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Abstract—The paper deals with kineto-static analysis of the
AGgressive Environment roBOT (AGEBOT). Serio-parallel kine-
matic architecture of AGEBOT plays important role in aggressive
environment applications such as manipulation in industrial
degreasing and paint removing lines in the presence of high
pressure and temperature, acid or lye. Standard 4DoF serial
manipulator with PRRR joints is equipped with special 3DoF
parallel spherical wrist which makes possible to separate vul-
nerable components (motors, sensors) from the rest of the end-
effector by a water-proof barrier. Inverse and direct kinematics
are discussed. The algorithm for velocity, acceleration and static
forces (gravity compensation) is derived. In the case of known
inverse and direct position dependencies proposed algorithm can
be generalized for an arbitrary serial or parallel manipulator.

Keywords—serio-parallel manipulator, kinetostatic analysis,
gravity compensation

I. INTRODUCTION

AGEBOT is designed as a special robot architecture which
consist of two main parts. Serial manipulator (SM) and parallel
manipulator (PM) [1]. SM ensures basic positioning of the
end effector of AGEBOT including the translations in x,
y, z axes and orientation of the longitudinal axis of PM.
This motion is used for handling of parts which are to be
exposed of cleaning process in cleaning chambers. PM plays
an important role in precise positioning of handled parts
inside cleaning chambers because PM allows full orientating
about x, y, z axes. Mechanical design of PM is chosen in
such a way to be possible separate vulnerable components
(motors, sensors, etc.) from an aggressive environment inside
the cleaning chamber. Overall view of the AGEBOT is shown
in Figure 1.

Position, velocity and acceleration of the actuators of
AGEBOT are denoted as joint coordinates Θ (and their
corresponding time derivatives) and position, velocity and
acceleration of the end effector as generalized coordinates
X . The position dependencies between joint and generalized
coordinates are referred as direct geometric model (DGM) and
inverse geometric model (IGM) and velocity and accelerations
dependencies as direct instantaneous geometric model (DIGM)
and inverse instantaneous geometric model (IIGM).

A. Serial part of AGEBOT

SM consists of serial kinematic chain PRRR where all
joints are actuated. The end effector of SM ensures 3 Dof

Parallel manipulator
Serial manipulator

Figure 1. AGEBOT (from 3D CAD vizualization)

(Degrees of Freedom), three translations and one rotation. The
kinematic scheme is shown in Figure 2 and joint ΘS and
generalized XS coordinates are set as:

ΘS =
[
d1 θ1 θ2 θ3

]T
(1)

XS =

[
O0S

4

φ

]
=
[
x y z φ

]T
(2)

where O0S
4 are the end effector coordinates with respect to

coordinate system (CS) F0S . The lengths of individual links
are called the kinematic parameters of SM:

ξS =
[
L1 L2 L3 L4

]T
The dynamic parameters of SM are supposed to be link’s

masses MS , origins CGS (with respect to Link’s CSs) and
inertia matrices IS (with respect to Link’s origins), me is a
payload mass:

MS =
[
m1 m2 m3 m4 me

]T
CGS =

[
cg1 cg2 cg3 cg4

]T
IS =

[
IS1

IS2
IS3

IS4

]
CSs of SM are established according to Denavit-Hartenberg

notaion (D-H) [2]. Therefore, the homogeneous transformation
matrices T i−1

i ∈ <4×4 which describe position and orientation
of CS Fi with respect to CS Fi−1 can be found. Note that CS’s
correspond to the links of the manipulator. Position rji,j (the
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Figure 2. Serial part of AGEBOT

distance between the origins of Fi and Fj) and orientation
Rj
i (rotation matrix) of given CS Fi with respect to CS Fj

can be obtained directly from a sequence of multiplications
of the homogeneous matrices and they are functions of joint
coordinates Θ1:

T ji =

[
Rj
i rii,j

01×3 1

]
=

i−1∏
m=j

Tmm+1(Θ[m+ 1]) (3)

The computation mentioned above results in a closed solu-
tion of DGM and IGM, for more details see [3]2.

DGM:

ΘS =

L4sθ1,2,3 − L3sθ1,2 − L2sθ1
L4cθ1,2,3 + L3cθ1,2 + L2cθ1

d1

 , (4)

IGM:
d1 = z (5)

wx = y − L1 − L4cφ

wy = −x− L4sφ

cos θ2 =
w2
x + w2

y − L2
2 − L2

3

2L2L3

sin θ2 = ±
√
1− cos2 θ2

θ2 = atan2(sin θ2, cos θ2) (6)

sin θ1 =
−L3 sin θ2wx + (L2 + L3 cos θ2)wy

w2
x + w2

y

cos θ1 =
(L2 + L3 cos θ2)wx + L3 sin θ2wy

w2
x + w2

y

θ1 = atan2(sin θ1, cos θ1) (7)

1A[a : b, c : d] is sub-matrix of A which consists of a . . . b rows and
c . . . d columns.

2sθ1,2,3 = sin(θ1 + θ2 + θ3)

θ3 = φ− θ1 − θ2 (8)

B. Parallel part of AGEBOT

PM consists of 3 independent kinematic chains PUS where
only P joints are actuated through joint coordinates ΘP . A
passive kinematic chain S reduces DoF of the end effector
to 3 orientation DoF (XYZ Euler angles corresponding to
generalized coordinates XP ). The kinematic scheme is shown
in Figure 3. The kinematic and dynamic parameters are given
in the same manner as for SM and they are identical for each
kinematic chain.

ΘP =
[
l11 l21 l31

]T
, XP =

[
α β γ

]T
(9)

ξP =
[
a1 a2 l v

]T
(10)

where a1, a2 is a side length of the base and end effector
triangles, l = l12 = l22 = l32 and v is the manipulator height.

MP =
[
m1 m3 me

]T
CGP =

[
cg1 cg3 cge

]T
, IP =

[
IP1

IP3
IPe

]

body i1

body i2 (massless)

body i3
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Figure 3. Parallel part of AGEBOT and PUS kinematic chain

IGM can be solved in closed form as:

li1 =
−−−→
BiDi

i0[3]±
√
l2 −
−−−→
BiDi

i0[1]2 −
−−−→
BiDi

i0[2]2 (11)

where
−−−→
BiDi

i0 = Oi0
e +Ri0

e ·D
e
i , R

i0
e = Rb

e is the rotation
matrix depending onXP andOi0

e andDe
i are constant vectors

given by the kinematic parameters with respect to the base and
end effector CS respectively.

DGM is much more difficult to solve and it can be proven
that there does not exist closed form solution and up to eight
different positions of the end effector can be found for given
joint coordinates. For more details see [3], [4]. On the other
hand there are some efficient numerical methods for dealing
with this problem.



II. KINETOSTATIC ANALYSIS

Kinetostatic analysis is very useful in a process of ma-
nipulators design and it can be decomposed into two parts.
Kinematic analysis which is given by the DIGM and IIGM
and static analysis which makes possible to determine force
dependencies between joint forces/moments and generalized
forces/moments if a manipulator is supposed to be stationary.
These relations have to be taken into account especially
in an early design phase of manipulators when mechanical
components (motor, gearboxes, links, etc.) should be specified.

A. Kinematic analysis for serial chain

Generally, DIGM and IIGM for serial kinematic chain
with n joints (P or R), joint coordinates Θ and generalized
coordinates X can be given directly by a time derivative of
DGM and IGM respectively. But despite of all possibilities of
symbolic computation software like Maple, Mathematica, etc.
the resulting terms are too complicated for implementation
to control systems. Fortunately, we can use a geometrical
methodology which makes possible to establish DIGM/IIGM
with the help of an algebraic computation depending on the
elements of the homogeneous transformation matrices (3).

Let DIGM is formulated as:

Ẋ = J(Θ) · Θ̇ (velocities) (12)

Ẍ = J̇(Θ) · Θ̇ + J(Θ) · Θ̈ (accelerations) (13)

And IIGM is formulated as:

Θ̇ = J−1(Θ) · Ẋ (velocities) (14)

Θ̈ = J−1(Θ·

(
Ẍ − J̇(Θ) · Θ̇

)
accelerations (15)

Where generalized coordinates X =
[
O0
n ω0

n

]T
consists

of the translation and rotation part of the last link’s CS Fn
with respect to the base CS F0 and J is a kinematic jacobian
which is given as follows3:[

Ȯ
0

i

ω0
i

]
︸ ︷︷ ︸
X

=

[
jp1 . . . jpj . . . jpi
jo1 . . . joj . . . joi

]
︸ ︷︷ ︸

J0
i (Θ)

·

θ̇1...
θ̇i


︸ ︷︷ ︸

Θ̇

i = n (16)

Where: [
jpj
joj

]
=

[
z0j−1

0

]
(for P joint)[

jpj
joj

]
=

[
z0j−1 × r0j−1,i

z0j−1

]
(for R joint)

And z0j a r0j,i is given by the sequence of matrices (3) as:

z0j = T
0
j [1 : 3, 3] and r0j,i = T

0
i [1 : 3, 4]− T 0

j [1 : 3, 4]

3Note, that generally the kinematic jacobian J is matrix of type [6 × n]
but it can be reduced appropriately to [n × n] matrix for a non-redundant
manipulator. It means that for SM the kinematic jacobian is [4 × 4] matrix
because only the rotation about z axis is possible. Hence, the inversion J−1

can be performed if the manipulator is supposed to be out of a singularity.

Certainly, it is necessary to determine a time derivative
of the kinematic jacobian J if acceleration dependencies are
taken into account. Similarly it can be done as:

J̇
0

i (Θ, Θ̇) =

[
j̇
p

1 . . . j̇
p

j . . . j̇
p

i

j̇
o

1 . . . j̇
o

j . . . j̇
o

i

]
, i = n (17)

Where:[
j̇
p

j

j̇
o

j

]
=

[
ż0sj−1

0

]
(for P joint)[

j̇
p

j

j̇
o

j

]
=

[
ż0j−1 × r0j−1,i + z

0
j−1 × ṙ

0
j−1,i

ż0j−1

]
(for R joint)

And:
ż0i = ω

0
i × z0i a ṙ0j,i = Ȯ

0

i − Ȯ
0

j

Where ω̇0
i , Ȯ

0

i is computed from (16).
DIKM and IIKM for SM is established according to this

algorithm.

B. Static analysis for serial chain

If the kinematic jacobian is known, a relationship between
joint forces/moments τ and generalized forces and moments
F can be derived by virtue of a virtual work principle for the
manipulator in a static equilibrium [5], [6]:

τ = JTn · F (18)

If we consider that the position of the origin of the ith link
is given with respect to CS Fi−1 as:

T i−1
i cg =

[
Ri−1
i ri−1

i−1,i +R
i−1
i · cgi

01×3 1

]
(19)

Where Ri−1
i = T i−1

i [1 : 3, 1 : 3] and ri−1
i−1,i = T i−1

i [1 : 3, 4]
and cgi is the coordinates of the ith link’s origin with respect
to link’s CS Fi.

Then it is possible to express overall static kinematic forces
(P joint) and/or moments (R joints) as a sum of individual
contributions of the gravity forces acting on the link’s and
end effector’s origins in the sense of equation (18).

Because the SM is considered as a serial kinematic chain
and the first P joint is not influenced by gravity, the static
gravity compensation τS for remaining joints can be expressed
as:M2

M3

M4


︸ ︷︷ ︸
τS

=


(
J1

2 cg

)T (
J1

3 cg

)T
01×3

(
J1

4 cg

)T (
J1

4

)T
01×3 01×3

·

F 1
g2

F 1
g3

F 1
g4

F 1
ge


(20)

Where J1
4 is the kinematic jacobian computed analogously as

in (16) with respect to CS F1, it means from the homogeneous
matrix sequence T 1

2, T 1
3, T 1

4. The kinematic jacobians J1
i cg

are computed in a similar way only with difference as follows:
The homogeneous transformation matrices sequence:

• For J1
2 cg: T 1

2 cg



• For J1
3 cg: T 1

2, T 1
3 cg = T

1
2 · T

2
3 cg

• For J1
4 cg: T 1

2, T 1
3, T 1

4 cg = T
1
2 · T

2
3 · T

3
4 cg

Where T i−1
i cg are given in (19).

The gravity vectors with respect to CS F1 (the vector are
taken negatively because of compensation purposes):

F 1
gi =

[
9.81 ·mi 0 0

]T
(21)

C. Kinematic analysis for parallel manipulator

PM manipulator can be decomposed into three independent
serial kinematic chains BiCiDi (of type PRR) with joint
coordinates Θi =

[
li1 θi1 θi2

]T
and the generalized

coordinates are supposed to be position coordinates of the end
effector connecting points Xi = Di. The transformation of
CSs of the ith kinematic chain is given by the homogeneous
transformation matrices T i(k−1)

ik (Θi[k]). The passive joints
coordinates θi1, θi2 can be computed from known active
joint coordinates li1 in (11) because the vector

−−−→
CiDi

i0 =−−−→
BiDi

i0 −
[
0 0 li1

]T
=

[
cdix cdiy cdiz

]T
is

known:

si2 = cdiz, ci2 = ±
√
cd2ix + cd2iy ⇒ θi2 = atan2(si2, ci2)

si1 =
cdiy
ci2

, ci1 =
cdix
ci2

⇒ θi1 = atan2(si1, ci1) (22)

IIGM is established separately for each serial kinematic
chain because velocities Ẋi and accelerations Ẍi of the
generalized coordinates of each kinematic chain are known
for given generalized coordinates of PM as follows:

Ẋi = Ḋ
i0

i = ωi0e ×
−−−−→
OeD

i0
i = ωi0e ×R

i0
e D

e
i (23)

Ẍi = D̈
i0

i = ω̇i0e ×R
i0
e D

e
i + ω

i0
e × Ṙ

i0

e D
e
i

where
• Euler kinematic equation for XYZ rotations:

ωi0e = ωbe =

1 0 sβ
0 cα −sαcβ
0 sα cαcβ

 · ẊP

• A time derivative of the rotation matrix:

Ṙ
i0
e = Ṙ

b
e = S(ωbe)·Rb

e, S(ωbe) =

 0 −ωbe[3] ωbe[2]
ωbe[3] 0 −ωbe[1]
−ωbe[2] ωbe[1] 0


• A time derivative of ω̇i0e :

ω̇i0e = ω̇be =

 cβ β̇γ̇

−sβα̇β̇ − cαcβα̇γ̇ + sαsβ β̇γ̇

cαα̇β̇ − sαcβα̇γ̇ − cαsβ β̇γ̇

+
1 0 sβ
0 cα −sαcβ
0 sα cαcβ

 ẌP

The kinematic jacobians J i0i3 and their time derivative J̇
i0

i3

for the serial kinematic chains BiCiDi can be determined in
the same way as in the equations (16), (17). Therefore, IIGM
for serial kinematic chains results in:

Θ̇i =

 l̇i1θ̇i1
θ̇i2

 = (J i0i3)
−1 · Ẋi (24)

Θ̈i =

 l̈i1θ̈i1
θ̈i2

 = (J i0i3)
−1
(
Ẍi − J̇

i0

i3 · Θ̇i

)
(25)

It is clear that IIGM for PM is easily given by choosing the
first coordinates from the equations (24), (25)4.

D. Static analysis for parallel manipulator

A relation between the static joint forces τP and moments
M b

e actuating the end effector of the PM is given in the sense
of equation (18) through the kinematic jacobian Jbe of the PM
(the relation between joint velocities Θ̇P and angular velocity
of the end effector ωbe). The inverse of Jbe can be derived from
the equation (24) and the velocities of the connecting points
Ẋi can be expressed from (23) as a function of the angular
velocity ωeb as follows:

Θ̇i =

 l̇i1θ̇i1
θ̇i2

 = (J i0i3)
−1 · Ẋi = −(J i0i3)−1 · S(Ri0

e D
e
i ) · ωi0e

Q̇P =

l̇11l̇21
l̇31

 = −


(
(J10

13)
−1 · S(Rb

eD
e
1)
)
[1, :](

(J20
23)

−1 · S(Rb
eD

e
2)
)
[1, :](

(J30
33)

−1 · S(Rb
eD

e
3)
)
[1, :]


︸ ︷︷ ︸

(Jb
e)

−1

·ωbe (26)

Finding static forces for parallel manipulators in order to
compensate an influence of gravity is more difficult because
of dependencies among kinematic chains through the end
effector. Therefore, it is not possible to compute static force
compensation of the active joints of each kinematic chain
separately (the gravity influence on the links) and add it to
the static force which is given by the gravity actuating the
end effector. Hence, the main idea for computation of static
forces for PM is as follows:

1) Analogously to (20) it is possible to compute static
forces and moments τ i of each kinematic chains. These
forces and moments are caused by the mass of the
chain’s links.

τ i =

Fi1Mi1

Mi2

 =

(J i0i1 cg)T01×3 (J i0i3 cg)
T

01×3

 ·[F i0gi1
F i0gi3

]
(27)

where (J i0i1 cg)
T is the kinematic jacobian of the ith

kinematic chain with respect to CS Fi0 given by the
transformation matrix T i0i1 cg , (J i0i3 cg)

T is the kinematic
jacobian of the ith kinematic chain with respect to CS
Fi0 given by the sequence of the transformation matrices
T i0i1, T i1i2, T i2i3 cg , see (16), the transformation matrices
T
i(k−1)
ik cg are given similarly as in (19):

T
i(k−1)
ik cg =

[
R
i(k−1)
ik r

i(k−1)
i(k−1),ik +R

i(k−1)
ik · cgik

01×3 1

]
(28)

4DIGM can be established by the inversion of IIGM and it can be shown
that it leads to solving linear equations system.



where Ri(k−1)
ik = T

i(k−1)
ik [1 : 3, 1 : 3] and ri(k−1)

i(k−1),ik =

O
i(k−1)
ik = T

i(k−1)
ik [1 : 3, 4] are given by the transforma-

tion matrices of the serial chains T i(k−1)
ik (Θi[k]). cgik

are origins and mik are masses of ith kinematic chain.
The gravity forces are supposed to be:

F ikgik =
[
0 0 9.81 ·mik

]T
(29)

2) The joint forces and moments τ i of each kinematic
chain can be recomputed to forces FDi actuating the
end effector in the connecting points Di:

FDi =
(
(J i0i3)

T
)−1 · τ i (30)

3) The static forces FDi
induce the moment of the end

effector as (the influence of the gravity actuating the
kinematic chains):

M b
e cg chains =

3∑
i=1

Rb
e ·D

e
i × FDi

(31)

4) The moment actuating the end effector because of an
gravity is given as:

M b
e cg = R

b
e · cge × F

b
ge (32)

where cge is the origin with respect to CS Fe and the
gravity force is:

F bge =
[
0 0 9.81 ·me

]T
The resulting static moment of the end effector which
has to be compensated is expressed as:

M b
e =M

b
e cg chains +M

b
e cg (33)

5) The static joint forces τP corresponding to the static
moment M b

e of the end effector can be expressed in the
similar way as in (18) because the inverse jacobian is
known, see (26):

τP =

F1

F2

F3

 = (Jbe)
T ·M b

e (34)

III. SIMULATION RESULTS

The simulation model of AGEBOT was created in the
toolbox SimMechanics in Matlab [7]. Therefore, it makes
possible to start simulation in so-called inverse dynamic mode
which returns required forces/moments of the joints for their
given positions, velocities and accelerations. Required values
of the joint coordinates and their derivatives are computed
from required motion of the manipulator’s end effector (given
in generalized coordinates) through IGM and IIGM. So it is
possible to compare overall required forces/moments of the
actuators with required static forces/moments of these ones.
This analysis plays an important role in the control design
concerning feedforward compensation where the choice of
suitable model of manipulator - complete inverse dynamic
model or inverse static model (only a gravity compensation) -
has to be taken into account in order to reduce a computation
load.

A. Serial manipulator
Parameters:

ξS =
[

0.26 0.67 0.44 0.84
]T

MS =
[

282 106 52 84 15
]T

CGS =

−0.13 −0.19414 −0.13227e −0.51987
0 0.000097 0.000010 0.003837
0 0.092685 0.057912 0.016341



IS2
=


3.80 0.002 −2.67

0.002 11.5 0.004

−2.67 0.004 8.06

 , IS3
=


0.63 0.001 −0.53

0.001 2.11 −0.007

−0.53 −0.007 1.77

 ,

IS4
=


0.99 0.16 0.39

0.16 10.5 0.0

0.39 0.0 10.4


Required trajectory of the end effector XS was chosen as

a line motion among the points A-F with bang-bang profile
of an acceleration with limited values of acceleration (1 [−])
and velocity (1 [−])5.

B. Parallel manipulator
Parameters:

ξP =
[

0.1298 0.10108 0.1465 0.278
]T

MP =
[

1.5 2 5
]T
, CGP =

 0 −0.07325 0
0 0 0

0.08 0 0



IP1
= IP3

= IPe


3.80 0.002 −2.67

0.002 11.5 0.00400

−2.67 0.004 8.06


Required trajectory of the end effector XP was chosen as

the motion with constant γ coordinate and α, β to be changed
in such a way that the z axis of CS Fe is aligned step by step
with three given direction vectors. The angular acceleration is
again considered to be bang bang profile with limited values
of acceleration (1 rad

s2 ) and velocity (1 rad
s ).

IV. CONCLUSION

The paper deals with kineto-static analysis of the spe-
cial serio-parallel manipulator AGEBOT. It was shown that
there are some efficient methods for finding velocity and
acceleration dependencies between the joint and generalized
coordinates (DIGM, IIGM) for serial manipulators as well as
for parallel manipulators where the end effector is connected
to the serial kinematic chains via S joints (R joints in planar
cases). These geometrical methods are based on the known
relations between the position of the joint and generalized
coordinates (DGM, IGM) and there is no necessity of the
symbolic derivation. The relationship between the static joints
and generalized forces/moments can be derived in a similar
way. Therefore, there is no problem to compute gravity com-
pensation forces/moments which are necessary for maintaining
the robot in the given position (without motion).

The simulation of the serial and parallel parts of AGEBOT
was performed in SimMechanics toolbox with inverse dynamic

5Line motion has mixtured units due to the generalized coordinates consist
of [m] and [rad].
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Figure 4. Required force and moments of the joints of SM. Overall (static
and dynamic) force/moments from the SimMechanics model are depicted by
a solid line and static moments from algorithm mentioned above are depicted
by a dash line. Note, that the first P joint is not influenced by a gravity.
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Figure 5. Required forces of the joints of PM. Overall (static and dynamic)
forces from the SimMechanics model are depicted by a solid line and static
forces from algorithm mentioned above are depicted by a dash line.

mode and the results are collected in Figure 4, Figure 5.
It is clear that (for required trajectory of the end effector)
the dynamic effects of joint forces/moments can be neglected
in comparison with the static compensation forces/moments
which are caused by a gravity. Therefore, only static feed-
forward compensation can be aim of the interest during the
control design of AGEBOT.

The main design drawback arises from using standard con-
struction components (gear boxes, links, motors) which are not
a priori determined for manipulator manufacturing. Especially
for serial manipulators small values of the payload-mass ratio
results in large static actuator moments compensating the
impact of the gravity forces. Note that serial part of AGEBOT

has the moving links with the total mass about 240 kg
(including PM) and considered mass of payload is only 5 kg.
The possibility of improving payload-mass ratio is to substitute
joint 2 and joint 3 of SM with a special 2SCARA planar
parallel manipulator, see Figure 6. The simulation model of
this innovative design of AGEBOT was derived (based on
methodology mentioned above) and there are supposed to be
some advantages in comparison with the standard construction:
higher rigidity, lower mass and possibility to use cheaper gears
(two of three gears are mounted on the rigid base).

Joint 4

revolute joint (active)

prismatic joint (P)

revolute joint (passive)

Figure 6. Alternative archtecture of AGEBOT
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[3] M. Švejda, “Inverse kinematics and statics of agebot manipulator,”
Department of Cybernetics, UWB in Pilsen, Tech. Rep., 2011.
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