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Abstract: The paper deals with a novel functional block for general serial robot coordinate
jogging. The functional block is implemented and integrated to the functional block library of
the real-time control system REXYGEN and brings new possibilities of rapid prototyping and
initial testing of advanced robot architectures. The robot kinematics is described by the Denavit-
Hartenberg parameters. The common jogging mode of operation (world, tool) is supported as
well as user-defined coordinate frames definition for specific applications. In the case of kinematic
redundancy, the internal robot motion optimization is available allowing joint position limitation
and/or obstacle avoidance. Maximum allowed joint velocity is taken into account in order to cope
with the kinematic singularities. Illustrative examples of the early-prototype robot for industrial
inspection purposes are introduced and universality of the proposed jogging functional block is
verified.
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1. INTRODUCTION

Industrial robotics employs a large number of kinematic
architectures ranging from simple ones like planar and
SCARA robots or standard industrial arms/manipulators
(serial 6 DoF robot with spherical wrist) to advanced
and complex concepts like parallel or hybrid architectures,
robots for special applications and experimental research
prototypes. The robot controllers are often made to fit
a specific robot type and it is supposed that the robot
structure will not change except for standard setting op-
tions like tool and/or base compensation, etc. Especially
in the case of research activities concerning new robot
architectures development, it is necessary to have a pos-
sibility to test early robot prototypes in the manner of
coordinate jogging in the base, tool or other specified
coordinate systems (CS). In addition, the commercial
controllers are closed systems where advanced and ex-
perimental features including e.g. redundancy resolution
for optimal robot motion, robot kinematic reconfiguration
or joint position/velocity/acceleration constraints can not
been implemented in a simple way. In the current trend
of rapid prototyping the tools for fast and efficient design
of new robot architectures play crucial role in the field of
robotics.

One of the possibilities to deal with the motion con-
trol of multi-axis mechatronic systems of non-standard
user-defined kinematic architectures is well known Pro-
grammable Multi-Axis Controller (PMAC). PMACs are
controls for which the entire hardware and software struc-
ture is organized around managing complex motion. The
example of the PMAC is e.g. OMRON CK3E Series
[12] with up to 32 controlled axes for advanced motion
and CNC machining with G-code capability. The for-

ward/inverse kinematic algorithm can be managed via
matrix handling and the space conversion which makes
possible e.g. complex kinematic control of hexapod tele-
scope mirror.

Many software packages are devoted to multi-axis con-
trol of mechatronic systems including standard indus-
trial robot configurations as well as user-defined general
kinematic architectures. Energid technologies corporation
offers highly sophisticated motion control for industrial,
medical, commercial, collaborative and consumer robotic
systems. Their Actin SDK [18] introduces ”Real-Time
Adaptive Motion Control software for Any Robot”. Actin
SDK offers possibility to define general kinematics and
dynamics model, optimization of the motion (joint limit
and singularity avoidance). Energid Technologies Corpo-
ration has been funded by NASA and Actin 5 SDK is
labeled as software which brings enabling tools and ca-
pability for NASA space applications [3]. MoveIt mo-
tion planning framework [11] enables to incorporate latest
advances in motion planning, manipulation, 3D percep-
tion, kinematics, control and navigation. Over 100 robot
kinematic architectures are included and users are al-
lowed to write their own inverse kinematics algorithms
(open/closed/branch kinematic loops) using KLD (nu-
merical Jacobian-based solver: http://www.orocos.org/
kdl). IKFast Plugin makes possible to implement own
kinematics solvers. Some relevant applications are ad-
dressed to mobile manipulation task simulation [5], pick
and place application with regards to given constraints
(joints limit, obstacles, etc.) [7] and AUV control system
implementation [21]. RoboDK [16] simulation environment
brings offline robot programming features like optimiza-
tion of robot path, avoiding singularities, axis limits and
collisions overcoming. Moreover the trajectory post proces-



sor for a specific robot controller (ABB, FANUC, KUKA,
MOTOMAN, etc.) is available in order to upload the
program to native programming language. RoboAnalyzer
[6; 15] is a 3D model based software that can be used to
teach and learn the robotics concepts. It includes 3D model
generator based on Denavit-Harteneberg parameters for
serial manipulators with revolute and prismatic joints as
well as functions for joint/cartesian level jogging, visualiza-
tion of the robot movement, etc. Virtual Robot Module as
part of the RoboAnalyzer can be integrated with Matlab.

Despite the range of advanced features provided by the
above-mentioned tools, their integration into industrial
grade environment remains difficult. Most of the generic
PLC-based Motion Control (MC) systems rely on the
PLCOpen Motion Control standard defining a functional
block library implementing commonly required func-
tionalities (PLCopen Motion Control, see https://www.
plcopen.org/technical-activities/motion-control).
The Coordinated Motion part of the standard covers both
motion instructions (linear, circular and generic smooth
path interpolation) and kinematic transforms. However,
one of its main drawbacks is a lack of support for rapid
prototyping of new robot architectures without time-
consuming re-implementation of the forward/inverse kine-
matics whenever some change in the robot structure oc-
curs. This includes also the functionality of the generic
jog allowing to move the robot in a coordinated manner
in a defined direction and a chosen coordinate reference
system.

The goal of the paper is to propose an enhancement of
the existing industrial MC blockset which implements
a universal coordinated (Cartesian) robot jogging for a
general serial robot kinematics with revolute joints. The
key functionality requirements are given as follows:

• Arbitrary robot architectures with revolute joints
(e.g. number of joints, rotation axis arrangement,
etc.)
• Base or/and end-effector (tool) compensation
• End-effector (Cartesian) jogging including user-defined

CSs reference (e.g. jog in specific plane only, etc.)
• Joints position limits detection and stopping the end-

effector motion if the limits are reached
• Proximity to singularity detection and stopping the

end-effector motion, further movement is allowed only
in the directions going away from the singularity
• Limitation the maximum joint speed (no robot joints

can rotate faster than given limit at the expense
of slowing down the end-effector coordinated motion
speed)
• Redundancy resolution (more joints than controlled

end-effector DoFs) in the sense of joint position limit
overcoming and/or user-defined objective function
optimization

The proposed algorithm is implemented and experimen-
tally validated by means of REXYGEN [17] real-time
control environment and two examples of unconventional
industrial robot designs.

2. THEORETICAL BACKGROUND

There are many notations for robot kinematic description,
but the well known are probably Denavit-Hartenberg [4]
and Khalil-Kleifinger [10] notations. In order to modelling
only serial kinematic chains the best known Denavit-
Hartenberg (D-H) notation is sufficient. The kinematics
of the robot with n revolute joints is described by 3 · n
kinematic parameters di, ai, αi for i = 1 . . . n and n joint
coordinates θi. The meaning of the kinematic parameters
is depicted in Fig 1. Compensation of the base (? = b) and
end-effector (? = e) position are given by the parameters
x?, y?, z? (translation), γ?, β?, α? (ZYX Euler angles for
orientation).
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Fig. 1. Denavit-Hartenberg notation and its demonstration
on 6 DoF serial industrial robot architecture

Note that the forward kinematics algorithm is given by
successive multiplications of the homogeneous transforma-
tion matrices in the following form:

T b
e = T b

0 ·
n∏

i=1

T i−1
i · T n

e , T i−1
i =

 Ri−1
i ri−1i−1,i

0 0 0 1

 ,
(1)

where Ri−1
i is rotation matrix and ri−1i−1,i is translation vec-

tor between two consecutive CSs, base resp. end-effector
compensation are defined in a similar manner consider-
ing unique transformation from Euler angles to rotation
matrix. A subscript indicates corresponding CS and a
superscript indicates the reference CS. The homogeneous
transformation matrices are defined according to D-H no-
tation and they are depending on kinematic parameters
and joint coordinates as follows:

T i−1
i =

cos(θi) − sin(θi) cos(αi) sin(θi) sin(αi) ai cos(θi)
sin(θi) cos(θi) cos(αi) − cos(θi) sin(αi) ai sin(θi)

0 sin(αi) cos(αi) di
0 0 0 1

 .
(2)



2.1 Robot coordinated jogging problem

Robot coordinated jogging problem is defined as finding
corresponding joint velocity for a given end-effector veloc-
ity with regards to a chosen CS (e.g. world, tool, etc.). The
basic dependencies between joint and end-effector velocity
are:

Ẋ
b

e = Jb
e · Q̇, Ẋ

b

e =

[
Ȯ

b

e

ωb
e

]
, (3)

where Ȯ
b

e resp. ωb
e is translation resp. angular velocity

of the end-effector CS with respect the base CS, Q̇ are
joint velocity and Jb

e is kinematic Jacobian depending on
joint position which can be generally and systematically
computed from D-H kinematic parameters, see [13; 19].
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Fig. 2. Auxiliary end-effector CS definition

In order to reformulate the jogging of the robot end-
effector CS Fe with respect to base CS Fb to general
jogging scheme with respect to user-defined CS we define
the auxiliary CS Ff , see Fig. 2 . The equation (3) results
in:

Ẋ
b

f =

[
TRb

f r2tbf
t2rbf

RRb
f

]
· Ẋf

f , (4)

where

Ẋ
f

f =

[
Ȯ

f

f

ωf
f

]
, Ẋ

b

f =

[
Ȯ

b

f

ωb
f

]
.

Because the new CS Ff is located in the origin of the end-
effector CS Fe (CSs are only oriented to each other), the
corresponding kinematic Jacobians are identical:

Jb
f = Jb

e. (5)

Therefore it holds:

Ẋ
b

f = Jb
f · Q̇,[

TRb
f r2tbf

t2rbf
RRb

f

]
· Ẋf

f = Jb
f · Q̇,

Ẋ
f

f =

P︷ ︸︸ ︷[
TRb

f r2tbf
t2rbf

RRb
f

]−1
·Jb

f︸ ︷︷ ︸
Jf

f

·Q̇, (6)

Q̇ =
(
Jf

f

)−1
· Ẋf

f , (7)

where Ẋ
f

f is expected input of end-effector jogging velocity

(velocity of the CS Ff with respect to the same CS), Jf
f is a

new kinematic Jacobian and Q̇ is generated joint velocity.
The rotation matrix TRb

f resp. RRb
f defines demanded end-

effector jogging direction for translation resp. orientation
and r2tbf resp. t2rbf are cross dependencies between de-
manded end-effector jogging direction for translation resp.
orientation. The examples of common jogging mode can
be summarized as follows:

• Word (base) jogging (jog in base CS)
TRb

f =RRb
f = I3×3, r2tbf = t2rbf = 03×3

• Tool (end-effector) jogging (jog in end-effector CS)
TRb

f =RRb
f = Rb

e, r2tbf = t2rbf = 03×3

where the rotation matrix Rb
e is the actual orientation

of the end-effector CS.
• Word (base) translation jogging and tool (end-

effector) orientation jogging
TRb

f = I3×3,
RRb

f = Rb
e, r2tbf = t2rbf = 03×3

2.2 Redundancy resolution

The unique solution of the equation (6) exists only if the
robot architecture is non-redundant. In the case that robot
has more independent joints than DoFs of the end-effector,
it is called redundant. Although kinematic redundancy is
more often associated with the robots with more than
six joints, the same case occurs for six axis robots if
the motion of the end-effector is not fully controlled
(e.g. only translation control for 6-axis industrial robot).
While the number of controlled robot joints corresponds
to the number of columns of the Jacobian, the number of
controlled end-effector DoFs corresponds to the number
of rows. The redundancy can be used for optimization
of the robot (internal) motion resulting in maximization
of defined joint position dependent objective function.
Therefore, the optimal coordinate jog (6) is reformulated
through additional term (which is projected to the the
Jacobian null space) which generates internal robot joint
velocity without the end-effector motion. For kinematic
redundancy, the joint velocity is computed as follows,
see [9; 13; 14]:

Q̇ =
(
Jf

f

)†
·Xf

f +

(
I −

(
Jf

f

)†
· Jf

f

)
· ∂w
∂Q︸ ︷︷ ︸

Optimization term

, (8)

where ∂w
∂Q represents gradient of the joint dependent objec-

tive function w(Q) to be maximized. The objective func-
tion is defined for the above mentioned key functionality
requirements as follows:

• Minimization of the joint velocity (corresponding
with singularity avoidance)

w(Q) = 0. (9)

• Joint position limit overcoming

w(Q) = − 1

2n

n∑
i=1

(
qi − q̄i

qmax
i − qmin

i

)2

,

q̄i = qmin
i +

qmax
i − qmin

i

2
,

(10)

where Q = [q1, q2, . . . , qn]T and qmin
i , qmax

i define the
joint position range of n robot actuators.

• Obstacles avoidance, see the example bellow.



2.3 Joint velocity limitation

The joint velocity limitation algorithm is based on the lin-
ear dependency (6) between joint and end-effector velocity.
In the case of kinematic redundancy the additional joint
velocity term resulting from optimization (8) belongs to
the Jacobian null space and does not contribute to the
end-effector velocity. Therefore the multiplication of the
equation for the joint velocity (7, 8) by the constant factor

k = max

[
1,

jVmax
maxi=1...n ‖qi‖

]
,

Q̇→ k · Q̇
Ẋ

f

f → k · Ẋf

f

, (11)

results in limitation of the joint velocity to the allowed
maximum value jVmax. For k < 1 the end-effector motion
remains in demanded (jogging) direction but it will be
slowed-down. If the constant factor is less than the allowed
minimum k < kmin, (corresponding to maximum reduction
of the end-effector speed) the robot motion is stopped.

If the demanded jogging velocity Ẋ
f

f is changed, the
prediction to the next computation step (next time sample
of the control executive) is computed and if the predicted
factor k > kmin the robot motion is re-enabled. Therefore,
the proposed algorithm allows the robot to get out of the
singularity in any direction that moves away from it.

2.4 Joint position limitation

A simple algorithm is implemented which stops the robot
motion (k = 0) ones of the joints enter to the position
limit. The motion is re-enabled in the similar manner as
above by comparing the actual and predicted robot joint
position.

3. IMPLEMENTATION OF THE NEW GENERAL
JOGGING BLOCK TO THE REXYGEN LIBRARY

REXYGEN real-time control system, see [17], is based
on the programming without hand coding using the li-
braries of the functional blocks (e.g. similar to Mat-
lab/Simuling programming). The general jogging block
generates the demanded joint velocity depending on the
current robot state (joint position) and demanded end-
effector velocity (jogging). Implementation of the new

Fig. 3. General jogging functional block

functional block JOG, see Fig. 3, is based on the user pro-
grammable block REXLANG (https://www.rexygen.com/
doc/ENGLISH/MANUALS/BRef/REXLANG.html) which im-
plements an user-defined algorithm written in a script-
ing language very similar to the C language (or Java).

All the above mentioned algorithms (Jacobian Jb
e and

user defined-transformation matrix P computation, re-
dundancy resolution and joint velocity and position lim-
itation) are implemented via the REXLANG functional
block. The inputs, outputs and configuration parameters
are summarized as follows:

Inputs: Q init initial position of the joints for inte-
gration; dX end-effector jogging velocity; ENABLE enable
block; RESET reset block internal variables; critFcn W
resp. critFcn dW dQ value of objective function w resp. its
gradient ∂w

∂Q (computed in other task, see bellow); intStop

stop integrating (for testing purposes only);

Outputs: Q resp. dQ demanded robot joint position resp.
velocity; X actual robot end-effector position; singularity
Stop if true robot enters the nearly singularity position;
jointsLimitStop nonzero value indicates corresponding
joint position limitation; factor singularity is factor
k; T eb is matrix T b

e; DHpar D-H parameters table;
baseEndEffComp base and end-effector compensation ta-
ble; jointsLimits joint position limitation table;

Parameters: numOfJoints number of robot joints; DHpar
CSVfile D-H parameters cfg file name; baseEndEffComp
CSVfile base, end-effector compensation cfg file name;
jointsLimit joint position limit cfg file; numOfCtrDoFs
number of controlled end-effector DoFs (number of ac-

cepted rows of jacobian Jf
f ); JOGmode mode of the end-

effector jogging (world, tool or user-specified); dQ max
maximum joint speed; factor min threshold kmin, max.
end-effector speed reduction; checkJointsLimit enable
joint position limit checking; checkSingularity enable
singularity checking; optimize enable optimization ac-
cording to external defined objective function (else w = 0);

For optimize = true the external objective function is
accepted and it is computed in separate task (typically
with slow sample time) via the functional block critFcn,
see Fig. 4. The block is implemented for two types of
motion optimization: 1) Joint position limit overcoming,
2) Obstacle avoidance (obstacles are defined as cylinder
surfaces with given axis, diameter, an infinite heigh and
weight factors of the given obstacle for each robot link to
avoid the obstacle).

Fig. 4. Objective function computation functional block

The inputs, outputs and parameters are as follows (with-
out those mentioned above):



Inputs: limitAvoidance gain resp. ObstacleAvoidance
gain adjust the trade-off between the optimization

modes; jointsLimitWeight defines the weights for joint
position limit overcoming; obstacleDef definition of the
obstacles parameters (see above);

Parameters: fileName user-defined REXLANG source code
for objective function computation; numOfObstacles num-
ber of cylinder obstacles;

4. CONCLUSION AND ILLUSTRATIVE EXAMPLES

Two inspection robot prototypes ROBIN 1 and ROBIN 2
(ROBotic INspection) following the inspection robot re-
search summarized in [8] are considered as illustrative
example of benefits of the new JOG functional block for
rapid prototyping of the non-standard robot architectures.
The prototyping process of the robot includes a number of
modifications in the architecture (number and geometry
of the joints/links, specific jogging mode, etc.) where the
basic robot coordinate motion properties (jogging) has to
be tested every time.

4.1 ROBIN 1

The ROBIN 1 robot is a modular tiny robot for Non De-
structive Testing applications where each module consists
of two mutually perpendicular revolute axes (actuated by
spindle drives or belt driven actuators alternatively [1]),
see Fig. 5. We consider three modules which results in 6-
axis robot. The main aim of the robot is positioning of
the laser pointer spot (LPS) on defined projection plane
given by the point Or, normal vector zr and direction
xr. The position of the LPS on the plane is dependent
on translation and orientation of the robot end-effector.

Regarding dependency (6) we suppose substitution Ẋ
f

f =

Ẋ
r

las (translation velocity in XY plane with respect to
plane CS) and after some computations it can be shown
that the user-defined matrix P for coordinate jogging in
the user defined CS will have the following form:

P =

[
TRb

f r2tbf
t2rbf

RRb
f

]
=

[(
Rb

r

)T
·N

O3

]
,

where Rb
r = [xb

r y
b
r z

b
r] is the known orientation of the

projection plane and

N = zb
e ·M +

[
I3×3| −K · S(zb

e)
]
,

M =
1(

zbT
r zb

e

)2 · [−zbT

r ·
(
zbT

r zb
e

)
| − zbT

r

(
Ob

r −Ob
e

)
zbT

r

]
·

·
[
I3×3 03×3
03×3 −S(zb

e)

]
,

K =
zbT

r ·
(
Ob

r −Ob
e

)
zbT
r zbT

e

,

where S(?) denotes skew-matrix generated by the vector

and Ob
e resp. zb

e are the translation resp. z-axis of orienta-
tion of the end-effector given by homogeneous transforma-
tion matrix T b

e. Only the joint position limit overcoming
was used to resolve the redundancy of the robot (six con-
trolled actuator axes and only two controlled end-effector
DoFs). That makes possible to handle a large workspace
despite the joints position range is strictly limited due to
mechanical construction of the robot actuators.

Laser 
pointer

spot

Fig. 5. ROBIN 1

4.2 ROBIN 2

The ROBIN 2 robot is a prototype of the experimental
robot for inspection of pipeline welds in highly restricted
areas, see Fig. 6. It consists of 1 DoF circumferential travel,
6 DoF serial chain and 1 DoF orientating (heading) of the
test probe. The test probe is mounted via universal joint
and it is supposed to be moved on the pipe surface with
prescribed heading which results in 4 controlled DoFs of
the end-effector (translation along and around the pipe
and away from the pipe surface and rotation of the probe).
The user-defined matrix P for coordinate jogging on the

Inlet pipes 
(obstcales)

Main pipe

Fig. 6. ROBIN 2

pipe is simply defined by the transformation of Cartesian
end-effector coordinates to cylindrical coordinates and its
derivation is not further shown for simplification. The
main challenge is to cope with the obstacle avoidance
where the obstacles are supposed to be so called inlet
pipes which enter the main pipe. Therefore, the obsta-
cles can be described as a cylinder surface of given axis,
center point and diameter. In order to implement the
objective function inside the functional block critFcn,
the obstacles will be projected to a so-called developed
view, see Fig. 7. Mathematical background of the objec-
tive function computation is based on the formulation of
minimum distance of the robot links and their extremal
points (typically joint centers) from the cylinders axes.
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Fig. 7. Obstacles definition in the developed view

More information is given in [20; 2]. Demonstration of
the end-effector jogging with obstacle avoidance is avail-
able at: https://drive.google.com/file/d/1-fn98ad-
nHwpLPRQWruKe9vBh850-H3r/view?usp=sharing
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