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Abstract—This paper deals with the problem of interpola-
tion of generated end-effector trajectories for application in
robotics. For complex shaped trajectories there are often many
high resolution coincident points generated from CAD/CAM
systems or trajectory generators. The preprocessing (refining)
is necessary for proceeding these points to the manipulator
control system. Two interpolation methods are discussed: Line
interpolation with polynomial blending and new proposed method
Cubic spline interpolation with recalculated feed rate. Second
introduced method describes how to interpolate the coincident
points and compute the feed rate of the interpolation in order to
reduce undesirable peaks in acceleration and ensure demanded
position, velocity and acceleration profile along the trajectory. The
new interpolation algorithm was implemented to the trajectory
generator for complex pipe weld inspection robot. Experimental
measurements made on control system of real prototype are
finally presented for evaluation of proposed method performance.

I. INTRODUCTION

The main problem in robotics regarding the trajectory
planing of the manipulator end-effector is correct computation
of the demanded setpoints (position and orientation) in task
space and their real-time interpretation in the control system of
the manipulator. There can be found many methods for dealing
with this problem. Note, that many algorithms for trajectory
planning of manipulator are assumed for direct computation
of joint coordinates of manipulator depending on the given
initial and terminal point along the trajectory. This is typical
example for the joint trajectory planning of standard industrial
manipulator (namely for pick and place applications). In this
case, the trajectory planning algorithm computes initial and
terminal position of the joints from initial and terminal position
of the end-effector given in the task space and the interpolation
is performed in the joint space as time synchronous line
interpolation between these joints position with respect to
given constraints (maximal velocity, acceleration, etc. of the
joint actuators). Unfortunately, this approach is much more
suitable for simple pick and place applications because the
shape of the trajectory between initial and terminal points in
the task space is given by nonlinear kinematic transformation
forming hardly predictable behaviour of the end-effector in the
task space.

The presented paper deals with the problem of the end-
effector trajectory planning where the precise following of the
desired trajectory in the task space plays important role con-
cerning robots for arc welding and machining, non-destructive
testing (NDT) and inspecting, etc. The main aim of the
following research is develop the trajectory planning algorithm
for NDT manipulator which is supposed to inspect the welds

of the pipes of complex geometries. New presented algorithm
is convenient for interpolation of the position coincident points
from weld trajectory generators because of the following im-
portant properties: natural interpolation through given position
coincident points with respect to continuity of velocity and
acceleration, possibility to interpolate large amount of the
coincident points with small mutual distance (precise points of
given resolution from trajectory generators), required velocity
and acceleration profile. The paper is divided as follows:
Firstly the standard line interpolation with polynomial blending
algorithm is used for trajectory planning of the end-effector
coordinates in the task space. Secondly considering some
drawbacks of the algorithm the new cubic spline interpolation
algorithm with recalculated feedrate is proposed. Finally new
algorithm is used for trajectory planning of the NDT manipu-
lator for pipe welds.

II. DISCUSSION ON CONVENIENT TRAJECTORY PLANNING
ALGORITHMS

Complex overview of the robot trajectory planning can be
found in [1], [2], [3] but mainly for joint space planning.
In addition, there are only the algorithms where the time for
given position coincident points have to be known in advance.
But this approach is not convenient for our purposes because
the knowledge of the interpolated trajectory properties such
velocity and acceleration profile are much more significant.
The exact time stamps of the coincident points are only the
consequence of required trajectory properties and it is difficult
to determine them directly from generated position data.

A. Line interpolation with polynomial blending

We consider only algorithms for trajectory planning in the
task space because the motion of the end-effector is supposed
to be fully controlled between given task space setpoints. There
is possibility to modify algorithm which is originally used for
joint space trajectory planning and interpolate individual coor-
dinates in the task space with the line segments and suitable
polynomial blending segments in the vicinity of the coincident
points. It is clear that this approach is only approximation
because the coincident points are not intersected exactly. On
the other hand the line segments ensures native shape of the
trajectory (from point to point) and the blending segment
can be parametrized appropriately. Firstly we suppose one 1-
dimensional coordinate p and m desired coincident point pk
and the constraints on maximal velocity ṗkmax and acceleration
p̈kmax in each segment. Line interpolation with polynomial
blending is depicted in Fig. 1. The starting and the terminal
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Fig. 1. Scheme of line interpolation with polynomial blending

point of each polynomial blending segment is given as:

pka = pk − Tkṗkmax, pkb = pk − Tkṗkmax (1)

where t1 = 0, tk = T1−Tk +
∑k−1

i=1 hi, k = 2 . . .m and hi is
time between pk and pk+1 for given constant velocity ṗkmax.

Interpolation of the k-th line segment is obvious and is
given as:

p(t) = (t− tk − Tk)ṗkmax + pk for t ∈ 〈tk + 2Tk, tk+1〉 (2)
ṗ(t) = ṗkmax, p̈(t) = 0

Substituting boundary condition in starting and terminal
points of blending segments on position, pka, pkb , see (1), veloc-
ity ṗk−1

max, ṗkmax and zero acceleration to 5-th order polynomial
function (6 conditions for 6 unknown parameters) we get only
the 4-th order polynomial function for k-th blending segment
as follows:

p(t) = pk − 1

16T 3
k

(t− tk)
3(t− tk − 4Tk)(ṗ

k
max − ṗk−1

max)+ (3)

+ (t− tk − Tk)ṗ
k−1
max

ṗ(t) = ṗk−1
max −

1

4T 3
k

(t− tk)
2(t− tk − 3Tk)(ṗ

k
max − ṗk−1

max)

p̈(t) = − 3

4T 3
k

(t− tk)(t− tk − 2Tk)(ṗ
k
max − ṗk−1

max)

for t ∈ 〈tk, tk + 2Tk〉.

Furthermore, we take into account the constraints on max-
imal acceleration p̈kmax (only in the blending segments, in the
line segments the acceleration is zero). It can be easily shown
from the necessary condition d

dt
p̈(t) = 0 that the extreme of

acceleration occurs for time t = tk + Tk. Substituting the
condition to the acceleration p̈(t) the term for unknown time
difference Tk is expressed as:

Tk =
3

4p̈kmax

|ṗkmax − ṗk−1
max| (4)

In order to use 1-dimensional line interpolation with poly-
nomial blending algorithm for trajectory planning of manipula-
tors the problem have to be extended to multidimensional case.
We suppose that position and orientation of the end-effector are
generally given with six dimensional coordinate P = [pm] for
m = {x, y, z, α, β, γ} where x, y, z are position coordinates
and α, β, γ are orientation coordinates given by the Euler
angles. The constraints are give together for translation move-
ment vmaxpos , amaxpos (norm of velocity and acceleration) and
for each orientation coordinate vmaxα , amaxα , vmaxβ , amaxβ ,
vmaxγ , amaxγ . In order to synchronize the motion of task space

coordinates P i the maximal velocities and accelerations have
to be recomputed. One of the possibilities is depicted in Fig. 2
where we suppose that time for movement through the segment
will be the same for all coordinates.

Fig. 2. Synchronisation of velocity and acceleration constraints in the
segment.

Synchronized constraints for velocity and acceleration
vsyncmax? , asyncmax? , ? = {pos, α, β, γ} in each segments follow
from comparison the final time tf and from the condition on
the same acceleration time τ for coordinates.

vsyncmax? = λ?vmax? , a
sync
max? = ϑ?vmax? (5)

where

λ? = min

[
1,
vmax†

vmax?

?max

†max

]
, ϑ? = min

[
1,
amax†

amax?

?max

†max

]
(6)

for all † = {pos, α, β, γ} and †max, ?max is traveled distance
of given coordinate between segments.

Synchronous velocity vsyncmax? is used for calculating time hi
between coincident points, see (1), (now it is the same for all
coordinates in the segment). Synchronous velocity vsyncmax? and
acceleration asyncmax? is used for calculating time difference Tk
in (4). Note that synchronous acceleration asyncmax? is used only
for the first and the last blending segments due to keeping the
same time for accelerating and decelerating in these segments
for all coordinates. Otherwise the maximal accelerations amax?
is used for remaining internal blending segments. The result
of the trajectory planning algorithm is shown in Fig. 3 for
position and in Fig. 4 for orientation.
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Fig. 3. Position, velocity and acceleration of translation motion (x-red,
y-green, z-blue) and their norm (black). Constraints are vmaxpos = 1,
amaxpos = 4 .
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Fig. 4. Position, velocity and acceleration of rotation motion (α-red, β-
green, γ-blue). Constraints are vmaxα = 1.2, amaxα = 2.5, vmaxβ = 1.5,
amaxβ = 2, vmaxγ = 2, amaxγ = 1.5

B. Cubic spline interpolation with recalculated feed rate

Unfortunately, it can be seen that line interpolation with
polynomial blending is not very suitable for interpolation
coincident point which are too close to each other. There
are two main inconveniences. Firstly, the norm of the trans-
lation velocity (or velocity of Euler angles) is not constant
along the blending segments, see Fig. 3 and there are many
applications where it can be fundamental problem (e.g. arc
welding, precise NDT testing, etc.). Secondly, there are peaks
in the acceleration when motion is passing through blending
segments, see Fig. 3, 4. This fact is getting much more
important mainly when there are many close coincident points
for interpolation because of possibility to excite undesirable
vibrations of the manipulator. Therefore, the line interpolation
with the polynomial blending is much more convenient for pick
and place applications. Therefore the new algorithm based on
the spline interpolation with appropriate feed rate computation
was derived in order to interpolate coincident task space points.

1) Interpolation coincident points by the cubic spline: We
suppose the interpolation of i-th segment of coordinates pmi ,
m = {x, y, z, α, β, γ} by the cubic polynomial with parameter
ϕ, see Fig. 5. Position and directional derivatives are given in
the matrix form as:

pmi (ϕ) =
[
ϕ3 ϕ2 ϕ 1

]
·Am

i (7)
∂pmi (ϕ)

∂ϕ
=
[
3ϕ2 2ϕ 1 0

]
·Am

i

∂2pmi (ϕ)

∂ϕ2
= [6ϕ 2 0 0] ·Am

i

where Am
i = [ami3 ami2 ami1 ami0]

T are polynomial parame-
ters for each coordinate and segment. It is clear that there are
more possibilities for choosing the polynomial parameters. It
was shown experimentally that the best choice with respect to
natural behaviour of interpolation curve is only the continuity
of position, velocity and acceleration in the coincident points
(it generates minimal variance in the acceleration along the
trajectory). Therefore the boundary condition of each segment
is given for N coincident points Pm

i as:

Continuity of position:

[0 0 0 1] ·Am
i = Pm

i , [1 1 1 1] ·Am
i = Pm

i+1 (8)

where i = 1 . . . N − 1 results in 2N − 2 equations.

i-th segment
interp. polynom:

(i+1)-th segment
interp. polynom:

Fig. 5. Cubic spline interpolation

Continuity of velocity (w.r.t. ϕ):

[3 2 1 0] ·Am
i = [0 0 1 0] ·Am

i+1 (9)

where i = N − 2 results in N − 2 equations.

Continuity of acceleration (w.r.t. ϕ):

[6 2 0 0] ·Am
i = [0 2 0 0] ·Am

i+1 (10)

where i = 1 . . . N − 2 results in N − 2 equations.

Zero acceleration (w.r.t. ϕ) in the first and last segments:

[0 2 0 0] ·Am
1 = 0, [6 2 0 0] ·Am

N−1 = 0

results in 2 equation.

In total, we get 4N−4 equations (8, 9, 10, 11) for 4(N−1)
unknown parameters Am

i , i = 1 . . . N − 1 for each coordinate
m = {x, y, z, α, β, γ}. It results in solving linear system of
equation with sparse matrices:

ϕ3
0 0 0

0 ϕ3
0 0

0 0 ϕ3
0

ϕ3
1 0 0

0 ϕ3
1 0

0 0 ϕ3
1

ϕ2
1 −ϕ2

0 0
0 ϕ2

1 −ϕ2
0

ϕ1
1 −ϕ1

0 0
0 ϕ1

1 −ϕ1
0

ϕ1
0 0 0

0 0 ϕ1
1



·

[
Am

1
Am

2
Am

3

]
=



Pm
1
Pm
2
Pm
3

Pm
2
Pm
3
Pm
4

0
0
0
0
0
0


(11)

where

ϕ3
0 = [0 0 0 1] , ϕ3

1 = [1 1 1 1]

ϕ2
0 = [0 0 1 0] , ϕ2

1 = [3 2 1 0]

ϕ1
0 = [0 2 0 0] , ϕ1

1 = [6 2 0 0]

Note that it is necessary to solve the system of equations with
large sparse matrices for the cubic spline interpolation curve of
each coordinate (there exist effective methods for solving, e.g.
sparse in Matlab). Interpolation curves for the coordinates
with the same coincident points as we used above are shown
in Fig. 6.
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Fig. 6. Cubic interpolation curves pm(ϕ) and corresponding directional derivatives as a function of parameter ϕ.

2) Feed rate computation: The well-known problem for
parametrization of the curve is computation of the parameter
ϕ in such a way the arc-length, velocity and acceleration along
the curve comply desired position, velocity and acceleration
profile (typically trapezoidal velocity profile given by the
maximal velocity and acceleration constraints vmax, amax).
The arc-length s(ϕ(t)) of the parametrization Φ(ϕ(t)) (only
the translation) is given as:

s(ϕ(t)) =

∫ ϕ(t)

0

‖∂Φ(ϕ(t))

∂ϕ(t)
‖ dϕ(t), Φ(ϕ(t)) =

[
pxi (ϕ(t))
pyi (ϕ(t))
pzi (ϕ(t))

]
(12)

The transformation between velocity and acceleration of arc-
length s(t) and parameter ϕ(t) is given by the linear rela-
tionship (for the given position). It can be derived by time
derivative of (12) as follows:

ϕ̇(t) =
1

‖∂Φ(t)
∂ϕ(t) ‖

v(t) (13)

ϕ̈(t) =
1

‖∂Φ(t)
∂ϕ(t) ‖

·

a(t)−
(

∂Φ(t)
∂ϕ(t)

)T
· ∂

2Φ(t)
∂ϕ2(t) · (v(t))

2

‖ ∂Φ
∂ϕ(t)‖3


It can be easily shown that the integral (12) is not solvable

in closed form for cubic polynomial parametrization Φ(ϕ(t)).
Therefore the new numerical algorithm was derived:

Using adaptive Simpson’s quadrature, see [4], (e.g. quad
in Matlab) the integral (12) is numerically computed with
given accuracy for each segment. It results in the arc-length
sequence S1 . . . SN−1, where Si represent the arc-length along
the trajectory from the beginning of the trajectory to i+ 1-th
coincident point.

The actual segment (active cubic polynomial) can be deter-
mined from desired position profile s(t) and known sequence
of arc-length S1 . . . SN−1. Suppose that the i-th segment is
actual. The correct value of the parameter ϕ(t) ∈ {0, 1} in
the i-th segment corresponding to desired arc-length s(t) is

calculated using the following iteration:

ϕk+1 = ϕk+‖
∂Φi(ϕ)

∂ϕ
‖−1·

(s− Si−1)−
∫ ϕk

0

‖∂Φi(ϕ)

∂ϕ
‖ dϕ︸ ︷︷ ︸

Adaptive Simpson’s quadrature


(14)

Note that there are only several iterations needed for
sufficient accuracy for the coincident point close to each other.

For known ϕ(t), the equations (13) are used to express the
velocity ϕ̇(t) and the acceleration ϕ̈(t) of the parameter from
desired velocity v(t) and the acceleration a(t) profile.

Finally, the interpolated point pmi (ϕ(t)) in the segment
is computed according to (7) and corresponding velocity
ṗmi (ϕ(t)) and the acceleration p̈mi (ϕ(t)) are given by time
derivative of (7) for known ϕ(t), ϕ̇(t), ϕ̈(t) as follows:

ṗmi (ϕ(t)) =
∂pmi (ϕ)

∂ϕ
ϕ̇(t) =

[
3ϕ(t)2 2ϕ(t) 1 0

]
·Am

i · ϕ̇(t)
(15)

p̈mi (ϕ(t)) =
∂2pmi (ϕ)

∂ϕ2
ϕ̇2(t) +

∂pmi (ϕ)

∂ϕ
ϕ̈(t) =

=
[
6ϕ(t) 2 0 0

]
·Am

i · ϕ̇2(t)+

+
[
3ϕ(t)2 2ϕ(t) 1 0

]
·Am

i · ϕ̈(t)

The interpolated trajectory through given coincident points
in time domain is depicted in Fig. 7. Note that peaks in
acceleration are caused by the requirements of a constant
velocity along the trajectory in spite of the coincident points
significantly change. This effect will be reduced for points to
be generated in finer resolution (e.g. for points derived from
CAD systems or trajectory generators for welds in Section III).
The feed rate function s(t)→ ϕ(t) and its time derivative are
depicted in Fig. 8 for position, velocity and acceleration profile
chosen for the constraints vmax = 1, amax = 4.
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Fig. 7. Cubic interpolation curves pm(ϕ) and its time derivative as a function of time.
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III. APPLICATION IN NON-DESTRUCTIVE TESTING

The above stated interpolation methods were developed and
tested on prototype application in ultrasonic NDT of complex
pipe welds. Robotic manipulator SAVA has 5 DOFs [5] and is
capable of testing branch, circumferential, longitudinal welds
and both types of elbow welds. The prototype is controlled by
real-time Control System REX [6].

Fig. 9. Laboratory set up of robotic manipulator SAVA for NDT of complex
welds

We have developed standalone application for generating
NDT testing trajectories according to a currently inspected
weld. It integrates trajectory generator which produces coin-
cident points along the inspected weld trajectory with given
resolution and the second proposed interpolation method II-B.
Data output of the application is exported to the robot control
system as a sequence of task space coordinates with specific
equal time differences.

Fig. 10. Screen-shot of standalone application for generating inspection
trajectories (interior elbow weld with meandering motion)

In order to process the sequence of task space coordinates
by the manipulator we have implemented a new function block
RM Feed. The period of executing the RM Feed block have
to be the same as the period set in the standalone application.
Simple idea of proposed function block is to process one set
of task space coordinates in every execution. Other benefit
of the stated block is a possibility to test any interpolation
method because it does not add any undesirable blending or
interpolation and blindly feeds task space coordinates directly
to manipulator servo controllers. Results of the trajectory
planning according to the new cubic spline interpolation al-
gorithm for interior elbow weld with meandering motion is
shown in Fig. 10. The motion of translation coordinates x,
y, z and corresponding velocities and accelerations recorded
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Fig. 11. Interpolated curve of translation coordinates (coincident points) by
the new proposed algorithm
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Fig. 12. Interpolated curve of orientation coordinates (coincident points) by
the new proposed algorithm

during measurement on the real manipulator prototype are
depicted in Fig. 11. The velocity and (tangent) acceleration
profile are depicted in black colour and corresponds with
demanded constraints vmax = amax = 0.015. The motion
of rotation coordinates α, β and corresponding velocities and
accelerations are depicted in Fig. 12. It can be seen that
there are no undesirable peaks in accelerations (it is caused
by stopping motion in the sharp corners of the meandering
motion).

IV. CONCLUSION

Two methods were presented for interpolation of the co-
incident points which are typically obtained from the data
generator of complex trajectories in the task space. The first
method, Line interpolation with polynomial blending, was
introduced because the resulting trajectory consist only of
line segments connecting coincident points and polynomial
blending segments which approximate the trajectory in the
vicinity of these points. Therefore, the shape of the trajec-
tory can be fully predictable and the trajectory remains in
convex area bounded by coincident points. The shape of
polynomial blending segments is fully controlled by desired
constraint on maximal acceleration. Unfortunately, there are
some disadvantages which make this method poorly applicable
in real applications of trajectory planning of manipulators
concerning many mutually close coincident points. Firstly,
the method gives only an approximation since it does not
intersect the coincide points exactly. Secondly, it was shown

that despite of acceleration along line segments are zero the
acceleration along blending segments forms many undesired
peaks which can lead to crucial problem considering excitation
of residual vibrations in mechanical structures. In addition, the
constant velocity is guaranteed only along line segments but
not for blending segments (decrease of velocity). Therefore,
the method is much more convenient e.g. for pick and place
applications with only a few coincident points. The second
new presented method was developed especially for purposes
under consideration. The cubic spline polynomial was used
for interpolation of coincide points. The graph of polynomial
function between the coincident points plays important role
considering the acceleration of the final trajectory with respect
to excitation of vibrations. It was shown experimentally that
the choice of minimal condition ensuring maximum smooth
acceleration is formed only by the conditions on position,
velocity and acceleration continuity in the initial and the final
point of each cubic spline segment. In order to ensure the given
position, velocity and acceleration profile (trapezoid velocity
profile) along the interpolated trajectory the algorithm for
feed rate computation was introduced. The numerical adaptive
Simpson’s quadrature is used to determine the arc-length
of the interpolated trajectory. It leads to iterative algorithm
for computation of position, velocity and acceleration of the
cubic spline parameter satisfying demanded profile. Finally
the second method was integrated to the standalone appli-
cation for generating and interpolating task space trajectory
for NDT of complex pipe welds. The resulting interpolated
trajectory (generated in given sample times) was directly
used as setpoints for control system of 5 DoF manipulator
SAVA. Performance of the proposed interpolation method was
demonstrated on the real prototype of the manipulator. It
was verified that the generated trajectory fully complies with
respect to meeting demands such as smooth of motion and the
given position, velocity and acceleration profile. The extension
of the interpolation algorithm by the jerk constraint is idea for
further research.
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