Odvození rovnice ohřevu vinutí točivého stroje

Základní rovnice:

$$
R \cdot I^{2} \cdot d t=m \cdot c \cdot d \vartheta+\mu \cdot S \cdot\left(\vartheta-\vartheta_{E}\right) \cdot d t
$$

Přeskupení a vydělení $d t: \quad\left(R \cdot I^{2}-\mu \cdot S \cdot\left(\vartheta-\vartheta_{E}\right)\right) d t-m \cdot c \cdot d \vartheta=0$

$$
\left(R \cdot I^{2}-\mu \cdot S \cdot\left(\vartheta-\vartheta_{E}\right)\right)-m \cdot c \cdot \frac{d \vartheta}{d t}=0
$$

Přeskupení:

$$
\begin{aligned}
& -\mu \cdot S \cdot \vartheta-m \cdot c \cdot \frac{d \vartheta}{d t}=-R \cdot I^{2}-\mu \cdot S \cdot \vartheta_{E} \\
& \mu \cdot S \cdot \vartheta+m \cdot c \cdot \frac{d \vartheta}{d t}=R \cdot I^{2}+\mu \cdot S \cdot \vartheta_{E}
\end{aligned}
$$

Homogenní rovnice:

$$
\begin{array}{ll}
\mu \cdot S \cdot \vartheta_{0}(t)+m \cdot c \cdot \frac{d \vartheta_{0}(t)}{d t}=0 & \vartheta_{0}(t)=C \cdot e^{\lambda \cdot t} \\
\mu \cdot S \cdot C \cdot e^{\lambda \cdot t}+m \cdot c \cdot \lambda \cdot C \cdot e^{\lambda \cdot t}=0 & \\
\mu \cdot S+m \cdot c \cdot \lambda=0 & \lambda=-\frac{\mu \cdot S}{m \cdot c} \\
\tau=-\frac{1}{\lambda}=\frac{m \cdot c}{\mu \cdot S} &
\end{array}
$$

Partikulární řešení pro $t \rightarrow \infty$:

$$
\begin{array}{ll}
\mu \cdot S \cdot \vartheta(\infty)+m \cdot c \cdot \frac{d \vartheta(\infty)}{d t}=R \cdot I^{2}+\mu \cdot S \cdot \vartheta_{E} & \\
\mu \cdot S \cdot \vartheta_{\infty}=R \cdot I^{2}+\mu \cdot S \cdot \vartheta_{E} & \vartheta_{\infty}=\vartheta(\infty) \\
\vartheta_{\infty}=\frac{R \cdot I^{2}}{\mu \cdot S}+\vartheta_{E}=\Delta \vartheta_{\infty}+\vartheta_{E} & \Delta \vartheta_{\infty}=\frac{R \cdot I^{2}}{\mu \cdot S}
\end{array}
$$

Určení integrační konstanty: $\vartheta(t)=\vartheta_{\infty}+\vartheta_{0}(t)=\frac{R \cdot I^{2}}{\mu \cdot S}+\vartheta_{E}+C \cdot e^{\lambda \cdot t}$

$$
\begin{aligned}
& \vartheta(0)=\vartheta_{\infty}+\vartheta_{0}(0)=\frac{R \cdot I^{2}}{\mu \cdot S}+\vartheta_{E}+C \cdot 1=\vartheta_{E} \\
& C=-\frac{R \cdot I^{2}}{\mu \cdot S}=-\Delta \vartheta_{\infty}
\end{aligned}
$$

Konečné řešení po dosazení integrační konstanty:

$$
\begin{aligned}
& \vartheta(t)=\vartheta_{\infty}+\vartheta_{0}(t)=\vartheta_{\infty}-\Delta \vartheta_{\infty} e^{\lambda \cdot t}=\frac{R \cdot I^{2}}{\mu \cdot S}+\vartheta_{E}-\frac{R \cdot I^{2}}{\mu \cdot S} e^{\lambda \cdot t} \\
& \vartheta(t)-\vartheta_{E}=\frac{R \cdot I^{2}}{\mu \cdot S}\left(1-e^{\lambda \cdot t}\right)=\frac{R \cdot I^{2}}{\mu \cdot S}\left(1-e^{-\frac{\mu \cdot s}{m \cdot c} t}\right) \\
& \vartheta(t)-\vartheta_{E}=\Delta \vartheta_{\infty}\left(1-e^{-\frac{t}{\tau}}\right)
\end{aligned}
$$

