If the pilot increases the engine thrust by 20%. Calculate the initial acceleration and the final velocity. The drag coefficient -  $C_D$  is constant.



| Mass (Take-off weight) | 68t                    |
|------------------------|------------------------|
| Wing area              | $122,4 m^2$            |
| Drag coefficient $C_D$ | 0,140                  |
| Speed                  | 210 km/hour            |
| $\rho$ density of air  | $1,225 \text{ kg/}m^3$ |

$$D = \frac{1}{2} \rho v^2 S C_D$$

$$T_2-\ D_1=m\ a$$

If the pilot increases the engine thrust by 20%. Calculate the initial acceleration and the final velocity. The drag coefficient -  $C_D$  is constant.



| Mass (Take-off weight) | 75,5t                  |  |
|------------------------|------------------------|--|
| Wing area              | $122,4 m^2$            |  |
| Drag coefficient $C_D$ | 0,180                  |  |
| Speed                  | 210 km/hour            |  |
| $\rho$ density of air  | $1,225 \text{ kg/}m^3$ |  |

$$D = \frac{1}{2} \rho v^2 S C_D$$

$$T_2 - D_1 = m a$$

If the pilot increases the engine thrust by 20%. Calculate the initial acceleration and the final velocity. The drag coefficient -  $C_D$  is constant.



| Mass (Take-off weight) | 78t                     |   |
|------------------------|-------------------------|---|
| Wing area              | $122,4 m^2$             | ě |
| Drag coefficient $C_D$ | 0,180                   |   |
| Speed                  | 210 km/hour             |   |
| $\rho$ density of air  | 1,225 kg/m <sup>3</sup> | ` |

$$D = \frac{1}{2} \rho v^2 S C_D$$

$$T_2 - D_1 = m a$$

If the pilot increases the engine thrust by 20%. Calculate the initial acceleration and the final velocity. The drag coefficient -  $C_D$  is constant.



| Mass (Take-off weight) | 93,5t                  |  |
|------------------------|------------------------|--|
| Wing area              | $122,4 m^2$            |  |
| Drag coefficient $C_D$ | 0,200                  |  |
| Speed                  | 210 km/hour            |  |
| $\rho$ density of air  | $1,225 \text{ kg/}m^3$ |  |

$$D = \frac{1}{2} \rho v^2 S C_D$$

$$T_2 - D_1 = m a$$

If the pilot increases the engine thrust by 20%. Calculate the initial acceleration and the final velocity. The drag coefficient -  $C_D$  is constant.



| Mass (Take-off weight) | 68t                    |  |
|------------------------|------------------------|--|
| Wing area              | $122,4 m^2$            |  |
| Drag coefficient $C_D$ | 0,140                  |  |
| Speed                  | 210 km/hour            |  |
| $\rho$ density of air  | $1,225 \text{ kg/}m^3$ |  |

$$D = \frac{1}{2} \rho v^2 S C_D$$

$$T_2 - D_1 = m a$$

If the pilot increases the engine thrust by 20%. Calculate the initial acceleration and the final velocity. The drag coefficient -  $C_D$  is constant.



| Mass (Take-off weight) | 75,5t                  |
|------------------------|------------------------|
| Wing area              | $122,4 m^2$            |
| Drag coefficient $C_D$ | 0,180                  |
| Speed                  | 210 km/hour            |
| $\rho$ density of air  | $1,225 \text{ kg/}m^3$ |

$$D = \frac{1}{2} \rho v^2 S C_D$$

$$T_2 - D_1 = m a$$

If the pilot increases the engine thrust by 20%. Calculate the initial acceleration and the final velocity. The drag coefficient -  $C_D$  is constant.



| Mass (Take-off weight) | 78t                    |  |
|------------------------|------------------------|--|
| Wing area              | $122,4 m^2$            |  |
| Drag coefficient $C_D$ | 0,180                  |  |
| Speed                  | 210 km/hour            |  |
| $\rho$ density of air  | $1,225 \text{ kg/}m^3$ |  |

$$D = \frac{1}{2} \rho v^2 S C_D$$

$$T_2 - D_1 = m a$$

If the pilot increases the engine thrust by 20%. Calculate the initial acceleration and the final velocity. The drag coefficient -  $C_D$  is constant.



| Mass (Take-off weight) | 93,5t                  |
|------------------------|------------------------|
| Wing area              | $122,4 m^2$            |
| Drag coefficient $C_D$ | 0,200                  |
| Speed                  | 210 km/hour            |
| $\rho$ density of air  | $1,225 \text{ kg/}m^3$ |

$$D = \frac{1}{2} \rho v^2 S C_D$$

$$T_2 - D_1 = m a$$

# Aircraft Tu-154M

If the pilot increases the engine thrust by 20%. Calculate the initial acceleration and the final velocity. The drag coefficient -  $C_D$  is constant.



| Mass (Take-off weight) | 102 t                   |  |
|------------------------|-------------------------|--|
| Wing area              | $201.5 m^2$             |  |
| Drag coefficient $C_D$ | 0,140                   |  |
| Speed                  | 210 km/hour             |  |
| $\rho$ density of air  | 1,225 kg/m <sup>3</sup> |  |

$$D = \frac{1}{2} \rho v^2 S C_D$$

$$T_2 - D_1 = m a$$

#### **Boeing 737 classic**

If the pilot increases the engine thrust by 20%. Calculate the initial acceleration and the final velocity. The drag coefficient -  $C_D$  is constant.



| Mass (Take-off weight) | 85,1 t                 |
|------------------------|------------------------|
| Wing area              | $124.58 m^2$           |
| Drag coefficient $C_D$ | 0,140                  |
| Speed                  | 210 km/hour            |
| $\rho$ density of air  | $1,225 \text{ kg/}m^3$ |

$$D = \frac{1}{2} \rho v^2 S C_D$$

$$T_2 - D_1 = m a$$

#### AircraftTu-154B-2

If the pilot increases the engine thrust by 20%. Calculate the initial acceleration and the final velocity. The drag coefficient -  $C_D$  is constant.



| Mass (Take-off weight) | 102 t                  |
|------------------------|------------------------|
| Wing area              | $201.5m^2$             |
| Drag coefficient $C_D$ | 0,140                  |
| Speed                  | 210 km/hour            |
| $\rho$ density of air  | $1,225 \text{ kg/}m^3$ |

$$D = \frac{1}{2} \rho v^2 S C_D$$

$$T_2 - D_1 = m a$$

#### Aircraft Tu -154M

If the pilot increases the engine thrust by 20%. Calculate the initial acceleration and the final velocity. The drag coefficient -  $C_D$  is constant.



| Mass (Take-off weight) | 85,1t                  |  |
|------------------------|------------------------|--|
| Wing area              | $124.58m^2$            |  |
| Drag coefficient $C_D$ | 0,140                  |  |
| Speed                  | 210 km/hour            |  |
| $\rho$ density of air  | $1,225 \text{ kg/}m^3$ |  |

$$D = \frac{1}{2} \rho v^2 S C_D$$

$$T_2 - D_1 = m a$$

## Boeing 737 classic

If the pilot increases the engine thrust by 20%. Calculate the initial acceleration and the final velocity. The drag coefficient -  $C_D$  is constant.



| Mass (Take-off weight) | 102 t                  |
|------------------------|------------------------|
| Wing area              | $124.58 m^2$           |
| Drag coefficient $C_D$ | 0,140                  |
| Speed                  | 210 km/hour            |
| $\rho$ density of air  | $1,225 \text{ kg/}m^3$ |

$$D = \frac{1}{2} \rho v^2 S C_D$$

$$T_2 - D_1 = m a$$

## **Boeing 747-300**

If the pilot increases the engine thrust by 20%. Calculate the initial acceleration and the final velocity. The drag coefficient -  $C_D$  is constant.



| Mass (Take-off weight) | 378,000 kg             |  |
|------------------------|------------------------|--|
| Wing area              | 511 m <sup>2</sup>     |  |
| Drag coefficient $C_D$ | 0,110                  |  |
| Speed                  | 210 km/hour            |  |
| $\rho$ density of air  | $1,225 \text{ kg/}m^3$ |  |

$$D = \frac{1}{2} \rho v^2 S C_D$$

$$T_2 - D_1 = m a$$

## Boeing 737 classic

If the pilot increases the engine thrust by 20%. Calculate the initial acceleration and the final velocity. The drag coefficient -  $C_D$  is constant.



| Mass (Take-off weight) | 102t                   |
|------------------------|------------------------|
| Wing area              | $124.58m^2$            |
| Drag coefficient $C_D$ | 0,140                  |
| Speed                  | 210 km/hour            |
| $\rho$ density of air  | $1,225 \text{ kg/}m^3$ |

$$D = \frac{1}{2} \rho v^2 S C_D$$

$$T_2 - D_1 = m a$$

# **Boeing 747-300**

If the pilot increases the engine thrust by 20%. Calculate the initial acceleration and the final velocity. The drag coefficient -  $C_D$  is constant.



| Mass (Take-off weight) | 378,000 kg             |
|------------------------|------------------------|
| Wing area              | $511 m^2$              |
| Drag coefficient $C_D$ | 0,110                  |
| Speed                  | 210 km/hour            |
| $\rho$ density of air  | $1,225 \text{ kg/}m^3$ |

$$D = \frac{1}{2} \rho v^2 S C_D$$

$$T_2 - D_1 = m a$$