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ON THE LIMIT POINTS OF THE SEQUENCE {sin n} 

JOHN H. STAIB and MILTIADES S. DEMOS, Drexel Institute of Technology 

Suppose that the points 1, 2, 3, * * * are "projected" onto the y-axis by the 
graph of y=sin x. (See Figure 1.) Then it is intuitively evident that no subin- 
terval of [-1, 1] will elude these particles. Or, more precisely, every point in 
the interval [-1, 1] is a limit point of the sequence { sin n 

y 

x 

FIG. 1. 

This proposition is true. Indeed, it is just one of a family of analogous propo- 
sitions. And, as is frequently the case with such families, one member is easier 
to prove than all the others. Our plan here is to first prove this "easy" case and 
then show how that result can be extended. 

We introduce the following notation: (x)= x - [x], where [x] is the greatest 
integer in x. (Evidently, 0 < (x) < 1.) We shall show that every point in [0, 1] 
is a limit point for the sequence { (na) }, provided that a is irrational. But first, 
we need to know certain properties of the function (x); they arise as corollaries 
to the following theorem. 

THEOREM 1. 

J(x) + (y), if (x) + (y) <1 
(x+ Y) (x) + (y) - 1, if (x) + (y) ?1. 

Proof. It is immediate from the definition of (x) that 0? (x) + (y) <2. We 
suppose first that 

0 < (x) + (y) < 1. 

Equivalently, we have 

-x - y - [x] - [y] < 1 - x -y, 

x + y - 1 < [x] + [y] ? x + y. 

It follows that [x] + [y] = [x+y] . Therefore 

(x + y) = x + y - [x + y] = x - [x] + y - [Ay = (x) + (y). 

The alternate result is derived in identical fashion, starting with 1 < (x) + (y) < 2. 
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PROPERTY 1. For x5#integer, (-x) =1-(x). 

Proof. Writing -x for y, we have 

(0) = (x)+(-x)+ {Oor-1}. 

But (x) and (-x) are both positive. 

PROPERTY 2. If (z) > (x), then (z-x) = (z) - (x). 

Proof. Writing (z-x) for y, we have 

(z) = (x) + (z - x) + {O or -1}. 

But (z) - (x) = (z-x) -1 < 0 denies our hypothesis. 

PROPERTY 3. If n(x) < 1, where it is a natural number, then (nx) = n(x). 

Proof. By induction. 

LEMMA. Given e > 0 and an irrational number a, there exists a natural number n 
such that (na) <e. 

Proof. (We may assume that E < 1.) Choose N such that N> l/e, and con- 
sider the set 

R- {(a), (2a), (3a), . .. , (Na)}. 

Letting b = max R, we see that R partitions [0, b ] into N subintervals. Moreover, 
the smallest such subinterval must be of length not exceeding b/N. In other 
words, there exist distinct nonnegative integers k and j such that 

0 < (ka) - (ja) _ b/N < 1/N < e. 

(If the smallest subinterval is to the far left, we take k = 1 and j = 0.) It follows, 
using Property 2, that 

0 < ({ k -j} a) < E. 

Now it may happen that k -j <0. (Otherwise, we are finished.) In this event we 
let -m=k-j and appeal to the following argument: Since (-mo)<e, we 
may write -m = [-ma] + (ma), thus, 

-ma = negative integer + 6*, 

where 0 <e* <e < 1. Next, multiply both sides by p, where p is the largest natural 
number such that pe* < 1. We obtain 

- pma = negative integer + p6*. 

Thus, (-pma) =pe*. And also, by our choice of p, we are assured that 0<1 
-pe* < e*. Therefore, 

0 < 1 -(-pma) < 6* < 6. 

Finally, applying Property 1, we have 

0 < (pma) <E. 
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Thus, we may take n= pm. 

THEOREM 2. Let a be irrational. If u is in [0, 1], then u is a limit point for the 
sequence { (na) }. 

Proof. We take u in (0, 1] and immediately apply our lemma: Given e >0, 
but less than u, choose a natural number k such that (ka) <e. Then take j as 
the natural number for which 

j(ka) < u < j(ka) + (ka). 

It follows that 

0 _ u - j(ka) < (ka) < 6. 

Since u < 1, these inequalities imply that j(ka) < 1. Thus Property 3 is applicable; 
we may write 

O _ u - (jka) < . 

Finally, take n =jk. 

'Example. Every point in the interval [-1, 1 ] is a limit point for the sequence 
{sin n}. 

Proof. Let b belong to [-1, 1]. Choose c from [0, 2ir] such that sin c=b. 
Then, given e >0, choose 8>0 such that 

Isinx-bI <e for Ix-cI <a. 

We now apply Theorem 2, taking a = 1/2r and u c/27r; there exists a natural 
number n such that 

c ln\ 

Ir~~~~~2z 

Or, 0 <c-27r(n/27r) < S. It follows that 

I sin {27r(n/2r)} -b < 6. 

But 

/n\ n ~n 
2Ir t-)-2er /--_2 . - -=n-2k Ur. 

Thus, we have sin n-bI <I. 
EXERCISE 1. Determine the radius of convergence of Z(sin n)xn. 

EXERCISE 2. Prove: Given any real number u, there exists an increasing 
sequence of natural numbers, say { nk }, such that { tan nk } -*u. 

EXERCISE 3. Prove: If f is a piecewise continuous, periodic function having 
an irrational period, then {f (n) } is dense in the range of f. 

Remark. Theorem 2 states that the sequence { (na) }, a irrational, is dense in 
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[0, 1]. It is of further interest that this sequence is not "more dense" in some 
parts of the interval than in others. That is, the points of { (na) } are distributed 
in [0, I] in such a manner that the following result holds: Let I be any subin- 
terval of [0, 1], In= { (a), (2a), * * *, (na) }, and Nn be the number of elements 
in InCI1. Then { Nn/n } ->length of I. We say that { (ma) } is uniformly distrib- 
uted in [-1, 1]. Two proofs of this deeper result can be found in [II. On the 
other hand, due to the nonlinearity of the sine function, the sequence {sin n} 
is not uniformlv distributed in [-1, 1]. 

Reference 
1. Ivan Niven, Irrational Numbers, Carus Monograph 11, The Mathematical Association of 

America, 1956. 

ON THE AUTOMORPHISMS OF THE COMPLEX NUMBER FIELD 

T. SOUNDARARAJAN, Madurai University, India 

P. B. Yale remarks in [2] that he has not seen a proof of the fact that the 
complex number field has 22N? automorphisms. We give below a proof of the 
same. 

THEOREM. The complex number field C has 22R? automorphisms. 

Proof. It is well known that the complex number field has c( = 2Vo) elements. 
If B is any transcendence base for C over the field Q of rationals, then B must 
also have cardinal c since the cardinal of C is the same as the cardinal of Q(B) 
[1, p. 143]. We first show that the number of automorphisms of C is ?2c by 
associating with each subset of B an automorphism. Let S be any subset of B. 
Consider the field Q(B) over the field Q(S). The set { -x| xCB -S IS} is also a set 
of algebraically independent elements for Q(B) over Q(S) and so the map 
xGB,--S--->-x yields an automorphism of Q(B) leaving S fixed. This automor- 
phism of Q(B) which leaves S and all x2, xeB'--S fixed can be extended to an 
automorphism of the field C. (See Theorem 7 of [2].) Let us denote this auto- 
morphism by S7. Thus for each subset SCB we get an automorphism S". Obvi- 
ously if S% S', S& S,, there are at least as many automorphisms as there are 
subsets of B. Hence the number of automorphisms is ?>2c. To show the other 
inequality we note first that the set of all automorphisms is a subset of the set of 
all mappings of C into C, i.e., cc. But this has cardinality cc which is equal to 2c. 
Thus our result follows. 

Regarding his comment 1, we may note that Jacobson [1, p. 157] remarks 
that if B is any transcendence base of C over Q then any 1-1 surjective mapping 
of B can be extended to an automorphism of C. 

References 
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