Odvození rovnice ohřevu vinutí točivého stroje

Zakladni rovnice:	$R \cdot I^2 \cdot dt = m \cdot c \cdot d\vartheta + \mu \cdot S \cdot (\vartheta - \vartheta_E) \cdot dt$	
Přeskupení a vydělení dt :	$\left(R \cdot I^2 - \mu \cdot S \cdot (\vartheta - \vartheta_E)\right) dt - m \cdot c \cdot d\vartheta = 0$	
	$\left(R\cdot I^2 - \mu\cdot S\cdot (\vartheta - \vartheta_E)\right) - m\cdot c\cdot \frac{d\vartheta}{dt} = 0$	
Přeskupení:	$-\mu \cdot S \cdot \vartheta - m \cdot c \cdot \frac{d\vartheta}{dt} = -R \cdot I^2 - \mu \cdot S \cdot \vartheta_E$	
	$\mu \cdot S \cdot \vartheta + m \cdot c \cdot \frac{d\vartheta}{dt} = R \cdot I^2 + \mu \cdot S \cdot \vartheta_E$	
Homogenní rovnice:	$\mu \cdot S \cdot \vartheta_0(t) + m \cdot c \cdot \frac{d\vartheta_0(t)}{dt} = 0$	$\vartheta_0(t) = C \cdot e^{\lambda \cdot t}$
	$\mu \cdot S \cdot C \cdot e^{\lambda \cdot t} + m \cdot c \cdot \lambda \cdot C \cdot e^{\lambda \cdot t} = 0$	
	$\mu \cdot S + m \cdot c \cdot \lambda = 0$	$\lambda = - \frac{\mu \cdot S}{m \cdot c}$
	$\tau = -\frac{1}{\lambda} = \frac{m \cdot c}{\mu \cdot S}$	

Partikulární řešení pro $t \rightarrow \infty$:

$$\begin{split} \mu \cdot S \cdot \vartheta(\infty) + m \cdot c \cdot \frac{d\vartheta(\infty)}{dt} &= R \cdot I^2 + \mu \cdot S \cdot \vartheta_E \\ \mu \cdot S \cdot \vartheta_\infty &= R \cdot I^2 + \mu \cdot S \cdot \vartheta_E \\ \vartheta_\infty &= \frac{R \cdot I^2}{\mu \cdot S} + \vartheta_E = \Delta \vartheta_\infty + \vartheta_E \end{split} \qquad \qquad \Delta \vartheta_\infty = \frac{R \cdot I^2}{\mu \cdot S} \end{split}$$

Určení integrační konstanty: $\vartheta(t) = \vartheta_{\infty} + \vartheta_0(t) = \frac{R \cdot I^2}{\mu \cdot S} + \vartheta_E + C \cdot e^{\lambda \cdot t}$

$$\vartheta(0) = \vartheta_{\infty} + \vartheta_{0}(0) = \frac{R \cdot I^{2}}{\mu \cdot S} + \vartheta_{E} + C \cdot 1 = \vartheta_{E}$$
$$C = -\frac{R \cdot I^{2}}{\mu \cdot S} = -\Delta \vartheta_{\infty}$$

Konečné řešení po dosazení integrační konstanty:

$$\begin{split} \vartheta(t) &= \vartheta_{\infty} + \vartheta_{0}(t) = \vartheta_{\infty} - \Delta \vartheta_{\infty} e^{\lambda \cdot t} = \frac{R \cdot I^{2}}{\mu \cdot S} + \vartheta_{E} - \frac{R \cdot I^{2}}{\mu \cdot S} e^{\lambda \cdot t} \\ \vartheta(t) - \vartheta_{E} &= \frac{R \cdot I^{2}}{\mu \cdot S} \left(1 - e^{\lambda \cdot t} \right) = \frac{R \cdot I^{2}}{\mu \cdot S} \left(1 - e^{-\frac{\mu \cdot S}{m \cdot c}t} \right) \\ \vartheta(t) - \vartheta_{E} &= \Delta \vartheta_{\infty} \left(1 - e^{-\frac{t}{\tau}} \right) \end{split}$$