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Abstract
metric optimization of robots. The main idea is to introduce a new
criterion which makes possible to evaluate maximum demanded
2-norm of forces/torques of the robot actuators in the case that
the end-effector of the robot is to move inside given workspace
(specified by the desired positions) with required maximum
acceleration in any direction. Therefore, dynamic behaviour of
the robot can naturally be taken into account without the need
to specify a particular motion trajectory (e.g. moving along
the curve with demanded velocity/acceleration profile). Such
a criterion is particularly useful in the cases where customer
requirements on a new robotic architecture design are too vague
and do not include a specific motion of the end-effector of the
robot. The new proposed criterion is further used in a minimax
discrete optimization problem. Computational effective culling
algorithm is used for finding a global optimum. Finally, an
illustrative example describes the optimization of the kinematic
parameters of the planar parallel robot in order to minimize
actuators torques.
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I. INTRODUCTION

Current development in the field of robotics is often devoted
primarily to new advanced control algorithms of complex
robotic systems. There we can found many algorithms and
procedures for the control of robots which are based on
advanced centralized actuator control, optimization of standard
cascade actuators control, predicitive control, vibration damp-
ing, smooth motion trajectory planning, redundancy control
for robot motion optimization, etc. Such approaches certainly
play a key role in modern robotics and make possible to design
powerful control systems which lead to an optimal behaviour
of the robot mechanical structure according to the desired
motion. On the other hand there still exit elementary open
problems which have a major impact on the functioning of
the entire robotic systems, regardless of the control system
itself. These are the problems of initial mechanical design
and its optimization known as the structural and parametric
design of the robot architectures. In other words, how to
construct robotic systems such a way to meet all requirements
and at the same time to minimize complications in associated
problems (inverse kinematics computation, control algorithm
design, actuator consumption and force/torque and/or velocity
load, etc.). Unfortunately, the field of structural and parametric

optimization is often neglected which results in crucial prob-
lems which can be difficult to solve or may not be solvable
at all. For example, structural optimization or synthesis is
directly related with the primary problem of robot mechanical
construction regarding joints, links and actuators (for parallel
robots) deployment. For common industrial robots and their
prototyping these problems are often solved based on intuition
and experience of the specialists because of high complexity
and limited possibility to cope with them through appro-
priate mathematical formulation and the following solution.
The problem of parametric optimization is reduced ”only”
on design of convenient kinematic parameters, e.g. Denavit-
Hartenberg [1] or Khalil-Kleinfinger [2], in the case where
robot joints and links deployment are given. In general, it can
be easy to shown that improper design kinematic parameters
of the robot can result in poor property of the whole system
despite the fact that its structural design is suitable.

The proposed paper deals with a new approach for global
parametric robot optimization based on a practical optimiza-
tion criterion. The paper is divided into the following parts:
A brief overview of the parametric optimization algorithms
and optimization criteria are summarized in Section II. The
basic idea and a formulation of the parametric optimization
problem, a global discrete optimization algorithm and a new
optimization criterion definition are presented in Section III.
Illustrative example of parametric optimization of the parallel
planar robot is discussed in Section IV.

II. S

Parametric optimization of robot architectures can be di-
vided into two key problems. Firstly, the optimal design
problem based on an appropriate optimization criterion has
to be defined. Secondly, an effective and robust mathematical
apparatus should be used for solving the complex optimization
problem.

A. Optimization problem definition

A general parametric optimization problem based on max-
imization of the objective function is given as follows:

ξ? = argmax
ξ∈Ξ

(J(Xopt, ξ))

w.r.t.: Eq(X, ξ) = 0, Ineq(X, ξ) ≥ 0
(1)

New Kinetostatic Criterion for Robot Parametric Optimization

Department of Cybernetics

Faculty of Applied Sciences, University of West Bohemia

Pilsen, Czech Republic

e-mail: msvejda@kky.zcu.cz

—The paper deals with a practical approach of para-

TATE OF THE ART



where J is an objective function, ξ is the vector of optimized
kinematic parameters from feasible set Ξ, X is the state
of the robot (e.g. position and/or velocity, acceleration of
the end-effector) from a required robot workspace Xopt, Eq
resp. Ineq are functions of given equality resp. inequality
constraints.

The definition of the objective function J is very important
for an efficient optimization process and unreasonable or
unusable results can be easily obtained in the case of its
incorrect choice. Most of objective functions are based on local
properties of the robot [3] given by the kinetostatic duality
(2) which can be parametrized by the minimum σmin and/or
maximum σmax singular values of the kinematic Jacobian
J(Q), σmin ≤ σmax.

Ẋ = J(Q) · Q̇, F =
(
JT (Q)

)−1
· τ (2)

where Ẋ resp. F is the velocity resp. the force/torque of the
end-effector and Q̇ resp. τ are velocities resp. forces/torques
of the actuators.

Standard definitions of the objective function J based on
kinetostatic duality have the following meaning: Minimization
of actuator velocities: J = σmin. Minimization of actuator
forces/torques: J = 1

σmax
. Dexterity index optimization [4],

[5] (compromise between the above criteria): J = σmin

σmax
(the

most isotropic robot). Considering the most popular dexterity
index optimization there are some drawbacks which encourage
to use them with care. Inconsistency of the end-effector and
joints physical units (e.g. mm, m, deg, rad, etc.) can often
lead to irrelevant optimal results. Therefore the normaliza-
tion/homogenization of the kinematic Jacobian is necessary
[6]–[8]. Robustness of the dexterity index is discussed in [9]
where the most isotropic point and its variance is taken into
account. An alternative approach where the objective function
is based on the robot power transmission from the actuators
to the end-effector is presented in [10], [11].The proposed
objective function gives a relevant measurement independent
of the physical units, scale, etc.

Next, the objective function based on kinetostatic perfor-
mance is generally suitable mainly for comparison of the
performance of robots. But it is not always convenient for
robots to be used to perform a given task in real engineering
processes (especially for moving along a given path or for
moving inside a given workspace subject to specific dynamic
properties). It is clear that only static properties (dependent
on the robot position) can be included in the dexterity index
(none requirements on robot dynamic behaviour can be taken
into account).

Although many methods for integration of equality and
inequality constraints to the optimization process can be found
in [12], [13], one of the simply and efficient methods which
transforms optimization with constraints to an unconstrained
optimization problem is the method of penalty functions which
makes possible to add the weighted value of the penalty
directly to the objective function [14].

B. Solving optimization problem

Assume that all constraints are integrated in the objective
function through the penalty method and hence the uncon-
strained optimization problem has to be solved. There are
many methods for unconstrained optimization which are based
on gradient methods where the objective function is usually
approximated by a suitable (quadratic) model: the steepest de-
scent and the Newton method, the conjugate gradient method,
the quasi-Newton method [12]–[14]. The main drawback of
the gradient methods is a need to compute the gradient resp.
the Hessian of non-trivial (and often non-smooth or discontin-
uous) objective functions. Therefore, the non-gradient methods
play an important role in robot optimization. The most well-
known non-gradient methods are the direct search method [15]
(e.g. pattern search algorithm, the controlled random search,
Mote Carlo methods) or heuristic methods [16] (e.g. genetic
algorithms, simulated annealing, particle swarm optimization,
gravitational search).

III. N

The new proposed parametric optimization algorithm is
based on discretization of an admissible set of kinematic
parameters Ξ and a required set of the end-effector positions
Xopt (workspace) which results in a discrete optimization
problem as follows. Note, that possible constraints are directly
integrated into the objective function J through penalization.

J?(X, ξ?) = max
i=1...N

(
min

j=1...M
Jval(j, i)

)
i? = argmax

i=1...N

(
min

j=1...M
Jval(j, i)

)
, ξ? = Ξ{i?} (3)

where

Jval =

J(Xopt{1},Ξ{1}) J(Xopt{1},Ξ{2}) . . .
J(Xopt{2},Ξ{1}) J(Xopt{2},Ξ{2}) . . .

...
...


Xopt = {X1 . . .XM}, Xj ∈ Rm, Ξ = {ξ1 . . . ξN},
ξi ∈ Rp where Xj resp. ξi represents a discrete point of the
workspace (robot positions) resp. one realization (vector) of
the kinematic parameters and J(X, ξ) is the objective function
which minimal value over the workspace is supposed to be
maximized (minimax problem in discrete optimization).

A. Objective function definition

Suppose that a practically reasonable requirement on an
optimization process is to minimize forces/torques in the robot
actuators which can be derived from a dynamic model:

M(Q) · Q̈+C(Q, Q̇) · Q̇+G(Q) = τ − JT (Q) · F (4)

where M , C, G are appropriate dynamic matrices/vectors,
Q are joints positions, τ resp. F are joints resp. end-effector
forces/torques and J is the kinematic Jacobian. It is clear,
see right side of (4) and (2), that only external forces/torques
acting on the end-effector can be taken into account when
using maximal singular values of the Jacobian (or its dexterity
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Fig. 1. Robot workspace with the end-effector acceleration definition

index) as the objective function. Assuming that the objective
function is given as (penalty function Jpen can be selected
arbitrarily)

J(X, ξ) =
1

Jpen + ‖τ‖
(5)

it can be computed according to (4) only if the complete end-
effector trajectory (resp. corresponding joint velocity Q̇ and
acceleration Q̈) is given. In the case that only corresponding
positions Q are known (e.g. only a required workspace is
given without a particular trajectory of motion), τ = G(Q)+
JT (Q) ·F , and the objective function includes only the effect
of the end-effector external forces/torques and gravity acting
on the robot links (only static force/torque optimization is
assumed).

In order to integrate dynamic behaviour of the robot over
the required workspace (without defining a specific trajectory
of motion) a new criterion is proposed. Let’s assume that
the robot is supposed to move from the steady state (Ẋ =
0⇒ Q̇ = 0) in any direction in the required workspace with
maximum required acceleration, see Fig. 1.

max
X∈Xopt

‖Ẍ‖ = amax

It can be shown by time derivative of velocity dependencies
in (2) and assuming Ẋ = 0 that

Q̈ = J−1(Q) · Ẍ (6)

and therefore the dynamic equation (4) results in

M(Q) · J−1(Q) · Ẍ +G(Q) = τ (7)

The restriction on a 2-norm of the joints forces/torques is
derived from (7) as

‖τ‖ ≤ ‖M(Q) · J−1(Q) · Ẍ‖+ ‖G(Q)‖ (8)

and from the linear algebra of induced matrix norms it
can be easily shown that the maximum 2-norm of joints
forces/torques τmax for the end-effector to be at the position
X (corresponding joint position Q) and moving from the
steady state in any direction with maximum acceleration amax

is given as:

‖τ‖ ≤ σmax
(
M(Q) · J−1(Q)

)
· ‖Ẍ‖+ ‖G(Q)‖

‖τ‖max = σmax
(
M(Q) · J−1(Q)

)
· amax + ‖G(Q)‖ (9)

where σmax(?) is the maximal singular value of the matrix.
Note, that the constant amax represents a weighting factor
between static optimization (amax = 0) and dynamic opti-
mization (amax >> 0, the influence of the gravity is almost
neglected, e.g. high speed applications). The new objective
function is derived by substituting ‖τ‖max for ‖τ‖ in (5).

B. Optimization algorithm

It is very important to chose an appropriate global solver
for the discrete optimization problem (3) especially in the case
of early robot design when only a poor idea about optimal
kinematic parameters is known. Despite of the computational
cost of the discrete optimization problem grows rapidly with
an increasing number of discretization points (workspace and
admissible set of kinematic parameters) and therefore often it
is not possible to obtain highly accurate results, globality of
these results (e.g. global optimum of the kinematic parameters
in the sense of their discretization) allows to approach to the
optimal robot design. The (inaccurate) global results can be
further used as initial condition for some local optimization
algorithms.

Therefore the branch and bound algorithms for solving the
minimax optimization problem based on the culling algorithm
[17], [18] was modified and used. It identifies a non-optimal
subspace of the admissible set of kinematic parameters Ξ
and culls them until only the global optimum remains. The
algorithm can be briefly written as follows:

Formulation:

ξ? = argmax
ξ∈Ξ

(
min

X∈Xopt

J(X, ξ)

)
or alternatively:

ξ? = argmax
ξ∈Ξ

Ψ(ξ), Ψ(ξ) = min
X∈Xopt

J(X, ξ)
(10)

Initialization:
• P 0 = Ξ, S0(ξ) = 1, ξ = Ξ{i}, ∀i = 1 . . . N ,
S0 represents the lowest known value of the objective
function J(X, ξ) for all admissible set of ξ.

• Choose ξ0 = ξ̂
0
∈ Ξ, ξ̂

0
is the last, so far the best,

known candidate for an optimal set of parameters.
Iteration (i = i+ 1):
1) Finding Xi ∈ Xopt with the minimum value of the

objective function for a given set of parameters:

Xi = argmin
X∈Xopt

(
J(X, ξi)

)
2) Updating the candidate for an optimal set of parameters:

ξ̂
i+1

=

{
ξi pokud Ψ(ξi) > Ψ(ξ̂

i
)

ξ̂
i

jinak

3) Updating the lowest known value of the objective func-
tion for parameter sets (in the point Xi):

Si+1 =

[
min

ξ∈P i{1}
{Si(ξ), J(Xi, ξ)},

min
ξ∈P i{2}

{Si(ξ), J(Xi, ξ)}, . . .
]
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Fig. 2. Computational cost of the culling algorithm (M = 45)

4) Culling apriori non-optimal sets of parameters:

P i+1 = {ξ ∈ P i, Si+1(ξ) ≥ Ψ(ξ̂
i+1

)}

5) Selecting the potentially most suitable set of parameters:

ξi+1 = argmax
ξ∈P i+1

(Si+1(ξ))

i = i+ 1 and go to 1).
Finally, all non-optimal parameter sets are culled out and only
the global optimal parameter set ξ? remains in P .

Computational cost of the culling algorithm is shown in
Fig. 2 in comparison with a brute force (evaluation of the
objective function for all admissible sets of the parameters for
all discrete points in the workspace). It can be seen that only
about 5 % of evaluations of the objective function is needed
for solving the optimization problem with 45 discrete points of
the workspace and for more than 1000 elements of admissible
kinematic parameter sets.

IV. I

The new practical optimization method is illustrated on
kinematic optimization of a 2 DoF parallel planar robot, see
Fig. 3.

The kinematic parameters to be optimized (link lengths Li
[m] and parallelogram tilt α [rad]) are:

ξi = [L1, L2, L3, α]
T ∈ Ξ = {L1 ×L2 ×L3 ×α} (11)

L1 = [0.5, 0.52, ..., 0.7] , L2 = [0.4, 0.42, ..., 0.6] ,

L3 = [0.1, 0.12, ..., 0.3] , α1 = [−0.1,−0.08, ..., 0.1]

The workspace of the robot in xy plane is:

Xi = [x, y]
T ∈Xopt = {x× y} (12)

x = [−0.12,−0.22625, ...,−0.97] , y = [0.2, 0.325..., 0.7]

workspace

0.12 m

0.
2 

m

0.85 m

0.
5 

m

Fig. 3. Optimized robot and its workspace

The kinematic and dynamic model of the robot and the addi-
tional penalty function definition (limitation of parallelograms
alignment) for the objective function computation (5, 9) can
be found in [19].

The initial kinematic parameters and minimum value of
the objective function (resp. norm of joints torques) over the
workspace are:

ξinit = [0.6, 0.5, 0.2, 0]
T
, Ψ(ξinit) = 1.335 · 10−3

1/Ψ(ξinit) =
√
τ21 + τ22 = 749.1 [Nm] (13)

Note, that the penalty function can only be Jpen = +∞ (for
constraints violation) or Jpen = 0 (otherwise).

Optimization was performed through the presented algo-
rithm with amax = 1 and it results in the following optimal
kinematic robot parameters. The robot workspace and the
objective function is shown in Fig. 4.

ξ? = [0.62, 0.46, 0.28,−0, 1]T , Ψ(ξ?) = 1.478 · 10−3

1/Ψ(ξ?) =
√
τ21 + τ22 = 676.7 [Nm] (14)

It can be seen that the number of the objective function
evaluations for a brute force algorithm is N ·M = 114 · 45 =
658 845 and in the case that the evaluation of the objective
function takes 5ms, the total computational time is 54.9min.
Only 27 754 evaluations (4.2 %) corresponding to 138 s is
needed when the culling algorithm is used.

V. CONCLUSION

The proposed method for robot kinematic parameters opti-
mization was based on a new type of the objective function
(minimizing the norm of the joints forces/torques) which
makes possible to integrate the dynamic behaviour of the robot
in the case that only robot workspace (demanded end-effector
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Fig. 4. The objective function values on the robot workspace for initial (green)
and optimal (blue) robot kinematic parameters

positions) is known. Only one adjustable parameter (max.
acceleration amax of the end-effector in any direction in the
workspace) is used for setting a compromise between static
and dynamic optimization. A high effective culling discrete
optimization algorithm was used for solving the minimax
optimization problem. Further improvement of the algorithm
can be found in [20] including finding a second, third, etc.
global optimum which makes possible to start the following
local optimization algorithm from different initial conditions.
Future work will be devoted to the enhancement of the
new criterion in such a way that the requirements on non-
zero end-effector velocity in any direction inside the robot
workspace can be included. As a result, such a criterion will
be generally applicable for early robot design for industrial
applications where the robot is to work in given workspace
with requirement on maximal velocity and acceleration in any
direction.
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