
University of West Bohemia

Faculty of Applied Sciences

Tools for Semi-automatic

Preparation of Training Data

for OCR

User Manual

Ladislav Lenc, Jǐŕı Mart́ınek, Pavel

Král

(c) Copyright 2019 Department of Computer Science &
Engineering and New Technologies for the Information
Society of the University of West Bohemia in Pilsen, Czech
Republic.

These tools are licensed under the
Attribution-NonCommercial-ShareAlike 3.0 Unported
License. Commercial use in any form is excluded. for more
information, please see
http://creativecommons.org/licenses/by-nc-sa/3.0/

Pilsen 2019



Chapter 1

Introduction

The presented tools have been developed in order to facilitate preparation
of training data for optical character recognition (OCR) systems. Nowa-
days, most OCR systems utilize neural networks that recognize images of
whole text lines and provide its transcription. Recurrent neural networks
(RNN) are usually utilized for this task [1]. A great benefit of RNN based
approaches is that the segmentation to characters is not necessary. The
segmentation free approaches need a significant amount of annotated line
images to be able to train the models. The images can be synthesized using
available fonts. However, for capturing all aspects of the real data synthetic
data are not sufficient. Therefore, some amount of manually annotated
data is still necessary. Moreover, the real data must be also used for system
evaluation.

The developed tools should serve as simple, one-purpose applications for
training data creation. Their main purpose is to create annotations for line
based OCR systems, however one of the tools allows also creating character
based annotation. It was developed in the context of a project dealing with
historical German data. Therefore, there are some special aspects making
processing of German texts efficient. The tools can be easily extended for
arbitrary languages.

1



Chapter 2

Character Segmenter

The first proposed tool is used for segmenting text lines into individual
characters. It additionally saves the annotated line images as well as the
character separator positions. The input of this tool is a set of extracted
line images. To be able to obtain an initial set of text lines we utilized
Leptonica library [2].

The proposed character segmenter takes a line image and proposes a seg-
mentation to characters. The algorithm is based on projection profiles.

The input image is first inverted and thresholded. Then we calculate the
vertical projection profile of the image. This process is illustrated in Fig-
ure 2.1.

The white peaks indicate presence of characters. The values lower than a
specified threshold are considered to be gaps separating the characters. The
proposed segmentation of the example image above is shown in Figure 2.2.
This figure shows that several ending character borders are similar to the
starting ones, which is depicted with one single separator.

The example shows several segmentation errors that occur typically in letters
m, n or u. Another issue are some pairs of characters that are impossible
to split using projection profile method. Examples are ch, tz and ck. The
user interface allows manual correction of incorrectly segmented characters.

Figure 2.1: Original text line and its vertical projection profile.

2



3

Figure 2.2: Proposed segmentation of an example line image.

Figure 2.3: Line segmenter GUI.

The tool has options for merging or splitting incorrect segmentations. It is
also possible to shift character borders.

Annotation is done by typing the appropriate letter on the keyboard. After
pressing a key a next character candidate is selected and it is thus possible to
write fluently. Some special characters has dedicated buttons that simplify
the typing. There are buttons for the above mentioned hard to segment
pairs such as ch. An extra button is available also for character short s. The
user interface is shown in Figure 2.3

The output of this tool is a set of annotated line images. We also extract
individual character images that are saved to directories. We thus can obtain
several examples of each character by processing a relatively small amount
of data. We also save the positions of character separators that may be
useful for successive tasks.

2.1 Requirements

This program has been developed on a Linux system. However, it is possible
to use it on all platforms where Python is installed. The supported version
is Python 3.5 and higher. The list of required libraries is listed below.

• PIL

• numpy

• Tk - package tkinter



4

• Opencv - version 3.2 or higher

2.2 User’s Guide

The tool is located inside a directory character segmenter within the down-
loaded archive. The main script is segmenter.py. The execution command is:
python3 segmenter.py The program reads a configuration file csg config.txt.
There are three entries.

• initDir - directory where text lines to be processed are located

• outputDir - directory where extracted characters are stored

• transcriptionDir - directory where transcribed lines and delimiters are
saved

Directory btn images contains special characters that are entered using but-
tons in the GUI. It can be customized. The provided buttons are intended
for transcribing German texts.

Line image is loaded by pressing ctrl + o or from menu File - Open. Once
an image is loaded it appears in the GUI. Depending on its size only a part
of it may be displayed. The displayed part is shifted when the visible part is
transcribed. The program starts in Normal mode which allows transcribing
the text simply by typing letters on the keyboard or choosing special char-
acters provided as buttons in the GUI. An extra button is available also for
character short s to be able to differentiate it from long s. It is possible to
customize the special buttons simply by adding a new entry to the direc-
tory btn imgs. By pressing a key / button the next character candidate is
marked by two green vertical lines. Navigation using left and right arrows
or buttons Previous component or Next component is also possible There
are basically three scenarios when the user needs an extra effort.

1. splitted character - one character is marked as two or more separate
characters because of gaps in the character shape. Clicking button
Merge components or pressing ctrl + m the current character is merged
with the following one.

2. merged characters - two or more characters are marked as one because
of ligatures or overlaps. Clicking button Divide component or pressing
ctrl + d the current character is divided to two characters with equal
sizes.

3. missing character - a candidate character is missing because of incor-
rect segmentation or mistakes by character merging. Clicking New



5

component a new component can be added directly after the current
one.

Left and right border modes are utilized for fine-tuning the position of the
character. Switching to one of these modes it is possible to move the left or
right merging pressing arrows. Switching back to normal mode is possible
by pressing Escape or simply typing the annotation of the character.

Saving the prepared annotation is performed by clicking Save components
or pressing ctrl + s.



Chapter 3

Line Annotator

This tool utilizes a trained CRNN model to predict the transcription of a
line image. It is then checked by a human annotator and corrected if needed.
It uses a simple GUI as shown in Figure 3.2.

Figure 3.1: Line annotation tool.

The annotation model used was trained on data prepared from the charac-
ter images extracted by the character segmenter tool. We denote such data
as synthetic. The character images extracted from the initial set of lines
are used for composition of line images. The texts are taken from old Ger-
man archives to ensure that the language corresponds with the processed
documents. Line images are then composed from the images. We use a
simple approach that adds a gap of a fixed size between the characters. A
wider gap is used between words. We used 25,000 line images for the initial
training. The initial set of real line images obtained also from the character
segmenter is used to fine-tune the model. A reasonable accuracy is achieved
using only about one hundred of text lines. It is possible to further improve
the underlying model by training on newly annotated lines.

6



7

3.1 Requirements

This program has been developed on a Linux system. It is possible to use it
on all platforms where Python is installed. The supported version is Python
3.5 and higher. The list of required libraries is listed below.

• PIL

• numpy

• Tk - package tkinter

• Pickle

• Itertools

• Opencv - version 3.2 or higher

• Tensorflow

• Keras

3.2 User’s Guide

The tool is located inside a directory line annotator within the downloaded
archive. The main script is annotator.py. The execution command is:
python3 annotator.py The program reads a configuration file la config.txt.
There are two entries.

• initDir - directory where text lines to be processed are located

• transcriptionDir - directory where transcribed lines are saved

Loading an image is performed by pressing ctrl + o or choosing menu File -
Open. While the image is loading it is also transcribed using stored annota-
tion model. The transcription appears below the line image. It is possible to
shift the displayed part of the line image by ctrl + r and ctrl + l. After the
transcribed text is corrected, it is possible to save the transcription pressing
ctrl + s or using menu File - Save.

There are three forms of letter s in the German texts we mostly work with.
In order to be able to differentiate short s and long s we use underscore
character for the short s.



8

Figure 3.2: Long (left) and short (right) s. Short s is marked as underscore
in the transcriptions.



Bibliography

[1] Thomas M Breuel, Adnan Ul-Hasan, Mayce Ali Al-Azawi, and Faisal
Shafait, “High-performance ocr for printed english and fraktur using
lstm networks,” in Document Analysis and Recognition (ICDAR), 2013
12th International Conference on. IEEE, 2013, pp. 683–687.

[2] Dan Bloomberg, “Leptonica.[online](2010),[cit. 2010-04-25],” 2010.

9


