání ramene Link i
- kloub Joint i je typu R proměnná definující pohyb kloubu je θ_i , proměnné a_i , d_i , α_i jsou konstanty definující geometrické uspořádání ramene Link i

Transformační vztah, v našem případě homogenní transformační matice v analogickém tvaru k (1.10), mezi s.s. F_{i-1} a F_i je dán následujícím způsobem.

- Vyber s.s. F_{i-1}
- Posuň tento systém podél osy z_{i-1} o vzdálenost d_i a otoč jej okolo osy z_{i-1} o úhel $\theta_i \Rightarrow$ dostáváme s.s. F'_i . Matice přechodu⁶:

$$\boldsymbol{T}_{i'}^{i-1} = \operatorname{Trans}(\boldsymbol{z}, d_i) \cdot \operatorname{Rot}(\boldsymbol{z}, \theta_i) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} c_{\theta_i} & -s_{\theta_i} & 0 & 0 \\ s_{\theta_i} & c_{\theta_i} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c_{\theta_i} & -s_{\theta_i} & 0 & 0 \\ s_{\theta_i} & c_{\theta_i} & 0 & 0 \\ 0 & 0 & 1 & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2.1)

 $^{^5}$ normála os ${\boldsymbol x}$ a ${\boldsymbol y}$ je spojnice těchto os s minimální vzdáleností svírající s osami pravý úhel

⁶zkratka c_{θ_i} , resp. s_{θ_i} označuje $\cos \theta_i$, resp. $\sin \theta_i$. Podobně $s_{(\theta_1+\theta_2)}$ označuje $\sin(\theta_1+\theta_2)$

• Posuň s.s. F'_i podél osy x'_i o vzdálenost a_i a otoč jej okolo osy x'_i o úhel $\alpha_i \Rightarrow$ dostáváme s.s. F_i . Matice přechodu:

$$\boldsymbol{T}_{i}^{i'} = \operatorname{Trans}(\boldsymbol{x}, a_{i}) \cdot \operatorname{Rot}(\boldsymbol{x}, \alpha_{i}) = \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c_{\alpha_{i}} & -s_{\alpha_{i}} & 0 \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & c_{\alpha_{i}} & -s_{\alpha_{i}} & 0 \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2.2)

• Výsledná matice přechodu ze s.
s. F_{i-1} do s.s. F_i je dána:

$$\boldsymbol{T}_{i}^{i-1} = \boldsymbol{T}_{i'}^{i-1} \cdot \boldsymbol{T}_{i}^{i'} = \operatorname{Trans}(\boldsymbol{z}, d_{i}) \cdot \operatorname{Rot}(\boldsymbol{z}, \theta_{i}) \cdot \operatorname{Trans}(\boldsymbol{x}, a_{i}) \cdot \operatorname{Rot}(\boldsymbol{x}, \alpha_{i}) = \\ = \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}}c_{\alpha_{i}} & s_{\theta_{i}}s_{\alpha_{i}} & a_{i}c_{\theta_{i}} \\ s_{\theta_{i}} & c_{\theta_{i}}c_{\alpha_{i}} & -c_{\theta_{i}}s_{\alpha_{i}} & a_{i}s_{\theta_{i}} \\ 0 & s_{\alpha_{i}} & c_{\alpha_{i}} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2.3)

Připomeňme, že matice přechodu matice (2.3) je funkcí pouze kloubových souřadnic θ_i (pro rotační klouby R) a d_i (pro translační klouby P).

★ Příklad 2.1 (D-H úmluva pro AM+SZ)

Obrázek 2.2 znázorňuje zavedení souřadných systémů pro jednotlivá ramena AM+SZ.

Obrázek 2.2: Zavedení souřadných systémů pro AM+SZ dle D-H úmluvy

Geometrické parametry manipulátoru (tzv. D-H parametry), jsou pak dány následující tabulkou:

$Joint \ i$	d_i	a_i	α_i
1	l_1	0	$\frac{\pi}{2}$
2	0	l_2	0
3	0	0	$\frac{\pi}{2}$
4	l_3	0	$-\frac{\pi}{2}$
5	0	0	$\frac{\pi}{2}$
6	l_4	0	0

Tabulka 0.1: D-H parametry AM+SZ

 \star

2.2 Khalil-Kleinfingerova úmluva (K-K)

Khalil-Kleinfingerova úmluva, viz [41], představuje modifikaci D-H úmluvy pro popis souřadných systémů manipulátoru. Předpokládejme opět dvě ramena manipulátoru Link i - 1 a Link i, která jsou spojena kloubem Joint i s jedním stupněm volnosti, viz Obr. 2.4. Tentokráte jsou však souřadné systémy v jednotlivých kloubech definovány jiným způsobem. Zatímco v D-H úmluvě byl s.s. F_i , který je pevně svázán s ramenem Link i, umístěn na konci tohoto ramene, tedy s osou z_i shodnou s osou rotace kloubu Joint i + 1, u K-K úmluvy je tento souřadný systém umístěn přímo na rotační ose kloubu Joint i. Opodstatnění takovéto změny není pouze ve zvýšení přehlednosti popisu souřadných systémů, ale především v možnosti popisu komplexních architektur manipulátorů, jako jsou rozvětvené (tree chains) a uzavřené (closed chains) kinematické řetězce, pro které popis prostřednictvím D-H úmluvy přináší komplikace a nejasnosti.

```
Obsah
```


Obrázek 2.3: D-H úmluva vedoucí na nejednoznačnost v definici souřadných systémů při použití na rozvětvené kinematické řetězce

Pro ilustraci předpokládejme, že bychom chtěli popsat pomocí D-H úmluvy rozvětvený kinematický řetězec, viz Obr. 2.3. Je zřejmé, že transformace polohy z kloubu *Joint i* do kloubu *Joint i* + 1 vede na definici s.s. F_i , který je pevně spřažen s ramenem *Link i*, a jeho poloha je daná rotací θ_i respektive translací d_i (společně s parametry určující geometrii ramene a_i, α_i) vyvolanou kloubem *Joint i*. Jinými slovy s.s. F_i jednoznačně určuje vliv kloubu *Joint i* na rameno *Link i*. Toto zdánlivě jednoznačné určení však selhává v okamžiku, kdy je třeba definovat s.s. v kloubu *Joint i* + 2 v rozvětvené části mechanismu. Využijeme-li znovu stejného postupu, musíme definovat s.s. $\tilde{F}_i = {\tilde{O}_i - \tilde{x}_i \tilde{y}_i \tilde{z}_i}$, který je opět pevně spřažen s ramenem *Link* 1 a jeho poloha je daná rotací ($\tilde{\theta}_i$) respektive translací (\tilde{d}_i) (společně s parametry určující geometrii ramene $\tilde{a}_i, \tilde{\alpha}_i$) vyvolanou kloubem *Joint i*.

Zde se však dostáváme do sporu, neboť poloha ramene Link i vyvolaná jediným kloubem Joint i je popsána dvěma různými s.s. F_i a \tilde{F}_i . Nabízí se tak otázka, jaké jsou vlastně kloubové souřadnice kloubu Joint i? (θ_i respektive d_i nebo $\tilde{\theta}_i$ respektive \tilde{d}_i)

Obrázek 2.4: K-K úmluva

Zavedeme-li nyní souřadné systémy kloubů dle K-K úmluvy, viz Obr. 2.4 , definice s.s. F_i za předpokladu znalosti s.s. F_{i-1} je vyjádřena následovně:

- Zvol osu z_i a z'_i podél osy rotace, resp. translace kloubu *Joint i*. (Pro i = 1 není s.s. F'_i definován.)
- Umísti počátek O_i s.s. F_i do průsečíku osy z_i a normály os z_i a z_{i+1} . Umísti počátek O'_i s.s. F'_i do průsečíku osy z_i a normály os z_{i-1} a z_i .
- Zvol osu x_i podél normály ve směru od kloubu *Joint i* do kloubu *Joint i* + 1.
- Zvol osu y_i tak, aby výsledné s.s. byly pravotočivé.

Lze snadno ukázat, že K-K úmluva nedefinuje jednoznačně umístění s.s. v následujících případech.

- Pro s.s. F_n , kde n je počet kloubů s jedním stupněm volnosti uvažovaného manipulátoru je jednoznačně určena pouze osa z_n , neboť kloub *Joint* n + 1 již neexistuje. Osa x_n může být volena totožná s osou x_{n-1} .
- Pokud jsou dvě po sobě jdoucí osy kloubů (z_i a z_{i+1}) paralelní, jejich normála není jednoznačně definována (může být libovolně posunuta ve směru os kloubů). Může být volena tak, že parametr $d_i = 0$ nebo $d_{i+1} = 0$.
- Pokud se dvě po sobě jdoucí osy kloubů (z_i a z_{i+1}) protínají (normála je nulové délky), osa x_i bude volena tak, aby byla kolmá k rovině definované osami z_i a z_{i+1} . Její kladný směr však může být volen libovolně.
- S.s. F_0 může být volen libovolně, zpravidla jako totožný se s.s. F_1 pro $\theta_1 = 0$, respektive $d_1 = 0$ (nulová poloha kloubu *Joint* 1).

Nyní může být vzájemná poloha s.s. F_{i-1} a F_i popsána pouze pomocí čtyř K-K parametrů:

- $\alpha_i \dots$ úhel mezi osami \boldsymbol{z}_{i-1} a \boldsymbol{z}_i kolem normály \boldsymbol{x}_{i-1}
- $a_i \dots$ vzdálenost mezi počátkem O_{i-1} a osou z_i (kolmá vzdálenost mezi osami)
- $d_i \ldots$ vzdálenost mezi počátky O'_i a O_i
- $\theta_i \dots$ úhel mezi osami \boldsymbol{x}_{i-1} a \boldsymbol{x}_i daný kolem osy \boldsymbol{z}_i

Je zřejmé, že pro základní typy kloubů s jedním stupněm volnosti opět platí:

- kloub Joint i je typu P proměnná definující pohyb kloubu je d_i , proměnné a_i , α_i , θ_i jsou konstanty definující geometrické uspořádání ramene Link i
- kloub Joint i je typu R proměnná definující pohyb kloubu je θ_i , proměnné a_i , d_i , α_i jsou konstanty definující geometrické uspořádání ramene Link i

Transformační vztah (homogenní transformační matice) mezi s.s. F_{i-1} a F_i je dán následujícím způsobem.

- Vyber s.s. F_{i-1}
- Posuň tento systém podél osy x_{i-1} o vzdálenost a_i a otoč jej okolo osy x_{i-1} o úhel $\alpha_i \Rightarrow$ dostáváme s.s. F'_i . Matice přechodu:

$$\boldsymbol{T}_{i'}^{i-1} = \operatorname{Trans}(\boldsymbol{x}, a_i) \cdot \operatorname{Rot}(\boldsymbol{x}, \alpha_i) = \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c_{\alpha_i} & -s_{\alpha_i} & 0 \\ 0 & s_{\alpha_i} & c_{\alpha_i} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & a_i \\ 0 & c_{\alpha_i} & -s_{\alpha_i} & 0 \\ 0 & s_{\alpha_i} & c_{\alpha_i} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2.4)

• Posuň s.s. F'_i podél osy \mathbf{z}'_i o vzdálenost d_i a otoč jej okolo osy \mathbf{z}'_i o úhel $\theta_i \Rightarrow$ dostáváme s.s. F_i . Matice přechodu:

$$\boldsymbol{T}_{i}^{i'} = \operatorname{Trans}(\boldsymbol{z}, d_{i}) \cdot \operatorname{Rot}(\boldsymbol{z}, \theta_{i}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}} & 0 & 0 \\ s_{\theta_{i}} & c_{\theta_{i}} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}} & 0 & 0 \\ s_{\theta_{i}} & c_{\theta_{i}} & 0 & 0 \\ 0 & 0 & 1 & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2.5)

• Výsledná matice přechodu ze s.s. F_{i-1} do s.s. F_i je dána:

$$\boldsymbol{T}_{i}^{i-1} = \boldsymbol{T}_{i'}^{i-1} \cdot \boldsymbol{T}_{i}^{i'} = \operatorname{Trans}(\boldsymbol{x}, a_{i}) \cdot \operatorname{Rot}(\boldsymbol{x}, \alpha_{i}) \cdot \operatorname{Trans}(\boldsymbol{z}, d_{i}) \cdot \operatorname{Rot}(\boldsymbol{z}, \theta_{i}) = \\ = \begin{bmatrix} c_{\theta_{i}} & -s_{\theta_{i}} & 0 & a_{i} \\ c_{\alpha_{i}}s_{\theta_{i}} & c_{\alpha_{i}}c_{\theta_{i}} & -s_{\alpha_{i}} & -s_{\alpha_{i}}d_{i} \\ s_{\alpha_{i}}s_{\theta_{i}} & s_{\alpha_{i}}c_{\theta_{i}} & c_{\alpha_{i}} & c_{\alpha_{i}}d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2.6)

Porovnáním parametrů D-H úmluvy, viz Obr. 2.1 a K-K úmluvy, viz Obr. 2.4 můžeme vypozorovat fakt, že D-H parametry [θ_i , d_i , α_i , a_i] odpovídají K-K parametrům [θ_i , d_i , α_{i+1} , a_{i+1}] (vyjma případu pro první a poslední čtveřici parametrů, neboť s.s. F_0 může být volen libovolně a s.s. F_n má pevně určený jen směr osy \boldsymbol{z}_n).

Obrázek 2.5: Khalil-Kleinfingerova úmluva pro rozvětvené kinematické řetězce

Ukažme nyní výhodu K-K úmluvy pro definování rozvětvených architektur. Pro ilustraci předpokládejme stejný případ jako na Obr. 2.3, však se zavedením souřadných systémů jako na Obr. 2.5. Transformaci s.s. F_{i-1} kloubu Link i - 1 do s.s. F_i kloubu Link i již známe a je dána pouze 4 parametry a_i , α_i , d_i , γ_i , viz rovnice (2.6). Poznamenejme, že zmíněné s.s. jsou k sobě navzájem ve specifické poloze, učené normálou os \mathbf{z}_{i-1} a \mathbf{z}_i , a tedy postačují pouze 4 DoF k jejich vzájemnému polohování.

Definujme dále normálu os z_{i-1} a z_{i+1} a s ní související pomocný souřadný systém ${}^{1}F_{i-1} = {}^{1}O_{i-1} - {}^{1}x_{i-1} {}^{1}y_{i-1} {}^{1}z_{i-1}$, který má osu ${}^{1}z_{i-1}$ totožnou s osou z_{i-1} a osu ${}^{1}x_{i-1}$ ve směru definované normály.

Poloha s.s. F_{i-1} a ${}^{1}F_{i-1}$ bude popsána pouze dvojicí parametrů:

 $\gamma_{i+1}\ldots$ úhel mezi osami \boldsymbol{x}_{i-1} a ${}^{1}\boldsymbol{x}_{i-1}$ kolem osy \boldsymbol{z}_{i-1}

 $b_{i+1}\dots$ vzdálenost mezi počátkem O_{i-1} a počátkem ${}^1\!O_{i-1}$

Transformační vztah těchto s.s. je dán pak následujícím způsobem:

• Posuň s.s. F_{i-1} podél osy z_{i-1} o hodnotu b_{i+1} a otoč jej kolem osy z_{i-1} o úhel $\gamma_{i+1} \Rightarrow$

dostáváme s.s. ${}^1\!\!F_{i-1}$ Matice přechodu:

$$\boldsymbol{T}_{i_{i-1}}^{i-1} = \operatorname{Trans}(\boldsymbol{z}, b_{i+1}) \cdot \operatorname{Rot}(\boldsymbol{z}, \gamma_{i+1}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & b_{i+1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} c_{\gamma_{i+1}} & -s_{\gamma_{i+1}} & 0 & 0 \\ s_{\gamma_{i+1}} & c_{\gamma_{i+1}} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c_{\gamma_{i+1}} & -s_{\gamma_{i+1}} & 0 & 0 \\ s_{\gamma_{i+1}} & c_{\gamma_{i+1}} & 0 & 0 \\ s_{\gamma_{i+1}} & c_{\gamma_{i+1}} & 0 & 0 \\ 0 & 0 & 1 & b_{i+1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2.7)

Nyní je zřejmé, že transformace mezi s.s. ${}^{1}F_{i-1}$ a F_{i+1} již bude dána známou transformační maticí $T_{i+1}^{i_{i-1}}$ analogickou jako v rovnici (2.6) s parametry [θ_{i+1} , d_{i+1} , α_{i+1} , a_{i+1}]:

$$\boldsymbol{T}_{i+1}^{l_{i-1}} = \operatorname{Trans}(\boldsymbol{x}, a_{i+1}) \cdot \operatorname{Rot}(\boldsymbol{x}, \alpha_{i+1}) \cdot \operatorname{Trans}(\boldsymbol{z}, d_{i+1}) \cdot \operatorname{Rot}(\boldsymbol{z}, \theta_{i+1}) = \begin{bmatrix} c_{\theta_{i+1}} & -s_{\theta_{i+1}} & 0 & a_{i+1} \\ c_{\alpha_{i+1}}s_{\theta_{i+1}} & c_{\alpha_{i+1}}c_{\theta_{i+1}} & -s_{\alpha_{i+1}} & -s_{\alpha_{i+1}}d_{i+1} \\ s_{\alpha_{i+1}}s_{\theta_{i+1}} & s_{\alpha_{i+1}}c_{\theta_{i+1}} & c_{\alpha_{i+1}} & c_{\alpha_{i+1}}d_{i+1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2.8)

Výsledná matice přechodu ze s.
s F_{i-1} do s.s. F_{i+1} je dána:

Poznamenejme, že stejným způsobem lze odvodit transformační vztahy pro libovolný počet kloubů připojených na rameno $Link \ i - 1$. Je patrné, že K-K úmluvu jednoznačně definuje, narozdíl od D-H úmluvy, kloubové souřadnice každého kloubu.

★ Příklad 2.2 (K-K úmluva pro SM+SZ)

Obrázek 2.6 znázorňuje zavedení souřadných systémů pro jednotlivá ramena AM+SZ.

Obrázek 2.6: Zavedení souřadných systémů pro AM+SZ dle K-K úmluvy

Geometrické parametry manipulátoru (tzv. K-K parametry), jsou pak dány následující tabulkou:

Joint i	d_i	a_i	α_i
1	0	0	0
2	0	0	$\frac{\pi}{2}$
3	0	l_2	0
4	l_3	0	$\frac{\pi}{2}$
5	0	0	$-\frac{\pi}{2}$
6	0	0	$\frac{\pi}{2}$

Tabulka 0.2: K-K parametry AM+SZ. Poznamenejme, že se nyní v popisu manipulátoru nevyskytují parametry l_1 respektive l_4 . Bez újmy na obecnosti mohou být tyto parametry součástí konstantních transformačních matic T_0^b respektive T_e^n , viz Poznámka 3.1.

★

3 Polohové závislosti manipulátorů

Polohovými závislostmi rozumíme vztah mezi kloubovými Θ a zobecněnými X souřadnicemi manipulátoru a dělíme je na dva základní problémy:

přímý kinematický problém/úloha (PKÚ)

Tedy nalezení závislosti zobecněných souřadnic X na kloubových souřadnicích Θ . V cizojazyčné literatuře často nazývaný jako direct/forward kinematics problem [19], direct geometric model [40].

• inverzní kinematický problém/úloha (IKÚ)

Tedy nalezení závislosti kloubových souřadnic Θ na zobecněných souřadnicích X. V cizojazyčné literatuře často nazývaný jako *inverse kinematic problem [19], inverse geometric* problem [40].

Pro lepší orientaci v textu zaveď me následující značení pro kloubové souřadnice manipulátoru:

$$\boldsymbol{\Theta} = \begin{bmatrix} \vartheta_1 & \dots & \vartheta_n \end{bmatrix}^T \tag{3.1}$$

kde

$$\vartheta_i = \theta_i (Joint \ i \ \text{je typu } \mathbf{R})$$
 a $\vartheta_i = d_i (Joint \ i \ \text{je typu } \mathbf{P})$

3.1 Přímý kinematický problém pro sériové manipulátory

Přímý kinematický problém pro sériové manipulátory nepředstavuje vážné komplikace a pro jeho řešení lze s výhodou využít úmluvy pro popis manipulátorů z Kapitoly 2, neboť každá transformační matice T_i^{i-1} závisí přímo na aktivní kloubové souřadnici ϑ_i .

Přímá kinematickou úloha pronaktivních kloubů sériového manipulátoru lze tak formulovat ve tvaru:

$$\boldsymbol{T}_{n}^{0}(\boldsymbol{\Theta}) = \prod_{i=1}^{n} \boldsymbol{T}_{i}^{i-1}(\vartheta_{i})$$
(3.2)

kde transformační matice $T_i^{i-1}(\vartheta_i)$ jsou dány dle použité úmluvy přímo rovnicemi (2.3) nebo (2.6). Je tedy zřejmé, že přímá kinematická úloha pro sériové manipulátory má vždy analytické řešení.

Poznámka 3.1 (Kompenzace polohy základny a koncového efektoru)

Z praktického hlediska je výhodné definovat ještě dva další s.s., a to s.s. základny (rámu) manipulátoru $F_b = \{ O_b - x_b y_b z_b \}$ a s.s. koncového efektoru $F_e = \{ O_e - x_e y_e z_e \}$. Je zřejmé, že s.s. jsou nezávislé na poloze kloubů manipulátoru, a lze je tedy vyjádřit vzhledem k poloze s.s. prvního F_0 a posledního F_n kloubu konstantními maticemi přechodu T_0^b a T_e^n , viz Obr. 3.1. V technické praxi tyto matice představují většinou kompenzaci umístění konkrétního manipulátoru na výrobní lince (T_0^b) či kompenzaci polohy pracovního nástroje na koncovém efektoru manipulátoru (T_e^n) .

Výsledná matice přechodu $T_e^b(\Theta)$ závisející na poloze kloubových souřadnic Θ respektující i výše uvedené kompenzace polohy bude mít tak následující tvar:

kde

$$\boldsymbol{R}_{e}^{b} = \begin{bmatrix} \boldsymbol{x}_{e}^{b} & \boldsymbol{y}_{e}^{b} & \boldsymbol{z}_{e}^{b} \end{bmatrix}$$
(3.4)

je matice rotace a $\boldsymbol{r}_{b,e}^b = \boldsymbol{O}_e^b - \boldsymbol{O}_b^b = \boldsymbol{O}_e^b$ je translační vektor s.s. F_e vzhledem k s.s. F_b .

Obrázek 3.1: Princip kompenzací manipulátoru

Poznamenejme, že vektor zobecněných souřadnic manipulátor
u ${\pmb X}$ lze získat z transformační matice ${\pmb T}_e^b$ např, jako:

$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{R}_{e}^{b} & \boldsymbol{O}_{e}^{b} \end{bmatrix} \text{ matice rotace} + \text{translační vektor}$$
(3.5)
$$\boldsymbol{X} = \begin{bmatrix} \alpha & \beta & \gamma & (\boldsymbol{O}_{e}^{b})^{T} \end{bmatrix}^{T} \text{ Eulerovy úhly (z } \boldsymbol{R}_{e}^{b}) + \text{translační vektor}$$
... atd.

Přímý kinematický problém lze tak s využitím rovnice (3.2) interpretovat jako nelineární vektorovou transformační funkci parametrizovanou návrhovými parametry manipulátoru $\boldsymbol{\xi}$ (v literatuře často označována jako geometrická omezení manipulátoru):

$$X = \mathbf{G}(\mathbf{\Theta}), \quad \text{kde} \quad \mathbf{G} = \mathbf{G}(\boldsymbol{\xi})$$
 (3.6)

★ Příklad 3.1 (Přímá kinematická úloha pro SM+SZ)

Přímá kinematická úloha SM+SZ pro domovskou ($\Theta = 0$) a obecnou polohu koncového efektoru manipulátoru (bez kompenzace $T_0^b = T_e^6 = I$):

$$\boldsymbol{\Theta} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}^T \quad \Rightarrow \quad \boldsymbol{X} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & -0.3 \end{bmatrix}$$
$$\boldsymbol{\Theta} = \begin{bmatrix} \frac{\pi}{4} & \frac{\pi}{3} & \frac{\pi}{4} & \frac{\pi}{3} & \frac{\pi}{3} & \frac{\pi}{2} \end{bmatrix}^T \quad \Rightarrow \quad \boldsymbol{X} = \begin{bmatrix} 0.51 & 0.33 & 0.79 & 1.28 \\ -0.20 & 0.94 & -0.27 & 0.96 \\ -0.84 & -0.02 & 0.55 & 2.29 \end{bmatrix}$$

Obrázek 3.2: Přímá kinematická úloha pro SM+SZ (model v SimMechanicsu)

3.2 Inverzní kinematický problém pro sériové manipulátory

Formulace inverzního kinematického problému plyne přímo z rovnice (3.6). Polohu kloubových souřadnic Θ lze pro danou polohu koncového efektoru X stanovit jako:

$$\Theta = \mathbf{G}^{-1}(\mathbf{X}) \tag{3.7}$$

★

Nalezení inverze nelineární vektorové transformační funkce \mathbf{G}^{-1} je v obecném případě velmi složité, neboť ve funkci \mathbf{G} se, díky transformační matici T_e^b , vyskytují součty násobků a mocnin členů sin ϑ_i , cos ϑ_i .

Uvažujme obecný neredundantní sériový prostorový manipulátor se všemi 6 stupni volnosti koncového efektoru, a tedy právě 6 kloubovými souřadnicemi $\boldsymbol{\Theta} = \begin{bmatrix} \vartheta_1 & \dots & \vartheta_6 \end{bmatrix}^T$. Jelikož zobecněný vektor souřadnic \boldsymbol{X} má v prostoru maximálně 6 nezávislých proměnných (např. 3 Eulerovy úhly a vektor translace koncového efektoru) je zřejmé, že *řešení inverzní kinematické úlohy pro obecný neredundantní manipulátor vede na soustavu 6 nelineárních rovnic pro 6 neznámých*.

Metody pro nalezení řešení inverzní kinematické úlohy pro sériové manipulátory lze rozdělit v podstatě do následujících skupin, které budou stručně zmíněny v následujících kapitolách:

- Přímé analytické řešení jednoduchých architektur manipulátorů
- Specializované metody pro řešení konkrétních variant architektur manipulátorů (omezené uspořádání kloubů daných typů)
- Metody pro řešení obecných architektur manipulátorů

3.2.1 Přímé analytické řešení jednoduchých architektur manipulátorů

Využívá se zejména pro jednoduché konstrukce manipulátorů, kde je možné s určitou dávkou zkušeností a matematické intuice relativně snadno nalézt inverzní kinematickou transformaci $\mathbf{G}^{-1}(\mathbf{X})$. Metody přímého analytického řešení bývají aplikovány na jednoduché planární či prostorové manipulátory, viz Příklad 3.2, 3.3.

★ Příklad 3.2 (Translační část AM+SZ z Obrázku 2.2)

Zobecněné souřadnice translační části AM+SZ definujme jako (předpokládejme $T_0^b = I \Rightarrow F_0 = F_b$, žádná kompenzace polohy základny manipulátoru):

$$\boldsymbol{X}_{tran} = \boldsymbol{r}_{0,E}^0 = \boldsymbol{O}_E^0 = \begin{bmatrix} O_{E_x}^0 & O_{E_y}^0 & O_{E_z}^0 \end{bmatrix}^T$$

Obrázek 3.3: Translační část AM+SZ (zavedení s.s. dle D-H úmluvy, viz Příklad 2.1)

Všimněme si, že řešení IKÚ pro translační část AM+SZ, lze rozdělit na dvě fáze. Pro kloubovou souřadnici θ_1 budou díky umístění kloubů zřejmě existovat dvě řešení ve tvaru:

$$\theta_1 = \operatorname{atan2}\left(O_{E_m}^0, O_{E_m}^0\right)$$
 (3.8)

$$\theta_1 = \operatorname{atan2} \left(O_{E_x}^0, O_{E_y}^0 \right) + \pi \tag{3.9}$$

Tím jsme problém převedli na řešení IKÚ planárního sériového manipulátoru typu <u>RR</u> (PSM-RR) se dvěma DoF, jehož schématické uspořádání je znázorněno na Obrázku 0.4(a). Zobecněné souřadnice PSM-RR definujme jako:

$$\boldsymbol{X}_{psm} = \boldsymbol{O}_E^1 = \begin{bmatrix} O_{E_x}^1 & O_{E_y}^1 & 0 \end{bmatrix}^T$$

kde \boldsymbol{X}_{psm} lze díky znalosti kloubové souřadnice θ_1 získat z \boldsymbol{X}_{tran} jako

$$O_E^1 = (T_1^0(\theta_1))^{-1} \cdot O_E^0$$

kde matice přechodu $T_1^0(\theta_1)$ je dána rovnicí (2.3) a hodnotami z Tabulky 2.1.

Obrázek 3.4: IKÚ pro planární sériový manipulátor typu <u>RR</u>

Řešení PKÚ pro PSM-RR lze psát:

$$\boldsymbol{T}_{E}^{1}(\Theta) = \prod_{i=2}^{3} \boldsymbol{T}_{i}^{i-1}(\theta_{i}) \cdot \boldsymbol{T}_{E}^{3} = \begin{bmatrix} \star & \star & \star & l_{3}s_{(\theta_{2}+\theta_{3})} + l_{2}c_{\theta_{2}} \\ \star & \star & \star & -l_{3}c_{(\theta_{2}+\theta_{3})} + l_{2}s_{\theta_{2}} \\ \star & \star & \star & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3.10)

kde

$$\boldsymbol{T}_{E}^{3} = \begin{bmatrix} & & 0 \\ \boldsymbol{I} & & 0 \\ & & & l_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

je konstantní kompenzační matice polohy koncového efektoru a matice přechodu $T_i^{i-1}(\theta_i)$ jsou opět určeny rovnicí (2.3) a hodnotami z Tabulky 2.1.

Poloha koncového efektoru PSM-RR je tedy dána jako:

$$\boldsymbol{X}_{psm} = \boldsymbol{T}_{E}^{1}[1:3,3] = \begin{bmatrix} \boldsymbol{O}_{E_{x}}^{1} \\ \boldsymbol{O}_{E_{y}}^{1} \\ 0 \end{bmatrix} = \begin{bmatrix} l_{3}s_{(\theta_{2}+\theta_{3})} + l_{2}c_{\theta_{2}} \\ -l_{3}c_{(\theta_{2}+\theta_{3})} + l_{2}s_{\theta_{2}} \\ 0 \end{bmatrix}$$

IKÚ pro PSM-RR lze potom řešit následovně:

Umocněním a sečtením prvků $O_{E_x}^1$ a $O_{E_y}^1$ dostáváme, s využitím součtových goniometrických vzorců, hodnotu kloubové souřadnice θ_2 :

$$(O_{E_x}^1)^2 + (O_{E_y}^1)^2 = l_3^2 + l_2^2 + 2l_2 l_3 s_{\theta_3}$$

$$s_{\theta_3} = \frac{(O_{E_x}^1)^2 + (O_{E_y}^1)^2 - l_2^2 - l_3^2}{2l_2 l_3}$$
(3.11)

$$s_{\theta_3}^2 + c_{\theta_3}^2 = 1 \Rightarrow c_{\theta_3} = \pm \sqrt{1 - s_{\theta_3}^2}$$
 (3.12)

$$\theta_3 = \operatorname{atan2}\left(\frac{s_{\theta_3}}{c_{\theta_3}}\right) \tag{3.13}$$

Řešením soustavy rovnic, opět s využitím součtových goniometrických vzorců,

$$O_{E_x}^{1} = l_3 c_{(\theta_2 + \theta_3)} + l_2 c_{\theta_2}$$
$$O_{E_y}^{1} = -l_3 s_{(\theta_2 + \theta_3)} + l_2 s_{\theta_2}$$

pro neznámé $s_{\theta_2}, c_{\theta_2},$ dostáváme hodnotu kloubové souřadnice θ_2 :

$$s_{\theta_2} = \frac{l_3 c_{\theta_3} O_{E_x}^1 + (l_2 + l_3 s_{\theta_3}) O_{E_y}^1}{(O_{E_x}^1)^2 + (O_{E_y}^1)^2}$$

$$c_{\theta_2} = \frac{(l_2 + l_3 s_{\theta_3}) O_{E_x}^1 - l_3 c_{\theta_3} O_{E_y}^1}{(O_{E_x}^1)^2 + (O_{E_y}^1)^2}$$

$$\theta_2 = \operatorname{atan2}\left(\frac{s_{\theta_2}}{c_{\theta_2}}\right) \tag{3.14}$$

Ze vztahu (3.12) je zřejmé, že IKÚ pro PSM-RR má dvě řešení, viz Obrázek 0.4(b). Poznamenejme dále, že řešení IKÚ existuje pouze za předpokladu $-1 \leq s_{\theta_3} \leq 1$, viz rovnice (3.12). Pro možné umístění koncového efektoru tak platí (po jednoduchých úpravách) nerovnost,

$$l_2 - l_3 \le \|X_{psm}\| \le l_2 + l_3$$

která definuje pracovní prostor manipulátoru.

Je tedy zřejmé, že IKÚ pro translační část AM+SZ má celkem 4 různá řešení (dvojice řešení pro kloubovou souřadnici θ_1 a dvojice řešení pro PSM-RR), viz Obrázek 3.5.

Obrázek 3.5: Možná řešení IKÚ pro translační část AM+SZ

★

★ Příklad 3.3 (Sférické zápěstí AM+SZ z Obrázku 2.2)

Zobecněné souřadnice sférického zápěstí AM+SZ definujme jako (předpokládejme $T_e^6 = I \Rightarrow F_6 = F_e$, žádná kompenzace polohy koncového efektoru manipulátoru):

$$oldsymbol{X}_{sz} = oldsymbol{R}_6^3 = egin{bmatrix} oldsymbol{x}_6^3 & oldsymbol{y}_6^3 & oldsymbol{z}_6^3 \end{bmatrix}$$

 (a) Schématické sférického zápěstí (zavedení s.s. dle D-H
 (b) Dvě možná řešení IKU sférického zá- úmluvy, viz Příklad 2.1
 (b) Dvě možná řešení IKU sférického zá-pěstí

Obrázek 3.6: IKÚ sférické zápěstí

Řešení PKÚ pro sférické zápěstí lze psát:

$$\boldsymbol{T}_{6}^{3} = \begin{bmatrix} \boldsymbol{R}_{6}^{3} & \boldsymbol{O}_{6}^{3} \\ \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 1 \end{bmatrix} = \prod_{i=4}^{6} \boldsymbol{T}_{i}^{i-1}(\theta_{i})$$
(3.15)

kde

$$R_{6}^{3} = \begin{bmatrix} c_{\theta_{4}}c_{\theta_{5}}c_{\theta_{6}} - s_{\theta_{4}}s_{\theta_{6}} & -c_{\theta_{4}}c_{\theta_{5}}c_{\theta_{6}} - s_{\theta_{4}}c_{\theta_{6}} & c_{\theta_{4}}s_{\theta_{5}} \\ s_{\theta_{4}}c_{\theta_{5}} + c_{\theta_{4}}s_{\theta_{6}} & -s_{\theta_{4}}c_{\theta_{5}}s_{\theta_{6}} + c_{\theta_{4}}c_{\theta_{6}} & s_{\theta_{4}}s_{\theta_{5}} \\ -s_{\theta_{5}}c_{\theta_{6}} & s_{\theta_{5}}s_{\theta_{6}} & c_{\theta_{5}} \end{bmatrix} \triangleq \begin{bmatrix} n_{x}^{3} & s_{x}^{3} & a_{x}^{3} \\ n_{y}^{3} & s_{y}^{3} & a_{y}^{3} \\ n_{z}^{3} & s_{z}^{3} & a_{z}^{3} \end{bmatrix}$$
(3.16)

a matice přechodu $\boldsymbol{T}_i^{i-1}(\theta_i)$ jsou opět určeny rovnicí (2.3) a hodnotami z Tabulky 2.1.

Ze soustavy rovnic (3.16) lze odvodit, že se IKÚ pro sférické zápěstí rozpadá na dvě řešení, viz Obrázek $0.6({\rm b}).$

Umocněním a sečtením prvků a_x^3 a a_y^3 dostáváme:

$$(a_{x}^{3})^{2} + (a_{y}^{3})^{2} = s_{\theta_{5}}^{2} \implies s_{\theta_{5}} = \pm \sqrt{(a_{x}^{3})^{2} + (a_{y}^{3})^{2}}$$
1. Pro $s_{\theta_{5}} = +\sqrt{(a_{x}^{3})^{2} + (a_{y}^{3})^{2}} \ge 0 \implies \theta_{5} \in <0, \pi >$

$$\theta_{4} = \operatorname{atan2}(s_{\theta_{4}}s_{\theta_{5}}, c_{\theta_{4}}s_{\theta_{5}}) = \operatorname{atan2}(s_{\theta_{4}}, c_{\theta_{4}}) = \operatorname{atan2}(a_{y}^{3}, a_{x}^{3}) \qquad (3.17)$$

$$\theta_{5} = \operatorname{atan2}(s_{\theta_{5}}, c_{\theta_{5}}) = \operatorname{atan2}(\sqrt{(a_{x}^{3})^{2} + (a_{y}^{3})^{2}}, a_{z}^{3})$$

$$\theta_{6} = \operatorname{atan2}(s_{\theta_{5}}s_{\theta_{6}}, -(-s_{\theta_{5}}c_{\theta_{6}})) = \operatorname{atan2}(s_{\theta_{6}}, c_{\theta_{6}}) = \operatorname{atan2}(s_{z}^{3}, -n_{z}^{3})$$
2. Pro $s_{\theta_{5}} = -\sqrt{(a_{x}^{3})^{2} + (a_{y}^{3})^{2}} \le 0 \implies \theta_{5} \in <-\pi, 0 >$

$$\theta_{4} = \operatorname{atan2}(s_{\theta_{4}}(-s_{\theta_{5}}), c_{\theta_{4}}(-s_{\theta_{5}})) = \operatorname{atan2}(s_{\theta_{4}}, c_{\theta_{4}}) = \operatorname{atan2}(-a_{y}^{3}, -a_{x}^{3})$$

$$\theta_{5} = \operatorname{atan2}(s_{\theta_{5}}, c_{\theta_{5}}) = \operatorname{atan2}(-\sqrt{(a_{x}^{3})^{2} + (a_{y}^{3})^{2}}, a_{z}^{3})$$

$$\theta_{6} = \operatorname{atan2}(-s_{\theta_{5}}s_{\theta_{6}}, -(s_{\theta_{5}}c_{\theta_{6}})) = \operatorname{atan2}(s_{\theta_{6}}, c_{\theta_{6}}) = \operatorname{atan2}(-s_{z}^{3}, n_{z}^{3})$$

$$\theta_{6} = \operatorname{atan2}(-s_{\theta_{5}}s_{\theta_{6}}, -(s_{\theta_{5}}c_{\theta_{6}})) = \operatorname{atan2}(s_{\theta_{6}}, c_{\theta_{6}}) = \operatorname{atan2}(-s_{z}^{3}, n_{z}^{3})$$

Systematické řešení IKÚ pro jednoduché manipulátory, pro které platí, že většina D-H respektive K-K parametrů a_i , d_i jsou nulové a α_i , θ_i jsou nulové či rovné $\pm \frac{\pi}{2}$, popsal Richard P. Paul, viz [33]. Jeho metoda v podstatě zobecňuje řešení IKÚ demonstrované v Příkladech 3.2 a 3.3 a v literatuře je často nazývaná jako *Paulova metoda (Paul method)*. Metoda je založena na myšlence postupného vyjadřování kloubových souřadnic ϑ_i z celkového kinematického popisu manipulátoru daného rovnicí PKÚ, následujícím postupem:

• Výpočet matice přechodu T_n^0 ze zobecněných souřadnic X, viz Kapitola 3.1. Získáváme tak soustavu 12 nelineárních rovnic pro n neznámých (3.2):

$$\boldsymbol{T}_{n}^{0} = \boldsymbol{T}_{1}^{0}(\vartheta_{1}) \cdot \boldsymbol{T}_{2}^{1}(\vartheta_{2}) \cdot \dots \cdot \boldsymbol{T}_{n}^{n-1}$$
(3.19)

 \star

• Přenásobením rovnice (3.19) zleva maticí přechodu $(T_1^0(\vartheta_1))^{-1}$ dostáváme:

$$\boldsymbol{T}_{0}^{1}(\vartheta_{1}) \cdot \boldsymbol{T}_{n}^{0} = \boldsymbol{T}_{2}^{1}(\vartheta_{2}) \cdot \boldsymbol{T}_{3}^{2}(\vartheta_{3}) \cdot \dots \cdot \boldsymbol{T}_{n}^{n-1}(\vartheta_{n})$$
(3.20)

Levá strana rovnice (3.20) je pak závislá pouze na kloubové souřadnici ϑ_1 , kterou se pokusíme vypočítat.

• Přenásobením rovnice (3.20) zleva maticí přechodu $(T_2^1(\vartheta_2))^{-1}$ dostáváme:

$$\boldsymbol{T}_{1}^{2}(\vartheta_{2}) \cdot \boldsymbol{T}_{0}^{1}(\vartheta_{1}) \cdot \boldsymbol{T}_{n}^{0} = \boldsymbol{T}_{3}^{2}(\vartheta_{3}) \cdot \boldsymbol{T}_{4}^{3}(\vartheta_{3}) \cdot \cdots \cdot \boldsymbol{T}_{n}^{n-1}(\vartheta_{n})$$
(3.21)

Levá strana rovnice (3.21) je pak závislá pouze na kloubové souřadnici ϑ_2 (ϑ_1 již známe), kterou se pokusíme vypočítat.

• Analogickým způsobem se pokusíme postupně dopočítat všechny zbývající kloubové souřadnice $\vartheta_i, i = 3 \dots n$

Bylo experimentálně ukázáno, že pro celou řadu průmyslově používaných manipulátorů degeneruje IKÚ pomocí Paulovo metody na řešení 8 základních typů rovnic uvedených v Tabulce 0.3, jejichž analytické řešení je známé (zde jej však dále neuvádíme a lze nalézt společně s konkrétním příkladem (řešení IKÚ pro AM+SZ) např. v [40]).

Typ 1	$X \cdot d_i = Y$
Typ 2	$X \cdot s_{\theta_i} + Y \cdot c_{\theta_i} = Z$
Typ 3	$X_1 \cdot s_{\theta_i} + Y_1 \cdot c_{\theta_i} = Z_1$
	$X_2 \cdot s_{\theta_i} + Y_2 \cdot c_{\theta_i} = Z_2$
Typ 4	$X_1 \cdot d_j \cdot s_{\theta_i} = Y_1$
	$X_2 \cdot d_j \cdot c_{\theta_i} = Y_2$
Typ 5	$X_1 \cdot s_{\theta_i} = Y_1 + Z_1 \cdot d_j$
	$X_2 \cdot c_{\theta_i} = Y_2 + Z_2 \cdot d_j$
Typ 6	$W \cdot s_{\theta_j} = X \cdot c_{\theta_i} + Y \cdot s_{\theta_i} + Z_1$
	$W \cdot c_{\theta_j} = X \cdot c_{\theta_i} - Y \cdot s_{\theta_i} + Z_2$
Typ 7	$W_1 \cdot c_{\theta_j} + W_2 \cdot s_{\theta_j} = X \cdot c_{\theta_i} + Y \cdot s_{\theta_i} + Z_1$
	$W_1 \cdot s_{\theta_j} - W_2 \cdot c_{\theta_j} = X \cdot s_{\theta_i} - Y \cdot c_{\theta_i} + Z_2$
Typ 8	$X \cdot c_{\theta_i} + Y \cdot c_{(\theta_i + \theta_j)} = Z_1$
	$X \cdot s_{\theta_i} + Y \cdot s_{(\theta_i + \theta_j)} = Z_2$

Tabulka 0.3: Typické rovnice řešené při použití Paulovy metody, kde θ_i resp. d_i jsou kloubové souřadnice kloubu typu **R** resp. **P** a X_i , Y_i , Z_i , W_i jsou reálné koeficienty závislé na D-H či K-K geometrických parametrech manipulátoru

3.2.2 Specializované metody pro řešení konkrétních variant architektur manipulátorů

V průmyslových aplikacích se velmi často vyskytují sériové manipulátory, jejichž architektura je navržena takovým způsobem, aby byl výpočet IKÚ co možná nejvíce usnadněn. Jedná se zejména o případy, kdy je možné daný manipulátor vhodně dekomponovat na více funkčních celků a IKÚ řešit pro každý celek samostatně (např. prostřednictvím přímých analytických metod, viz kapitola 3.2.1). Vypustíme-li jednoduché pravoúhlé (portálové) manipulátory, pro které je IKÚ triviální, drtivou většinu manipulátorů v průmyslu tvoří právě antropomorfní manipulátor se sférickým zápěstím.

\bigstar Příklad 3.4 (IKÚ AM+SZ z Obrázku 2.2)

Nechť

$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{x}_e^b & \boldsymbol{y}_e^b & \boldsymbol{z}_e^b & \boldsymbol{O}_e^b \end{bmatrix}$$
(3.22)

jsou zobecněné souřadnice manipulátoru se zavedenými s.s. dle D-H úmluvy, viz Příklad 2.1.

Je zřejmé, že směrové vektory os a počátek s.s. F_6 vzhledem k s.s. F_0 lze získat z X pomocí kompenzačních matic T_0^b a T_e^6 jako:

$$\begin{bmatrix} \mathbf{x}_{6}^{0} \ \mathbf{y}_{6}^{0} \ \mathbf{z}_{6}^{0} \ \mathbf{0}_{6}^{0} \\ - & \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{1} \ \mathbf{1} \end{bmatrix} = (\mathbf{T}_{0}^{b})^{-1} \cdot \begin{bmatrix} \mathbf{x}_{e}^{b} \ \mathbf{y}_{e}^{b} \ \mathbf{z}_{e}^{b} \ \mathbf{0}_{e}^{b} \\ - & \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{1} \ \mathbf{1} \end{bmatrix} \cdot (\mathbf{T}_{e}^{6})^{-1}$$
(3.23)

Zobecněné souřadnice translační části manipulátoru z Příkladu 3.2 lze potom vypočítat jako:

$$\boldsymbol{X}_{tran} = \boldsymbol{O}_{E}^{0} = \boldsymbol{O}_{4}^{0} = \boldsymbol{O}_{5}^{0} = \boldsymbol{O}_{6}^{0} - l_{4} \cdot \boldsymbol{z}_{6}^{0}$$
(3.24)

Získáváme tak řešení pro kloubové souřadnice θ_1 , θ_2 a θ_3 .

Zobecněné souřadnice sférického zápěstí z Příkladu 3.3 nyní lze spočítat jako:

$$\boldsymbol{X}_{sz} = \boldsymbol{R}_{6}^{3} = \underbrace{(\boldsymbol{T}_{3}^{0}(\theta_{1}, \theta_{2}, \theta_{3})[1:3,1:3])^{T}}_{\boldsymbol{R}_{0}^{3}} \cdot \underbrace{\left[\begin{array}{cc} \boldsymbol{x}_{6}^{0} & \boldsymbol{y}_{6}^{0} & \boldsymbol{z}_{6}^{0} \end{array}\right]}_{\boldsymbol{R}_{6}^{0}}$$
(3.25)

kde

$$T_3^0(heta_1, \ heta_2, \ heta_3) = \prod_{i=1}^3 T_i^{i-1}(heta_i)$$

a matice přechodu $T_i^{i-1}(\theta_i)$ jsou určeny rovnicí (2.3) a hodnotami z Tabulky 2.1.

Získáváme tak řešení pro zbývající kloubové souřadnice θ_4 , θ_5 a θ_6 . IKÚ pro AM+SZ má tedy celkem 8 různých řešení (4 pro translační část krát 2 pro sférické zápěstí).

Metodu řešení IKÚ AM+SZ pomocí vhodné dekompozice na translační část (obecně řešení polohové rovnice) a sférické zápěstí (obecně řešené rotační rovnice) ukázanou v Příkladu 3.4 lze zobecnit pro dva základní typy architektury manipulátorů se 6 DoF, viz [16]. Uveď me dále jen nástin řešení, podrobnější popis lze nalézt například v [40].

Manipulátor obsahující sférické zápěstí v libovolné části kinematického řetězce

Možné varianty kinematického řetězce:

XXX(RRR), X(RRR)XX, XX(RRR)X, XXX(RRR), kde (RRR) označuje sférické zápěstí a X označuje kloub typu P nebo R.

Obrázek 3.7: Sférické zápěstí (obecný případ)

Nástin metody:

Předpokládáme-li popis s.s. manipulátoru pomocí K-K úmluvy, viz Příklad 2.2, trojice po sobě jdoucích kloubů *Joint* m - 1, *Joint* m a *Joint* m + 1, kde $2 \le m \le 5$, tvoří sférické zápěstí, pokud pro K-K parametry platí následující, viz Obrázek 3.7:

$$a_m = d_m = a_{m+1} = 0$$

$$s_{\alpha_m} \neq 0$$

$$s_{\alpha_{m+1}} \neq 0$$
(3.26)

Je zřejmé, že počátky s.s. F_{m-1} a F_m jsou shodné a nezávislé na kloubových souřadnicích sférického zápěstí θ_{m-1} , θ_m , θ_{m+1} . Polohu těchto počátků můžeme tedy vyjádřit vzhledem k s.s. F_{m-2} jako:

$$\begin{bmatrix} \boldsymbol{O}_{m-1}^{m-2} \\ 1 \end{bmatrix} = \boldsymbol{T}_{m+1}^{m-2} \cdot \operatorname{Trans}(\boldsymbol{z}, -d_{m+1}) \cdot \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{0} \\ \boldsymbol{0} \\ 1 \end{bmatrix} = \begin{bmatrix} a_{m-1} \\ -d_{m-1}s_{\alpha_{m-1}} \\ d_{m-1}c_{\alpha_{m-1}} \\ 1 \end{bmatrix}$$
(3.27)

Rovnice (3.2) lze tedy psát s využitím rovnice (3.27) jako (matice přechodu T_6^0 lze opět vypočítat ze zobecněných souřadnic manipulátoru):

$$\boldsymbol{T}_{m-2}^{0} \cdot \boldsymbol{T}_{m+1}^{m-2} \cdot \boldsymbol{T}_{6}^{m+1} = \boldsymbol{T}_{6}^{0}$$
(3.28)

$$\boldsymbol{T}_{m-2}^{0} \cdot \begin{bmatrix} \boldsymbol{O}_{m-1}^{m-2} \\ 1 \end{bmatrix} = \boldsymbol{T}_{6}^{0} \cdot \boldsymbol{T}_{m+1}^{6} \cdot \operatorname{Trans}(\boldsymbol{z}, -d_{m+1}) \cdot \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
(3.29)

Rovnice (3.29) se nazývá *polohovou rovnicí*, neboť závisí pouze na kloubových souřadnicích, které nepřísluší sférickému zápěstí $\vartheta_1, \ldots, \vartheta_{m-2}$ a $\vartheta_{m+1}, \ldots, \vartheta_6$. Zřejmě tedy platí:

$$T^{0}_{m-2} = T^{0}_{m-2}(\vartheta_1, \dots, \vartheta_{m-2})$$
 a $T^{6}_{m+1} = T^{6}_{m+1}(\vartheta_{m+1}, \dots, \vartheta_6)$

kde ϑ_i je kloubová souřadnice kloubu typu **P** respektive **R**, viz (3.1).

Lze ukázat, že rovnice (3.29) vede na řešení 6 typů rovnic, jejichž analytické řešení je opět známé. První tři rovnice jsou shodné s rovnicemi typu 1, 2 a 3 z Tabulky 0.3 a zbývající tři typy rovnic jsou uvedeny v Tabulce 0.4. Počet možných řešení je roven čtyřem.

Typ 9	$a_2 d_i^2 + a_1 d_i + a_0 = 0$
Typ 10	$a_4d_i^4 + a_3d_i^3 + a_2d_i^2 + a_1d_i + a_0 = 0$
Typ 11	$a_4 s_{\theta_i}^2 + a_3 c_{\theta_i} s_{\theta_i} + a_2 c_{\theta_i} + a_1 s_{\theta_i} + a_0 = 0$

Tabulka 0.4: Další typické rovnice použité při řešení IKÚ manipulátoru se sférickým zápěstím, kde θ_i resp. d_i jsou kloubové souřadnice kloubu typu **R** resp. **P** a a_i jsou reálné koeficienty závislé na K-K geometrických parametrech manipulátoru

Z rovnice (3.28) je možné vzhledem k (1.10) odvodit závislosti pro rotační matice jednotlivých souřadných systémů:

$$\boldsymbol{R}_{m-2}^{0} \cdot \boldsymbol{R}_{m+1}^{m-2} \cdot \boldsymbol{R}_{6}^{m+1} = \boldsymbol{R}_{6}^{0}$$
(3.30)

Rovnice (3.30) se nazývá rotační rovnicí, neboť, pro nyní již známé hodnoty kloubových souřadnic nepříslušejícím sférickému zápěstí (matice \mathbf{R}_{m-2}^0 a \mathbf{R}_6^{m+1} jsou konstantní matice), závisí pouze na kloubových souřadnicích sférického zápěstí:

$$\mathbf{R}_{m+1}^{m-2} = \mathbf{R}_{m+1}^{m-2}(\theta_{m-1}, \ \theta_m, \ \theta_{m+1})$$

Lze ukázat, že rovnice (3.30) vede na řešení rovnic typu 2 a 3 z Tabulky 0.3. Počet možných řešení je roven dvěma.

Manipulátor obsahující 3 klouby typu P a 3 klouby typu R v libovolném uspořádání

Možné varianty kinematického řetězce:

PPPRRR, **PPRPRR**, ... + dalších 18 kombinací.

Nástin metody:

Označme klouby typu **R** jako Joint i, Joint j a Joint k a klouby typu **P** jako Joint i', Joint j' a Joint k'.

Je zřejmé, že klouby typu \mathbf{P} nemohou jakkoliv ovlivnit orientaci koncového efektoru manipulátoru. *Rotační rovnici* můžeme tedy odvodit z rovnice (3.2) opět s využitím (1.10) jako:

$$\boldsymbol{R}_{i}^{0}(\theta_{i}) \cdot \boldsymbol{R}_{j}^{i}(\theta_{j}) \cdot \boldsymbol{R}_{6}^{j}(\theta_{k}) = \boldsymbol{R}_{6}^{0}$$
(3.31)

Lze ukázat, že rovnice (3.31) vede na podobné řešení jako *rotační rovnice* (3.30). Stejně tak i počet řešení je roven dvěma.

Polohovou rovnici lze psát jako:

$$\boldsymbol{T}_{i}^{0}(d_{i'}) \cdot \boldsymbol{T}_{j}^{i}(d_{j'}) \cdot \boldsymbol{T}_{6}^{k} = \boldsymbol{T}_{6}^{0}$$
(3.32)

Vzhledem k tomu, že matice přechodu v rovnici (3.32) jsou závislé pouze na kloubových souřadnicích kloubů typu **P** (kloubové souřadnice θ_i , θ_j , θ_k kloubů typu **R** známe z řešení rovnice (3.31)), nevyskytují se v této polohové rovnici žádné členy typu sin, cos a rovnice je tak soustavou lineárních rovnic v neznámých $d_{i'}$, $d_{j'}$, $d_{k'}$.

3.2.3 Metody pro řešení obecných architektur manipulátorů

Pod obecnou architekturou manipulátoru se 6 Dof rozumíme manipulátor se 6 klouby typu P respektive \mathbf{R} s libovolně orientovanými osami translace respektive rotace. D-H či K-K geometrické parametry mohou tedy nabývat libovolných reálných hodnot. Dnes nejznámější obecnou metodou pro řešení IKU takových manipulátorů je Raghavan-Rothova metoda (Raghavan-Roth method), viz [32].

Nástin metody (pro sériový manipulátor se 6 klouby typu R):

Rovnice (3.2) lze přepsat následovně:

$$\boldsymbol{T}_{1}^{0}(\theta_{1}) \cdot \boldsymbol{T}_{2}^{1}(\theta_{2}) \cdot \boldsymbol{T}_{3}^{2}(\theta_{3}) \cdot \boldsymbol{T}_{4}^{3}(\theta_{4}) = \boldsymbol{T}_{6}^{0} \cdot \boldsymbol{T}_{5}^{6}(\theta_{6}) \cdot \boldsymbol{T}_{4}^{5}(\theta_{5})$$
(3.33)

Prvky matice na pravé straně rovnice (3.33) jsou funkcemi pouze kloubových souřadnic θ_5 , θ_6 a prvky na levé straně kloubových souřadnic $\theta_1, \theta_2, \theta_3, \theta_4, \operatorname{což} výrazně usnadňuje další symbolické$ výpočty. Lze ukázat, že porovnáním vhodných příslušejících si prvků matic na levé a pravé straně, rozšířením soustavy rovnic o přídavné rovnice a následném zjednodušení, dostáváme soustavu rovnic, již nezávislou na θ_4 (formálně shodnou s lineárním soustavou rovnic):

$$\boldsymbol{A} \cdot \boldsymbol{X}_1 = \boldsymbol{B} \cdot \boldsymbol{Y} \tag{3.34}$$

kde

B je konstantní matice $[14 \times 8]$

Za účelem eliminace θ_5 a θ_6 lze rovnice (3.34) rozdělit následovně:

$$\begin{bmatrix} A_1 \\ A_2 \end{bmatrix} \cdot X_1 = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} \cdot Y \quad \Rightarrow \quad \begin{array}{c} A_1 \cdot X_1 = B_1 \cdot Y \\ A_2 \cdot X_1 = B_2 \cdot Y \end{array}$$
(3.35)

kde A_1 je matice $[6 \times 9]$, A_2 je matice $[8 \times 9]$, B_1 je matice $[6 \times 8]$ a B_2 je matice $[8 \times 8]$. Eliminací Y dostáváme rovnici:

$$\boldsymbol{D} \cdot \boldsymbol{X}_1 = \boldsymbol{0}_{6 \times 1} \tag{3.36}$$

kde $D = [A_1 - B_1 \cdot B_2^{-1} \cdot A_2]$ je matice $[6 \times 9]$ závislá pouze na lineární kombinaci s_{θ_1} a c_{θ_1} . Dosazením známe substituce, viz [31]

$$x_i = \tan \frac{\theta_i}{2} \quad \Rightarrow \quad \begin{array}{l} s_{\theta_i} = \frac{2x_i}{1+x_i^2} \\ c_{\theta_i} = \frac{1-x_i^2}{1+x_i^2} \end{array}, \quad \text{pro } i = 1, \ 2, \ 3 \end{array}$$
(3.37)

do rovnice (3.36) dostáváme rovnici:

$$\boldsymbol{E} \cdot \boldsymbol{X}_2 = \boldsymbol{0}_{6 \times 1} \tag{3.38}$$

kde $\boldsymbol{X}_2 = \begin{bmatrix} x_2^2 x_3^2 & x_2^2 x_3 & x_2^2 & x_2 x_3^2 & x_2 x_3 & x_2 & x_3^2 & x_3 & 1 \end{bmatrix}^T$ a \boldsymbol{E} je matice [6 × 9] jejíž prvky jsou kvadratickými funkcemi v proměnné x_1 .

Z rovnice (3.38) lze eliminovat x_2 a x_3 tzv. dyalitickou eliminací, která je založena na následujícím postupu. Vynásobením rovnice (3.38) proměnou x_2 dostáváme rovnici:

$$\boldsymbol{E} \cdot \boldsymbol{X}_3 = \boldsymbol{0}_{6 \times 1} \tag{3.39}$$

kde $X_3 = \begin{bmatrix} x_2^3 x_3^2 & x_2^3 x_3 & x_2^3 & x_2^2 x_3^2 & x_2^2 x_3 & x_2^2 & x_2 x_3 & x_2 \end{bmatrix}$.

Kombinací rovnic (3.38) a (3.39) dostáváme soustavu rovnic:

$$\boldsymbol{S} \cdot \boldsymbol{X} = \boldsymbol{0}_{12 \times 1} \tag{3.40}$$

kde $\boldsymbol{X} = \begin{bmatrix} x_2^3 x_3^2 & x_2^3 x_3 & x_2^3 & x_2^2 x_3^2 & x_2^2 x_3 & x_2^2 & x_2 x_3^2 & x_2 x_3 & x_2 & x_3^2 & x_3 & 1 \end{bmatrix}^T$ a \boldsymbol{S} je matice $[12 \times 12]$ jejíž prvky jsou opět kvadratickými funkcemi v proměnné x_1 a platí:

$$oldsymbol{S} = egin{bmatrix} oldsymbol{E} & oldsymbol{0}_{6 imes 3} \ oldsymbol{0}_{6 imes 3} & oldsymbol{E} \end{bmatrix}$$

Vzhledem k tomu, že $X \neq \mathbf{0}_{12\times 1}$ soustava rovnic (3.40) má netriviální řešení, a to pouze za předpokladu:

$$\det(\boldsymbol{S}) = 0 \tag{3.41}$$

Raghavan ukázal, že det(S) = 0 je polynomem stupně 24 v proměnné x_1 a má jediný společný faktor ($x_1^2 + 1$)⁴ vedoucí na komplexní kořeny. Rovnice 3.41 lze tedy psát:

$$\det(\mathbf{S}) = \mathbf{f}(x_1)(x_1^2 + 1)^4 = 0 \tag{3.42}$$

kde $\mathbf{f}(x_1)$ je polynom stupně 16 s reálnými kořeny (někdy v literatuře nazýván jako *charakteris*tický polynom manipulátoru).

Je tedy zřejmé že obecný 6R manipulátor má maximálně 16 různých řešení IKÚ. Kloubové souřadnice jsou postupně vypočítány pro všechny kořeny x_{1_i} , $i = 1, 2, \ldots$ polynomu $\mathbf{f}(x_1)$ následovně:

- x_{2_i} a x_{3_i} lze získat řešením soustavy lineárních rovnic (3.40), neboť $S(x_{1_i})$ je numerická matice a obecně platí rank $(S(x_{1_i})) = 11$ (řešíme tak soustavu 11 rovnic pro 11 neznámých). Zpětnou substitucí (3.37) získáváme kloubové souřadnice $\theta_{1_i}, \theta_{2_i}$ a θ_{3_i} .
- Substitucí θ_{1_i} , θ_{2_i} , θ_{3_i} do rovnice $B_2 \cdot Y = A_2 \cdot X_1$ z (3.35) dostáváme soustavu 8 lineárních rovnic pro 8 neznámých v Y. Kloubové souřadnice θ_{5_i} a θ_{6_i} lze pak vypočítat prostřednictvím funkce atan2(*).
- Přeorganizováním rovnice (3.33) a substitucí $\theta_{1_i}, \theta_{2_i}, \theta_{3_i}, \theta_{5_i}, \theta_{6_i}$ dostáváme

$$T_4^3(heta_4) = T_2^3(heta_3) \cdot T_1^2(heta_2) \cdot T_0^1(heta_1) \cdot T_6^0 \cdot T_5^6(heta_6) \cdot T_4^5(heta_5)$$

a vzhledem k (2.6), pro popis s.s. podle K-K úmluvy, lze poslední kloubovou souřadnici vypočítat z prvků $T_4^3(\theta_4)[1,1]$ a $T_4^3(\theta_4)[1,2]$ opět pomocí funkce atan2(*).

Metodu je možné v mírně pozměněné podobě aplikovat i na manipulátory s klouby typu \mathbf{P} . Poznamenejme, že pro manipulátor nacházející se v singulární poloze se v matici S objevují lineárně závislé řádky, úloha potom nemá řešení. Naopak lineárně závislé sloupce se mohou v matici S vyskytovat pro specifickou kombinaci K-K či D-H geometrických parametrů manipulátoru. V takovém případě je třeba změnit prvky matice, které se porovnávají v rovnici (3.33), případně tuto "startovací"rovnici zvolit jiným způsobem, existuje celkem 6 možných variant:

$$\begin{split} \mathbf{T}_{1}^{0} \cdot \mathbf{T}_{2}^{1} \cdot \mathbf{T}_{3}^{2} \cdot \mathbf{T}_{4}^{3} &= \mathbf{T}_{0}^{6} \cdot \mathbf{T}_{5}^{6} \cdot \mathbf{T}_{4}^{5} \\ \mathbf{T}_{2}^{1} \cdot \mathbf{T}_{3}^{2} \cdot \mathbf{T}_{4}^{3} \cdot \mathbf{T}_{5}^{4} &= \mathbf{T}_{0}^{1} \cdot \mathbf{T}_{0}^{6} \cdot \mathbf{T}_{5}^{6} \\ \mathbf{T}_{3}^{2} \cdot \mathbf{T}_{4}^{3} \cdot \mathbf{T}_{5}^{4} \cdot \mathbf{T}_{5}^{5} &= \mathbf{T}_{1}^{2} \cdot \mathbf{T}_{0}^{1} \cdot \mathbf{T}_{0}^{6} \\ \mathbf{T}_{4}^{3} \cdot \mathbf{T}_{5}^{4} \cdot \mathbf{T}_{6}^{5} \cdot \mathbf{T}_{0}^{6} &= \mathbf{T}_{2}^{3} \cdot \mathbf{T}_{1}^{2} \cdot \mathbf{T}_{0}^{1} \\ \mathbf{T}_{5}^{4} \cdot \mathbf{T}_{6}^{5} \cdot \mathbf{T}_{0}^{6} \cdot \mathbf{T}_{1}^{0} &= \mathbf{T}_{3}^{4} \cdot \mathbf{T}_{2}^{3} \cdot \mathbf{T}_{1}^{2} \\ \mathbf{T}_{5}^{5} \cdot \mathbf{T}_{0}^{6} \cdot \mathbf{T}_{1}^{0} &= \mathbf{T}_{4}^{4} \cdot \mathbf{T}_{3}^{3} \cdot \mathbf{T}_{1}^{2} \end{split}$$

Řešení IKÚ pro specifické hodnoty geometrických parametrů (konkrétní kombinace kloubů) založené na modifikace Raghavanovy metody je podrobně diskutováno např. v [39]. Efektivní implementaci obecné Raghavanovy metody s ohledem na výpočetní náročnost, stabilitu a potlačení numerických chyb lze nalézt v [21].

Poznamenejme, že z obecného pohledu je tedy řešení IKÚ pro sériové manipulátory převoditelné na problém řešení soustavy polynomiálních rovnic. Raghavanova metoda tento problém dále převádí na hledání kořenu polynomu *n*-tého stupně. Alternativním přístupem se dnes stává pomalu, ale jistě se rozšiřující metoda *Gröbnerových bází*, založená na principu převodu soustavy polynomiálních rovnic na ekvivalentní soustavu, jejíž řešení lze vypočítat postupným dosazováním dílčích výsledků (např. jedna rovnice soustavy je polynomem v jedné proměnné, atd.). Názorný příklad s využitím právě Gröbnerových bází pro PSM-RR z Příkladu 3.2 lze nalézt v [4]. Řešení IKÚ pro obecný sériový manipulátor z Kapitoly 3.2.3 pak např. v [42].

Literatura

- [1] J. Angeles. Kinematics synthesis. lecture notes, Department of Mechanical Engineering, McGill University, Montreal (Quebec), Canada, 2009.
- [2] F. Bennis. Contribution á la modélisation géométrique et dynamique des robots á chaine simple et complexe. PhD thesis, E.N.S.M., Nantes, France, 1991.
- [3] F. Bennis. Modele géométrique inverse des robots a chaine découplable : application aux équations de contraintes des boucles fermées. Trans. of the Canadian Society for Mechanical Engineering, 17:473–492, 1993.
- [4] L. Bláha. Groebnerova báze a teorie řízení. Práce ke státní doktorské zkoušce, Katedra kybernetiky, FAV, ZČU v Plzni, 2011.
- [5] Ilian Bonev. The true origins of parallel robots. www.parallemic.org, 2003.
- [6] P. I. Corke. A robotic toolbox for matlab. IEEE Robot. Automat. Mag., (24 33), 1996.
- [7] D. O'Shea D. Cox, J. Little. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra. Springer, 2nd edition, 2006.
- [8] J. Denavit and R. S. Hartenberg. A kinematic notation for lower-pair mechanisms based on matrices. J. Appl. Mechanics, June 1955, 22:215–221, 1955.
- [9] Boston Dynamic. http://www.bostondynamics.com/.
- [10] Tenreiro Machado J.A. Fonseca Ferreira N.M. Roblib: an educational program for robotics. IFAC symposium on robot control, 1(163-168), 2000.
- [11] W. Fulton. Algebraic Curves: An Introduction To Algebraic Geometry. New York: Benjamin, 1969.
- [12] Luis Gracia and Josep Tornero. Tracking trajectories with a robotic manipulator with singularities. In Proceedings of the 2nd international conference on Advances in brain, vision and artificial intelligence, BVAI'07, pages 595–605, Berlin, Heidelberg, 2007. Springer-Verlag.
- [13] http://www.mathpages.com/home/kmath544/kmath544.htm. The resultant and bezout's theorem.
- [14] K. H. Hunt. Structural kinematics of in parallel actuated robot arms. J. of Mechanisms, Transmissions and Automation in Design, pages 705–712, 1983.
- [15] M. Valášek J. Böhm, K. Belda. The direct kinematics for path control of redundant parallel robots. Advances in Systems Science: Measurement, Circuits and Control, pages 253–258, 2001.
- [16] W. Khalil and F. Bennis. Automatic generation of the inverse geometric model of robots. Robotics and Autonomous Systems, 7(1):47 – 56, 1991.
- [17] W. Khalil and J. Kleinfinger. A new geometric notation for open and closed-loop robots. volume 3, pages 1174 – 1179, apr. 1986.
- [18] Wisama Khalil and Denis Creusot. Symoro+: A system for the symbolic modelling of robots. *Robotica*, 15:153–161, March 1997.

Literatura

- [19] B. Siciliano L. Sciavicco. Modelling and Control of Robot Manipulators. Springer, 2 edition, 2000.
- [20] Anthony A. Maciejewski and Charles A. Klein. Numerical filtering for the operation of robotic manipulators through kinematically singular configurations. *Journal of Robotic Systems*, 5(6):527–552, 1988.
- [21] D. Manocha and J.F. Canny. Efficient inverse kinematics for general 6r manipulators. Robotics and Automation, IEEE Transactions on, 10(5):648-657, October 1994.
- [22] J.-P. Merlet. Direct kinematics and assembly modes of parallel manipulators. Int. J. Rob. Res., 11:150–162, April 1992.
- [23] J.-P. Merlet. Direct kinematics of planar parallel manipulators. In Robotics and Automation, 1996. Proceedings., 1996 IEEE International Conference on, volume 4, pages 3744 –3749 vol.4, April 1996.
- [24] J-P. Merlet. Kinematics' not dead! Proceedings of the 2000 IEEE, International Conference on Robotics and Automation, 2000.
- [25] J. P. Merlet. Parallel robots. Springer, 2006.
- [26] J-P. Merlet. Interval analysis and reliability in robotics. International Journal of Reliability and Safety, 3(1-3):104–130, 2009.
- [27] Jean-Pierre Merlet. Manipulateurs paralleles, 4eme partie : mode d'assemblage et cinematique directe sous forme polynomiale. Research Report RR-1135, INRIA, 1990.
- [28] P. Nanua and K.J. Waldron. Direct kinematic solution of a stewart platform. In *Robotics and Automation*, 1989. Proceedings., 1989 IEEE International Conference on, pages 431 –437 vol.1, May 1989.
- [29] Denny Oetomo and Marcelo H. Ang Jr. Singularity robust algorithm in serial manipulators. *Robot. Comput.-Integr. Manuf.*, 25:122–134, February 2009.
- [30] Centre of Computer Graphics and UWB Pilsen Data Visualisation. Analytická geometrie pro počítačovou grafiku ii, http://herakles.zcu.cz/education/zpg/cviceni.php?no=5.
- [31] S. Rabinowitz. A useful trigonometric substitution. Digital Equipment Corporation, Nashua, NH, 1986.
- [32] M. Raghavan and B. Roth. Inverse kinematics of the general 6r manipulator and related linkages. Journal of Mechanical Design, 115(3):502–508, 1993.
- [33] Paul R.C.P. Robot manipulators: mathematics, programming and control. MIT Press, Cambridge, USA, 1981.
- [34] Bruno Siciliano. Kinematic control of redundant robot manipulators: A tutorial. Journal of Intelligent and Robotic Systems, 3:201–212, 1990. 10.1007/BF00126069.
- [35] Atega s.r.o. http://www.atega.cz/.
- [36] Eurotec JKR s.r.o. http://www.eurotec-jkr.cz.
- [37] M. Švejda. Overview of parallel architectures for gearing robot. Technical report, katedra kybernetiky, FAV, ZČU Plzeň, 2009.
- [38] Martin Svejda. Kinematická analýza antropomorfního manipulátoru se sférickým zápěstím. Technical report, katedra kybernetiky, FAV, ZČU Plzeň, 2010.
- [39] D. Murareci W. Khalil. On the general solution of the inverse kinematics of six-degreesof-freedom manipulators. Advances in Robot Kinematics and Computational Geometry, 115:309–318, 1994.

Literatura

- [40] E Dombre W. Khalil. *Modeling, Identification and Control of Robots.* Butterworth-Heinemann, 2004.
- [41] J.F. Kleinfinger W. Khalil. A new geometric notation for open and closed-loop robots. Robotics and Automation. Proceedings. IEEE International Conference, 1986.
- [42] Yan Wang, Lu-bin Hang, and Ting-li Yang. Inverse kinematics analysis of general 6r serial robot mechanism based on groebner base. Frontiers of Mechanical Engineering in China, 1:115–124, 2006. 10.1007/s11465-005-0022-7.