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Abstract

Natural language processing has become an essential part of the artificial intelligence field
that is used daily in industry and by millions of people. Sentiment analysis as a fundamental
part of natural language processing is no exception.

This thesis presents a detailed study of cross-lingual sentiment analysis. The main goal is
to explore, evaluate and propose methods to perform sentiment analysis in languages other
than English, with a special focus on Czech. This is achieved by proposing cross-lingual
methods and techniques for knowledge transfer between languages.
The core of the thesis consists of performing the zero-shot polarity detection task in

a cross-lingual setting. Namely, we use modern multilingual Transformer-based models
and linear transformations combined with CNN and LSTM neural networks. We evalu-
ate their performance for Czech, French, and English. We aim to compare and assess the
models’ ability to transfer knowledge across languages and discuss the trade-off between
their performance and training and inference speed. We build strong monolingual baselines
comparable with the current SotA approaches, achieving new state-of-the-art results for
Czech and French. Furthermore, we compare our results with the outputs of the latest large
language models (LLMs), i.e., Llama 2 and ChatGPT.

We show that the large multilingual Transformer-based XLM-R model consistently out-
performs all other cross-lingual approaches in zero-shot cross-lingual sentiment classifica-
tion. We also show that the smaller Transformer-based models are comparable in perfor-
mance to older but much faster methods with linear transformations. Notably, this perfor-
mance is achieved with just approximately 0.01 of the training time required for the XLM-R
model. It underscores the potential of linear transformations as a pragmatic alternative to
resource-intensive and slower Transformer-based models in real-world applications. The
LLMs achieved impressive results that are on par or better, at least by 1% – 3%, but with
additional hardware requirements and limitations. Overall, we contribute to understand-
ing cross-lingual sentiment analysis and provide valuable insights into the strengths and
limitations of cross-lingual approaches for sentiment analysis.
Additionally, a new dataset for Czech subjectivity classification is introduced to partly

fulfil this thesis’s objectives. Next, we present a novel multi-task approach to improve the
results of Czech aspect-based sentiment analysis by leveraging information from the seman-
tic role labeling task. Lastly, we applied prompt-based learning to aspect-based sentiment
analysis and sentiment classification in the context of LLMs and the Czech language.
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Abstrakt
Zpracování přirozeného jazyka se stalo důležitou součástí umělé inteligence, kterou

denně využívají miliony lidí i firmy v průmyslu. Analýza sentimentu jako přirozená součást
zpracování přirozeného jazyka není výjimkou. Tato práce představuje podrobnou studii,
která se věnuje mezijazčné analýze sentimentu. Hlavním cílem je prozkoumat, vyhodnotit
a navrhnout mezijazyčné metody pro analýzu sentimentu, které dovolují řešit tuto úlohu
v jiných jazycích než v angličtině, se zvláštním zaměřením na češtinu.

Jádro práce spočívá v mezijazyčných experimentech s úlohou detekce polarity v tzv. zero-
shot nastavení, ve kterém jsou k dispozici anotovaná data pouze pro jeden jazyk (zdrojový).
Konkrétně v práci využíváme moderní vícejazyčné modely založené na architektuře Trans-
former a dále modely využívající lineární transformace v kombinaci s neuronovými sítěmi
CNN a LSTM. Tyto modely vyhodnocujeme na datových sadách v češtině, francouzštině
a angličtině. Naším cílem je porovnat schopnost modelů přenášet znalosti napříč jazyky a
zhodnotit kompromis mezi jejich úspěšností a rychlostí trénování a predikce. Pro porovnání
jsou vytvořeny základní modely, které dosahují současných state-of-the-art výsledků pro
češtinu a francouzštinu. Dále jsou naše výsledky porovnány s výstupy nejnovějších velkých
jazykových modelů, tj. modely Llama 2 a ChatGPT.

Ukazujeme, že velký vícejazyčný model XLM-R založený na architektuře Transformer
konzistentně překonává všechny ostatní mezijazyčné přístupy při tzv. zero-shot detekci
polarity. Dále je ukázáno, že menší modely založené na architektuře Transformer jsou vý-
konnostně srovnatelné se staršími, ale mnohem rychlejšími metodami používající lineární
transformace. Této úspěšnosti je dosaženo jen s přibližně 0,01 času potřebného pro natré-
nování velkého modelu XLM-R. Tyto výsledky podtrhují potenciál metod založených na
lineárních transformacích jako pragmatické alternativy. A to zejména v reálných aplikacích
používajících modely založených na architektuře Transformer, které jsou pomalejší a ná-
ročné na výpočetní zdroje. Velké jazykové modely (Llama 2 a ChatGPT) dosáhly působivých
výsledků, které jsou srovnatelné nebo lepšíminimálně o 1% – 3%, ale přinášejí další omezení a
požadavky. Celkově přispíváme k pochopenímezijazyčné analýzy sentimentu a poskytujeme
cenné zkušenosti o silných stránkách a omezeních mezijazyčných přístupů.
Dále je představena nová česká datová sada pro detekci subjektivity a navrhnuta nová

metoda pro zlepšení výsledků aspektově orientované analýzy sentimentu s vyžitím informací
z úlohy značkování sémantických rolí. Nakonec jsme použili moderní techniku nazvanou
prompting pro úlohy aspektově orientované analýzy sentimentu a klasifikaci sentimentu.
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Introduction 1
In the very recent past, we have seen exponential growth of interest and usage of natural
language processing (NLP) mainly due to the introduction of large language models (LLMs)
such as ChatGPT (OpenAI, 2022) or Llama (Touvron, Lavril, et al., 2023; Touvron, Martin,
et al., 2023) models. In NLP, sentiment analysis (SA) holds significant prominence.

The goal of SA is to extract opinion, sentiment, attitude and other subjective information
from textual data (B. Liu et al., 2010). It is applied daily in real-world applications, allowing
companies in the industry to perform product and service review evaluation, customer
feedback analysis, analysis of public opinions during elections ormonitoring of a commercial
brand on social media. These applications underscore the importance of SA.
While SA has been extensively studied, the research has been devoted almost exclu-

sively to individual languages in a monolingual setting, with the lion’s share dedicated to
English. However, the advent of the Internet and the enormous volume of user-generated
text across various languages via communication channels, social media, and other medi-
ums have proven the significance of analyzing text in multiple languages. Consequently,
organizations and companies have begun acknowledging the importance of leveraging mul-
tilingual and cross-lingual approaches in their text analysis endeavors. Thus, the research
focus has partly shifted towards exploring the possibilities of multilingual and cross-lingual
approaches.
Cross-lingual sentiment analysis (CLSA) has received considerably less attention than

traditional monolingual SA approaches. Typically, existing SA methodologies rely on the su-
pervised machine learning paradigm, necessitating annotated data to train machine learning
models. The CLSA is a challenging task that aims to enable SA in other languages (target
languages) with limited or no annotated data by transferring knowledge from a language
(called source language), typically English, where the annotated data are available. The ad-
vanced and more difficult version of CLSA is the so-called zero-shot CLSA, in which only
data from the source language (e.g., English) are used to build the system.

The core part of this thesis is devoted to zero-shot cross-lingual sentiment classification.
Sentiment classification, also known as polarity detection, is a classification task where the
goal is to assign a sentiment polarity of a given text, usually with the labels positive, negative
and neutral. To address the challenge of CLSA, we propose several approaches aligned with
the thesis goals. Our proposed approaches encompass a spectrum of techniques, including
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recurrent neural networks, convolutional neural networks, BERT-like models, and the latest
Large Language Models (LLMs). We thoroughly evaluate and compare these approaches
and discuss their strengths and limitations. Through this exploration, we aim to shed light
on the efficacy of each approach and provide insights into their applicability in real-world
scenarios.
Further, we introduce a new Czech dataset for subjectivity classification, designed for

utilization in cross-lingual benchmarks. Next, we focus on monolingual SA in Czech by
achieving new state-of-the-art results.We also propose a novelmulti-taskmethod to improve
the results of Czech aspect-based sentiment analysis (ABSA) by leveraging information from
semantic role labeling. Lastly, we applied prompt-based learning to the ABSA and sentiment
classification tasks in the context of LLMs and the Czech language.

1.1 Motivation
Aswementioned, the CLSA remains a less studied part of SA, although it has a very important
and beneficial possible usage in practice. The real applications for SA are still challenging
because of several aspects, such as multilinguality and domain dependence. Another aspect
that makes SA difficult is that most of the available datasets are annotated for English texts
and low-resourced languages suffer from a lack of annotated datasets on which the available
approaches could be trained.

The newest LLMs in zero-shot setting provide similar performance for the polarity de-
tection task compared to the SotA results obtained by fine-tuned Transformer-based models.
However, these SotA results are redeemed by substantial computational resources. Also, as
shown in W. Zhang et al. (2023), the LLMs are significantly outperformed in more complex
tasks, such as aspect-based sentiment analysis by the fine-tuned models. Another limitation
of the very recent works with LLMs is their exclusive focus on sentiment analysis evaluations
conducted nearly solely in English. We aim to compare the latest approaches with older yet
significantly faster methods based on linear transformations to address these limitations
and provide a comprehensive evaluation. This comparative analysis aims to delineate the
trade-offs between computational efficiency and performance in SA.

The results of existing cross-lingual methods for SA can hardly be compared with each
other because each work usually uses a different dataset or pairs of languages. In contrast,
considering all performance aspects, we aim to compare different cross-lingual methods
regarding accuracy, training and inference speed in three languages. The existing cross-
lingual works are usually restricted only to English, French, Spanish or Chinese and are
merely dedicated to accuracy while completely ignoring other aspects, such as training or
inference speed, which are crucial in real-world deployment.

Our main motivation is to contribute by partly filling the mentioned research gaps. We
propose approaches for CSLA that can be applied in real-world applications. We aim to eval-
uate them in different aspects (e.g., speed and performance) and discuss their advantages and
disadvantages. This comprehensive evaluation will enable a more nuanced understanding
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of the trade-offs between accuracy and efficiency, thereby facilitating informed decision-
making for real-world deployment of cross-lingual SA systems. Additionally, at the time of
specifying the thesis goals, there was little progress for the Czech monolingual SA in the
context of recent Transformer-based models, so another motivation was to apply the most
recent approaches to the task of Czech sentiment analysis.

1.2 Thesis Goals
The objectives of this thesis were specified and set in the author’s Ph.D. thesis exposé (Přibáň,
2020). Themain goal is to explore, evaluate and proposemethods to perform SA in languages
other than English, specifically in the Czech language. This can be achieved by employing
existing approaches or by proposing novel cross-lingual methods and techniques for knowl-
edge transfer between languages. Additionally, new datasets may be introduced to fulfil the
objective of this thesis. Consequently, the thesis aims at the following research tasks:

1. Tackle the problem of lack of annotated data in languages other than English by intro-
ducing new resources.

2. Perform sentiment analysis (and other related) tasks in languages other than English
by applying cross-lingual methods and transforming knowledge between languages.

3. Apply recent state-of-the-art pre-trained models and transfer learning approaches to
sentiment analysis (and other related) tasks to textual data other than English.

1.3 Contributions
Regarding the defined thesis goals, we provide a brief overview of our contributions to each
goal. In Section 9.2, we provide more details on the fulfilment of the defined goals of this
thesis

1. We created the first Czech manually annotated dataset for subjectivity classification
(Přibáň& Steinberger, 2022). Next, in Šmíd and Přibáň (2023) and Šmíd et al. (2024), we
completely reannotated the existing Czech dataset for aspect-based sentiment analysis
to the same format as its counterparts in other languages. Consequently, the dataset
can be used for cross-lingual experiments between Czech and several other languages.
Additionally to this goal, we also built new multilingual resources for named entity
recognition (Piskorski et al., 2019, 2021; Yangarber et al., 2023) and fact-checking
(Přibáň et al., 2019) tasks.

2. We perform zero-shot cross-lingual sentiment analysis between English, Czech and
French by using linear transformations that allow external knowledge transfer be-
tween the languages in Přibáň et al. (2022). In our subsequent investigation, detailed
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in Přibáň et al. (2024), we study the usage of linear transformations more deeply. The
fulfilment of this goal is also partly supported in Přibáň and Balahur (2023), where we
compared multilingual systems for a real-world application.

3. In Přibáň and Steinberger (2021), we delved into the cross-lingual sentiment anal-
ysis by leveraging recent multilingual Transformer-based models in the context of
Czech and English. Building upon this exploration, our subsequent work in Přibáň
et al. (2024) expands the scope to include the French language. We employed the most
recent LLMs, such as Llama 2 and ChatGPT. In the same work, we provide a compre-
hensive overview of current approaches for cross-lingual sentiment analysis, offering
an exhaustive evaluation of selected methods and a discussion of their merits and
drawbacks. Additionally, we performed cross-lingual experiments on the newly built
subjectivity dataset (Přibáň & Steinberger, 2022) with multilingual Transformer-based
models.

1.4 Outline
The thesis is structured into three main parts: (1) Introduction, (2) Theoretical Background
and (3) Thesis Contributions. The theoretical background part is designed to supplement and
provide additional information and context for the main thesis contributions. It is intended
for readers seeking deeper insights into the concepts and background behind CLSA and the
specific approaches adopted in our research.

In the theoretical part in Chapter 2, we introduce the theory related to SA. Chapter 3 is
focused on supervisedmachine learning, usually applied to text classification and SA. Chapter
4 is devoted to the transfer learning techniques, models and approaches. In Chapter 5, we
describe common datasets and techniques employed in SA. Chapter 6 contains a description
of multilingual approaches and the underlying cross-lingual techniques related to SA.

The thesis contributions part provides the core results for CLSA in Chapter 7. Chapter
8 presents additional publications related to SA along with other research contributions.
Finally, in Chapter 9, we summarize our contributions, provide a brief overview of our
publications and provide a conclusion for fulfilling the thesis goals.
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Sentiment Analysis 2
Sentiment analysis plays a crucial role in NLP as it aims to detect, understand and extract
subjective information (e.g., opinions, sentiments and emotions) expressed in text (B. Liu
et al., 2010). At the beginning of the 21st century1, it has become one of the fastest-growing
research areas in NLP (M. V. Mäntylä et al., 2018).

2.1 Tasks Overview

Generally, the field of sentiment analysis, also known as opinion mining, can be seen as a col-
lection of distinct tasks related to subjective information extraction and other sub-tasks that
are relevant and linked to these tasks. In this section, we summarize, describe and define the
most common tasks.
B. Liu et al. (2010) define and describe several tasks within the field of SA, i.e., polarity

detection at document-level, sentence-level, aspect-based-level and comparative SA. From B. Liu
(2012), we can also add subjectivity classification and opinion spam detection. Further, we briefly
describe these tasks and later in this chapter, we define some of them more precisely.

Similar to the terminology used by B. Liu (2012), we use the terms opinion and sentiment
interchangeably to refer to opinion, sentiment, attitude and emotion. However, it is impor-
tant to note that they are not always equivalent and we will distinguish themwhen necessary.
In general, the research of SA has been conducted mainly for polarity detection tasks at
three levels of granularity: document-level, sentence-level and entity/aspect-based level. In this
chapter, we will collectively refer to these three types jointly as sentiment analysis or polarity
detection tasks and again distinguish between them when needed. These tasks can also be
considered as text classification problems, typically solved using conventional supervised
machine learning techniques, see Chapter 3 and 5.2. Based on Feldman (2013), B. Liu et al.
(2010), B. Liu (2012), Medhat et al. (2014), and Pang and Lee (2008), we summarize the tasks
as follows:

1According to M. V. Mäntylä et al. (2018), nearly 7,000 papers related to SA have been published and
indexed in the Scopus database (https://scopus.com) between 2004 and 2016. Google Scholar search engine
(https://scholar.google.com) returns around 348,000 records for the query “sentiment analysis” in February 2024.
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1. Polarity detection: The objective is to identify the sentiment polarity (positive, nega-
tive, neutral) expressed towards a given target. The polarity can also be defined with
a different number of labels, i.e., very positive, positive, neutral, negative, very negative,
which is often referred to as fine-grained sentiment analysis. Alternatively, polarity can
be simplified to a binary text classification problem with only positive and negative
labels. Polarity detection can be further divided into the three levels2:

• Document-level: At this level, the task involves assigning an overall sentiment
polarity to a given document. For example, given a short Twitter text “I love
the new Zombieland movie #cinema” which is a review about a particular movie
written by a user, the task is to decide whether the user has a positive sentiment
(likes the movie) or a negative sentiment (dislikes the movie). In this task, it is
assumed that the document contains only one opinion about a single entity.

• Sentence-level: This task is almost identical to the document-level task but per-
formed on individual sentences instead of entire documents. The goal is to clas-
sify whether a sentence expresses a positive, negative or neutral sentiment. Again,
it is assumed that the sentence contains only a single sentiment or opinion.

• Entity and Aspect-based level: The aspect-based sentiment analysis (ABSA)
task3 evaluates sentiments associated with individual entities and/or their as-
pects. Consider the following review of a hotel: “The room was very comfortable
and the breakfast was great.”. There are two aspects of the hotel – room and break-
fast and both of them are positive. This task allows the evaluation of sentiment
in any text with multiple sentiments and multiple entities and their aspects.

2. Subjectivity Classification: The sentence-level SA is usually performed only on sen-
tences with the sentiment, opinion or subjective views. The goal of the subjectivity
classification task (J. Wiebe & Riloff, 2005; J. Wiebe et al., 1999) is to identify objective
sentences that convey factual information and subjective sentences that express subjec-
tive views and opinions. However, it is important to note that subjective sentences
may not necessarily convey any sentiment, as discussed in Section 2.5.

3. Emotion Detection (Analysis): In the emotion detection task, the system intended
for this task must detect a person’s emotion expressed in a text. Emotions represent
the subjective feelings and thoughts of human beings. Parrott (2001) distinguishes six
primary emotions, i.e., love, joy, surprise, anger, sadness and fear. These emotions can
further be subdivided into additional sub-categories.

2Although the definitions of sentence-level and document-level are almost identical, they are listed separately
based on convention in the literature.

3In this context, the word aspect can be used interchangeably with the word feature; thus the task is also
called feature-based sentiment analysis.
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4. Other: There are several additional tasks related to SA like Comparative Sentiment
Analysis, Sentiment Lexicon Acquisition (Generation), Sarcasm Detection (Analysis), Opin-
ion Summarization, Opinion Spam Detection, and others. We describe some of them in
Section 2.6.

For the next parts of this thesis, it is necessary to establish clear definitions and explana-
tions of opinions and other related terms.

2.2 Opinion Definition
We define opinion for the SA task according to B. Liu (2012) as a quadruple:

(𝑔, 𝑠, ℎ, 𝑡) (2.1)

where g is an opinion target, s is an opinion polarity (sentiment), h is an opinion holder
and t is a time when the opinion was expressed. For the explanation of components of the
opinion, we will use a similar example to the one stated in B. Liu (2012). The example:

Author: Nick Newman, 25/10/2019

“(1) I really like my new Samsung TV. (2) I cannot live without it. (3) The resolution
is unbelievable. (4) But the price is not so good as the resolution. (5)My friends love
it too. (6) This Samsung TV is definitely better than my old Philips TV.”

The opinion target g can be any entity or aspect of the entity about which the opinion
has been expressed. For example, in sentence (1), the target of the opinion is Samsung TV
with positive sentiment. The example of a target, which is an aspect, is in sentence (3), where
the target is resolution.

Secondly, the example contains opinions of two entities. Sentences (1), (2), (3), (4), (6) are
opinions of the author of the review (Nick Newman) and in the sentence (5) expressed an
opinion of the author’s friends. These entities are referred to as opinion sources or opinion
holders (S.-M. Kim & Hovy, 2004; J. Wiebe et al., 2005). Lastly, the date of the example is
25/10/2019 and the reason why the opinion definition contains time t (or date) is that the
sentiment can evolve over time and it is useful to observe these changes.

2.2.1 Entity Definition

Next, we define the term entity as the target object that is being evaluated. An entity e can
be a product, service, topic, issue, person, organization or event. Formally it is defined as a
pair e:(T,W), where T is a hierarchy of parts (or components) and sub-parts of the entity and
W is a set of attributes of e. For example, one part of the Samsung TV is a screen which is
composed of other sub-parts like screen glass, LED display, frame etc. The root node is the
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entity itself (Samsung TV ) and other nodes contain parts and sub-parts. Each part or sub-part
has its own set of attributes. For example, a resolution is an attribute of the LED display.

An opinion can be expressed on any node or on any attribute of the node. In the previous
example, in sentence (1), the author expressed his opinion on the Samsung TV itself (root
node) and in sentence (2), he expressed his opinion on one of its attributes (resolution).

This hierarchical description of an entity with any number of levels and nested relations
is universal but often too complex for some real applications. The difficulty of applying SA
for such a universal hierarchical definition is tough and challenging. Thus, we simplify the
hierarchy according to B. Liu et al. (2010) to two levels and use the term aspects to denote
both parts (sub-parts) and attributes, see Figure 2.1. After the simplification, the root of the
node is still the entity4 itself and the other nodes are aspects of the entity.

Resolution
positive

LED display
positive

Price
negative

Samsung TV
positive

Remote control
neutral

Picture quality
positive

Speakers
neutral

Figure 2.1: Simplified example of hierarchical representation of an entity (Samsung TV en-
tity).

2.2.2 Opinion for Aspect-based Sentiment Analysis

The previous definition of opinion in Section 2.2 was sufficient for a text unit (document,
sentence, paragraph) with one opinion towards a single entity. However, in the context of the
ABSA task, the objective is to discover all or multiple opinions expressed towards individual
entities and/or their aspects within a given opinion document d. Therefore, we expand the
previous opinion definition by incorporating the entity definition from the preceding section,
following B. Liu (2012), resulting in a quintuple:

(𝑒𝑖, 𝑎𝑖 𝑗, 𝑠𝑖 𝑗𝑘𝑙 , ℎ𝑘, 𝑡𝑙) (2.2)

where 𝑒𝑖 is a name of an entity, 𝑎𝑖 𝑗 is a j-th aspect of entity 𝑒𝑖, ℎ𝑘 is an opinion holder, 𝑡𝑙 is
the time when the opinion was expressed and 𝑠𝑖 𝑗𝑘𝑙 is a sentiment on aspect 𝑎𝑖 𝑗 of entity 𝑒𝑖 in
time 𝑡𝑙 expressed by opinion holder ℎ𝑘. In the case where the overall opinion is expressed
towards the entity itself, a special aspect named GENERAL is used to denote it. The 𝑒𝑖 and
𝑎𝑖 𝑗 pair substitute the target g from the definition 2.1.

4Entity is sometimes also called object and aspects can also be called features, facets, attributes or topics.
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The opinion document d (or another unit of text like paragraph, sentence) is then com-
posed of a set of opinion quintuples 𝑂 = {𝑜1, 𝑜2, . . . , 𝑜𝑚} expressed on a set of entities
𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑟} and their aspects with a set of opinion holders 𝐻 =

{
ℎ1, ℎ2, . . . , ℎ𝑝

}
at some certain time point. An entity 𝑒𝑖 is represented by itself and by a set of aspects
𝐴𝑖 = {𝑎𝑖1, 𝑎𝑖2, . . . , 𝑎𝑖𝑛}.
Aspects of a specific entity can be categorized as either implicit or explicit. Explicit aspects

are typically conveyed through nouns or noun phrases. For example, in the sentence “The
resolution of the Samsung TV is impressive.”, the word resolution represents the explicit aspect.
On the other hand, implicit aspects are usually expressed with adverbs, adjectives or even
verbs. For example, the sentence “This Samsung TV is really expensive.” implies that there is
an aspect price with negative sentiment, although the price was not explicitly mentioned in
the sentence.
Both definitions of opinions (2.1 and 2.2) are not able to handle all possible options

and cases in which opinion can be expressed, but they are sufficient for most applications.
Examples in which these definitions fail are shown in B. Liu (2012).

2.2.3 Opinion Types

In the preceding sections, we described only one type of opinion, which is called regular
opinion (definition 2.2), but there are two main types of opinions – regular opinion and
comparative opinion.

• Regular opinion or just opinion can be divided into two categories (B. Liu, 2006):

– Direct opinion is expressed directly towards an entity or its aspect, for example,
“The resolution is unbelievable.”

– Indirect opinion is expressed indirectly on an entity or its aspect on some other
entities. For example, “Once I finished the lunch I had a stomachache and I was
vomiting the whole day.” implies that the food was spoiled and the person (the
other entity) vomited, which implies a negative opinion towards the food.

• Comparative opinion expresses a relation of similarities or differences between two
ormore entities and/or a preference of the opinion holder based on some of the shared
aspects of the entities (Jindal & Liu, 2006a, 2006b; B. Liu, 2006). For example, the sen-
tence (6) from the example at the beginning of this Section 2.2, contains comparative
opinion. Comparisons can be divided into two main groups gradable comparison and
non-gradable comparison which are described in more detail in B. Liu (2006, 2012).

Next, we recognize explicit opinion and implicit opinion which are defined according
to B. Liu (2012) as follows:
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• Explicit opinion is a subjective statement that gives a regular or comparative opinion,
for example, “I really like my new Samsung TV.” or “This Samsung TV is definitely better
than my old Philips TV.”

• Implicit opinion is an objective statement that implies a regular or comparative
opinion. For example, “My new Samsung TV has stopped working after a few days” or
“The resolution of my new Samsung TV is higher thanmy old Philips TV.” Implicit opinions
often express some desirable or undesirable features, defects, properties, attributes or
consequences for target entities or their aspects.

2.2.4 Author and Reader Standing Point

The opinion can be considered from two perspectives, the author of the opinion (opinion
holder) or the reader of the opinion. This duality allows for the possibility that a single
sentence can be interpreted as either negative or positive, depending on the perspective.
For example, in a sentence: “Our national team lost against Germany, which is really bad” the
author expresses a negative opinion about the loss against Germany, but for a reader who is
a fan of Germany, it holds the positive sentiment. Usually, the opinion holders are assumed
to be the consumers unless otherwise specified (B. Liu, 2012).

2.3 Polarity Detection
Here, we summarize the three primary SA tasks (document-level, sentence-level and aspect-
based level) from Section 2.1. These tasks aim to a polarity detection5 in text.

2.3.1 Document-level

The goal of document-level polarity detection is to detect the overall sentiment polarity s
expressed towards a particular entity in a given opinion document d by an opinion holder
at a specific time. According to B. Liu (2012), the task involves extracting an opinion given
by the quintuple defined in 2.2 with aspect GENERAL in the following way:

(_, 𝐺𝐸𝑁𝐸𝑅𝐴𝐿, 𝑠, _, _)

assuming that the entity e, opinion holder h and time of the opinion t are either known or
considered irrelevant. This definition also assumes that the opinion expressed in document
d is aiming only on one entity e (if known) and there is only one opinion holder h.

Because of this assumption and because the aspect is always GENERAL, we can use the
simpler definition of opinion given by the quadruple defined in 2.1 and redefine the task
as obtaining only the overall sentiment s for a given document d, resulting in the following
quadruple:

5The polarity detection task can also be referred to as sentiment analysis or sentiment classification.

20



2.3.2. Sentence-level

(_, 𝑠, _, _)

and once again, this assumes that g, h, and t are known or irrelevant.

2.3.2 Sentence-level

The sentence-level polarity detection aims to detection of sentiment in individual sentences.
In this task, we still assume that the sentence contains only one opinion towards one entity6.
One sentence can be considered as a single document, thus, similar or identical approaches
to document-level task can be applied. The sentence-level polarity detection task can be em-
ployed for longer documents, where each sentence is evaluated independently as a separate
document. This approach results in a set of sentences, each assigned a sentiment label. Alter-
natively, the assigned sentiments can be summarized to represent the overall sentiment of
the entire document.
B. Liu (2012) defines the sentence-level polarity detection as follows: given a sentence x,

determine whether x expresses a positive, negative or neutral opinion. If there is no opinion,
the sentence is considered neutral. It is important to note that the definition of the neutral
class may vary in different datasets. In some cases, neutral sentences may be defined as
sentences with a mild sentiment (e.g., slightly negative or positive) and only sentences with
strongly expressed sentiment are considered to be either positive or negative. This concept
applies to other polarity detection tasks as well.
The sentence-level polarity detection is closely related to a task known as subjectivity

classification. Subjectivity classification aims to differentiate between sentences that provide
factual information (objective sentences) and sentences that convey subjective views and
opinions (subjective sentences). However, we should note that subjectivity is not equivalent
to sentiment as many objective sentences can imply opinions, see Section 2.5.

For most cases in practice, the sentence-level and document-level polarity detection tasks
are suitable for short reviews, socialmedia posts or other short text with one or few sentences
expressing one opinion towards one entity.

2.3.3 Entity and Aspect-based Level

The two previously described tasks were focused on capturing the overall sentiment towards
a single entity in a document or sentence. However, in many cases, documents and sentences
contain multiple opinions or sentiments expressed towards one or multiple entities or their
aspects. This is particularly relevant in the analysis of product reviews, where individuals
often express opinions towards specific aspects or attributes of the product. In such cases,
ABSA becomes crucial, as it allows for the detection and evaluation of individual sentiments
or opinions towards each aspect or attribute of the entity. ABSA provides a more detailed

6Despite the fact that this assumption is incorrect in many examples.
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and comprehensive understanding of the sentiments expressed in the text, enabling a more
fine-grained analysis of opinions.
The complete definition of the task is introduced in Section 2.2.2. To recall, the goal of

this task is to obtain all quintuples (𝑒𝑖, 𝑎𝑖 𝑗, 𝑠𝑖 𝑗𝑘𝑙 , ℎ𝑘, 𝑡𝑙) for document 𝑑, where 𝑒𝑖 is a name
of an entity, 𝑎𝑖 𝑗 is a j-th aspect of entity 𝑒𝑖, ℎ𝑘 is an opinion holder, 𝑡𝑙 is the time when the
opinion was expressed and 𝑠𝑖 𝑗𝑘𝑙 is a sentiment on aspect 𝑎𝑖 𝑗 of entity 𝑒𝑖 in time 𝑡𝑙 expressed
by opinion holder ℎ𝑘. In the case where the overall opinion is expressed towards the entity
itself, a special aspect named GENERAL is used to denote it. In practice, some members of
the quintuple 2.2 can be omitted because they are unimportant, irrelevant or known. ABSA
is a complex task that consists of several sub-tasks (B. Liu, 2006; B. Liu et al., 2010; B. Liu,
2012):

1. Entity extraction and categorization: Find and extract all mentions and synonyms
of entities in a given document 𝑑 and assign them corresponding categories. Each
category then represents one entity 𝑒𝑖 from a set of entities 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑟}.

2. Aspect extraction and categorization: Find and extract all aspect expressions for
all entities obtained in the first task and classify the aspect expressions. Each entity 𝑒𝑖
has its own set of aspects (categories) 𝐴𝑖 = {𝑎𝑖1, 𝑎𝑖2, . . . , 𝑎𝑖𝑛} where 𝑎𝑖 𝑗 represents one
unique aspect of entity 𝑒𝑖.

3. Opinion holder extraction and categorization: Find and extract opinion hold-
ers or their mentions from text or structured data and assign them corresponding
categories. The output of this task is a set of opinion holders 𝐻 =

{
ℎ1, ℎ2, . . . , ℎ𝑝

}
.

4. Time extraction and standardization: Extract the times when opinions were ex-
pressed and standardize different time formats.

5. Aspect sentiment classification: Classify an opinion on aspect 𝑎𝑖 𝑗 as positive, nega-
tive or neutral or assign another predefined sentiment classes.

6. Opinion quintuple generation: For document 𝑑, generate all opinion quintuples
(𝑒𝑖, 𝑎𝑖 𝑗, 𝑠𝑖 𝑗𝑘𝑙 , ℎ𝑘, 𝑡𝑙), with results from previous tasks.

In reality, the sub-tasks are often redefined with slight modifications. Thus, new defini-
tions and combinations of ABSA sub-tasks (Barnes et al., 2022; L. Dong et al., 2014; Pontiki
et al., 2014, 2015, 2016; Saeidi et al., 2016; H. Wan et al., 2020) emerge over time.

2.4 Emotion Analysis
Emotions are our subjective feelings and thoughts that can be experienced or expressed with
varying levels of intensity7. The intensity denotes the degree or quantity of the emotion, for

7Intensity differs from arousal dimension from the valence-arousal-dominance model. Arousal represents
whether an emotion is calming or exciting.
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2.4.1. Categorical Model

example, really excited, very happy or little bit angry etc. (Bostan & Klinger, 2018; Canales &
Martínez-Barco, 2014; B. Liu et al., 2010; B. Liu, 2012; Mohammad et al., 2018; Shrivastava
et al., 2019).

2.4.1 Categorical Model

Emotions have been studied in different research areas, e.g., psychology, philosophy, sociol-
ogy and more recently in NLP. Humans can perceive many different emotions. According
to the basic emotion model (also called categorical model) (Ekman, 1992; Frijda, 1988; Parrott,
2001; Plutchik, 1980) emotions can be categorized into distinct emotion classes. For example,
emotions like joy, sadness, anger, fear are considered to be more basic than others, i.e., physio-
logically, cognitively and in terms of the mechanisms to express these emotions (Mohammad
et al., 2018).
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Figure 2.2: Plutchik’s wheel of emotions. Picture taken from Commons (2020).

The definitions in different publications can vary slightly, but the basic idea remains the
same. For example, Parrott (2001) distinguishes six primary emotions, i.e., love, joy, surprise,
anger, sadness and fear, which can be further divided into other sub-categories. Ekman (1992)
also recognizes six (but slightly different) basic emotions, i.e., anger, disgust, fear, joy, surprise
and sadness. Plutchik (1980) claims that there are eight basic emotions (in the Plutchik’s wheel
of emotions, see Figure 2.2), i.e., joy, sadness, anger, fear, trust, disgust, surprise and anticipation
(the inner circle), and other more complex emotions are in the outer circles, outer circles are
also composed of emotions with a smaller degree of intensity. Each primary emotion has
a polar opposite, e.g., anticipation is the opposite of surprise. The Plutchik’s wheel of emotions
can be seen as a hybrid model between the categorical and dimensional models. However,
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2. Sentiment Analysis

here we treat it as a categorical model because the emotions are expressed discretely and not
as a continuous number in the n-dimensional space as it is in the Valence-Arousal-Dominance
model. Emotions and opinions are not equivalent but are closely related and have a significant
intersection.

2.4.2 Dimensional Model

Dimensional emotion model represents emotions in n-dimensional space. In Valence-Arousal-
Dominance (VAD) dimensional model, the emotions are points in a three-dimensional space.
The model states that there are three largely independent emotional dimensions of word
meaning, see Figure 2.3.

The valence dimension (positiveness-negativeness / pleasure-displeasure) reflects the at-
tractiveness or sentiment of an emotion. The arousal dimension (active-passive) represents
an activation level of the emotion. The dominance dimension (dominant-submissive) repre-
sents a level of control over the emotion (M.Mäntylä et al., 2016; Mohammad, 2018; Osgood
et al., 1957; Russell, 1980, 2003). For example, the word birthday indicates more positive-
ness than the word death; nervous indicates more arousal than lazy; and fight indicates more
dominance than fragile.

Neutral

Arousal

Valence
Negative Positive

Low

High High Arousal
Positive Valence

Low Arousal
Positive Valence

Low Arousal
Negative Valence

High Arousal
Negative Valence Excited

Delighted

Happy

Surprised

Satisfied

CalmTired

Depressed

Bored
Relaxed

Angry

Furious

Frustrated

Sad

Tense

Peaceful

Figure 2.3: Joint visualization of the Arousal and Valence dimensions with examples of emo-
tions.

The existing approaches for emotion analysis often adopt categorical models because of
their simplicity, where emotions can be categorized into distinct classes or categories.
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2.4.3 Emotion Analysis Tasks

The primary task in Emotion Analysis is the emotion detection, where the goal is to detect
various emotions in a given text (B. Liu, 2012; Medhat et al., 2014; Shrivastava et al., 2019).
Another related task is called emotion intensity detection task. In this task, the intensity of
a given text and emotion need to be detected.
The individual tasks, along with the corresponding datasets, are frequently introduced

in public competitions. The emotion intensity task was part of SemEval-2018 Task 1: Affect in
Tweets competition (Mohammad et al., 2018). There were also other shared tasks related to
emotion intensity; SemEval-2007 Task 14 (Strapparava &Mihalcea, 2007) and WASSA-2017
shared task on Emotion Intensity (Mohammad & Bravo-Marquez, 2017).

In the shared competition called Implicit Emotion Shared Task8 (IEST) (Klinger et al., 2018)
the participants were asked to create a system that should infer one of six emotions only
from the context of a particular emotion word removed from the text. For example, “It’s
[#TARGETWORD#] when you feel like you are invisible to others.”, the missing word was sad
and the system should detect sadness emotion.

2.5 Subjectivity Classification
The concept of subjectivity is closely related to SA and opinion mining. According to B. Liu
(2012) subjective sentence expresses personal feelings, views or beliefs, whereas objective
sentence holds some factual information about the world. The subjective sentence can be
expressed in many ways, e.g., opinions, emotions, stances, allegations, desires, beliefs, suspi-
cions or speculations (Riloff et al., 2006; J. Wiebe, 2000; J. Wiebe et al., 1999). For example,
“There is one police station in our town.” is an example of an objective sentence and “Our police
are really bad at their job.” is an example of a subjective sentence.
The goal of subjectivity classification task is to determine whether a given sentence is

subjective or objective (Feldman, 2013; B. Liu, 2012; Pang & Lee, 2008; Riloff &Wiebe, 2003;
J. Wiebe & Riloff, 2005; J. Wiebe et al., 1999). The subjectivity classification task is considered
by some researchers (Medhat et al., 2014) as the first step in sentiment classification to filter
out objective sentences that are assumed (incorrectly) to express or imply no opinion.
It is important to note that subjective text and opinionated text are not equal, although

both concepts have a wide intersection. The opinionated text expresses or implies positive or
negative sentiment. For example, a subjective sentence does not necessarily have to contain
any sentiment, as shown in the following sentence “I think he should visit his doctor”. Similarly,
an objective sentence can imply opinion or sentiment thanks to desirable or undesirable facts
(Feldman, 2013; B. Liu, 2012). For example, “I did not have to repair my Ford for ten years.”
implies positive sentiment towards the car because of the desirable fact that the car is reliable,
the same applied for the following objective sentence “In XY store I bought a new computer

8It was a part of 9thWorkshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis
(WASSA 2018).

25



2. Sentiment Analysis

and they gave me five PC games for free.” also implies positive sentiment. The opinions in
the previous objective sentences were implicit opinions. Of course, it is much easier to detect
sentiment in subjective text because it is much more often expressed directly, unlike in the
case of sentiment in objective text. Researchers often do not distinguish between subjective
and opinionated sentences and treat them as equal.

2.6 Other Tasks
In this section, we briefly describe some other tasks related to sentiment analysis in general.

2.6.1 Comparative Sentiment Analysis

Sentiment or opinion in a text does not necessarily have to be expressed directly, but a com-
parison can be used instead. For example, “Apple iPhone Xs is super reliable” is a typical regular
opinion and “Apple iPhone Xs is much more reliable than Samsung Galaxy S9” is a typical com-
parative opinion aswe defined in Section 2.2.3. Such sentence contains the comparative opinion.
The goal of this task is to identify sentences that contain comparative opinions, extract the
comparative opinions expressed in the sentences and select the preferred entities (Apple
iPhone Xs, in our example) (Feldman, 2013; B. Liu, 2006, 2012). See Přibáň (2020) for details
about this task.

2.6.2 Lexicon Generation

Words that carry information about sentiment are crucial for SA and other related tasks.
These words are called sentiment words or opinion words. For example, excellent, nice, beautiful
and cool are positive sentiment words and awful, bad and nasty are negative sentiment words.
Along with sentiment words, there are some specific phrases and idioms that also hold
sentiment, for example, “He was on cloud nine” means that someone is happy, which implies
positive sentiment. A list of such words, along with their sentiment orientation, is called
sentiment lexicon. Sentiment lexicon can be directly used for solving one of the SA tasks or
as a source for feature extraction for supervised learning algorithms.

Sentiment lexicon consists of a set of tuples of a lexical unit (word, phrase or idiom) and
its sentiment score (B. Liu, 2012; Medhat et al., 2014; Singh et al., 2018). The sentiment score
can be represented in the following ways:

1. A binary indication of positive or negative sentiment polarity, for example: excellent
= 1, nice = 1, bad = 0.

2. A set of predefined values, like very negative, negative, neutral, positive and very positive,
for example: excellent = very positive, nice = positive, bad = negative.
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3. A real number from a predefined interval, for example, [−1, 1] where negative values
refer to negative sentiment and positive values refer to positive sentiment, for example:
excellent = 0.78, bad = −0.35.

There are generally three main approaches for generating or obtaining sentiment lexi-
con (B. Liu, 2012; Medhat et al., 2014). The manual approach is very time-consuming and
expensive. Thus, it is often used as a verification for the other two automatic approaches, i.e.,
dictionary-based approach and corpus-based approach. See B. Liu (2012), Medhat et al. (2014),
and Přibáň (2020) for a description of these approaches.

2.6.3 Sarcasm Detection
Recognizing the real meaning of some expressions in a natural language, like irony, sarcasm
or satire, is a challenging task not only for computers but sometimes even for humans.
These terms are closely related and (sometimes are considered interchangeable) we do not
distinguish between them (Reyes et al., 2012). The goal of Sarcasm Detection is to identify
sarcastic sentences or other pieces of text (Davidov et al., 2010; B. Liu et al., 2010; Reyes et al.,
2012). In the context of SA, the meaning of a positive expression is usually intended to be
negative and vice versa (B. Liu, 2012). This is the main reason why the task is so challenging
and difficult. Other related work can be found in Van Hee et al. (2018) and L. Zhang et al.
(2018) and for Czech in Ptáček et al. (2014).

2.7 Sentiment Analysis Tasks in Thesis
Here, we provide an overview of our research contributions in the realm of Sentiment
Analysis tasks. In this thesis, we mainly focus on the polarity detection task and its versions
described in Section 2.3.

Ourworks presented in Přibáň and Balahur (2023), Přibáň and Steinberger (2021), Přibáň
et al. (2022, 2024), and Sido et al. (2021) are primarily oriented towards document and
sentence-level polarity detection. Additionally, our publications (Přibáň & Pražák, 2023;
Šmíd & Přibáň, 2023) are dedicated to the field of aspect-based sentiment analysis.

Regarding the subjectivity classification task, a new Czech subjectivity dataset and cross-
lingual experiments are presented in Přibáň and Steinberger (2022). In Přibáň and Martínek
(2018) and Přibáň et al. (2018) we focus on the emotion analysis tasks. A detailed description
of our research contributions is presented in Chapter 7 and 8.
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Machine Learning for
Sentiment Analysis 3
Sentiment Analysis tasks are typically approached as text classification problems. Conse-
quently, in this chapter, we describe machine learning algorithms, models and concepts
that are related to SA and classification. We focus on supervised machine learning, given its
predominant role in SA.

3.1 Text Classification
Text classification also known as text categorization is a fundamental task in NLP. It involves
labeling or categorizing text into predefined 𝑛 classes or categories. Formally, the text classi-
fication can be defined as follows: for a given input 𝑥 and a predefined set of output classes
𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑛} the goal is to predict an output class 𝑦 ∈ 𝑌 (Jurafsky & Martin, 2009).

This definition refers to a type of classification calledmulti-class classification because the
input 𝑥 is classified to exactly one of the 𝑛 possible classes. Binary classification is a special
case of multi-class classification in which 𝑌 contains only two classes, i.e., 𝑌 = {𝑦1, 𝑦2}.
In contrast, in the multi-label classification the predicted output can contain zero or more
output predictions 𝑦 from the set of possible classes 𝑌 . Supervised machine learning algo-
rithms are usually applied to this problem, but alternative approaches, such as rule-based or
unsupervised techniques, can also be applied, see Figure 5.1.

In supervised machine learning, the training data 𝑋 = {(𝑥1, 𝑦1) , (𝑥2, 𝑦2) , . . . , (𝑥𝑁 , 𝑦𝑁 )}
of 𝑁 training examples (e.g., sentences, text documents, reviews, tweets etc.) is given1. The
goal is to build (train) a model represented by a function 𝑓 using the training examples from
𝑋 . The mapping function 𝑓 (model) maps input 𝑥 to output 𝑦 and can be rewritten as follows:

𝑓 : 𝑋 → 𝑌 (3.1)

3.1.1 Evaluation Metrics

The typical evaluation metrics in text classification encompass accuracy, 𝐹1 score (or F-
measure), precision and recall. Let us define some result cases that may occur during clas-

1In the multi-label scenario the 𝑦𝑖 labels would be replaced with a set.
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sification. The tested examples are classified into one of the possible classes2 and based on
the predicted class and the gold label (the actual true class of the example) they can be cate-
gorized into four types: (1) true positive (tp), i.e., positive example was predicted as positive,
(2) false positive (fp), i.e., negative example was predicted as positive, (3) false negative (fn), i.e.,
positive example was predicted as negative and (4) true negative (tn), i.e., negative example
was predicted as negative. Accuracy is a metric that summarizes the overall performance of
the evaluated model:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓 𝑝 + 𝑓 𝑛 (3.2)

For a given class 𝑐, precision is the ratio of the number of correctly classified examples as
class 𝑐 to the total number of examples classified as class 𝑐. For a given class 𝑐, recall is the
ratio of the number of correctly classified examples as class 𝑐 to the total number of examples
that are actually labeled with class 𝑐. Precision P and recall R for class 𝑐 are computed as
follows:

𝑃𝑐 =
𝑡𝑝

𝑡𝑝 + 𝑓 𝑝 (3.3)

𝑅𝑐 =
𝑡𝑝

𝑡𝑝 + 𝑓 𝑛 (3.4)

𝐹1 score for class 𝑐 is computed with precision 𝑃𝑐 and recall 𝑅𝑐 as their harmonic mean,
which is given by:

𝐹𝑐1 =
2 × 𝑃𝑐 × 𝑅𝑐
𝑃𝑐 + 𝑅𝑐 (3.5)

Inmulticlass classification, the precision, recall and F-measure for each class can bemacro
averaged. The averagemetrics summarize the overall performance of themodel. Macro recall
𝑅𝑀 and macro precision 𝑃𝑀 are computed as follows:

𝑃𝑀 =

∑𝑛
𝑖 𝑃𝑖

𝑛
(3.6)

𝑅𝑀 =

∑𝑛
𝑖 𝑅𝑖

𝑛
(3.7)

where 𝑛 is a number of classes, 𝑃𝑖 and 𝑅𝑖 is precision and recall of individual classes. The
macro F-measure is computed using 𝑃𝑖 and 𝑅𝑖 with formula 3.5. Usually, in classification,
when the recall is improved, the precision drops and vice versa.

2Here we consider binary classification, i.e., each example can be classified either as positive or negative but
in general, any number of classes.
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3.2 Logistic Regression
Logistic regression is a supervised classification algorithm (despite the word regression in its
name). The basic logistic regression can be used for binary classification. The multinomial
logistic regression allows classification into more classes. Here, we describe the basic version
for two classes. We describe this method in relative detail because most of its basic principles,
concepts and components are applied in more complex algorithms, concretely in neural
networks. Along with logistic regression, we also explain general terms and concepts like
cost function, gradient descent and regularization that are common in machine learning in
general.

3.2.1 Generative and Discriminative Classifiers

Logistic regression is a type of classifier referred to as a discriminative classifier. The clas-
sifiers of the second type are called generative classifiers3. The generative classifier models
(“generate”) the distribution of individual classes. On the other hand, discriminative algo-
rithms learn a decision boundary between the classes, i.e., they only learn how to distinguish
between the classes based on their features.

More formally, both classifiers predict the conditional probability 𝑝(𝑐 | 𝑑) of class 𝑐 given
the input document 𝑑 (technically by features representing the document), but both of them
compute the probability differently. Generative models learn to model the joint probability
distribution 𝑝(𝑑, 𝑐) and compute the conditional probability 𝑝(𝑐 | 𝑑) to predict the class 𝑐.
Such an example is the Naive Bayes classifier. While discriminative classifiers directly model
the conditional probability 𝑝(𝑐 | 𝑑) (Jurafsky & Martin, 2009; Ng & Jordan, 2002).

3.2.2 Logistic Regression Model

Generally, logistic regression predicts (estimates) the most likely class for the input vector of
features x(𝑖) representing the input document 𝑑𝑖 by computing the probability 𝑝( 𝑦 | x(𝑖)).

Weighted sum
Input

Sigmoid
function Threshold

Output

Figure 3.1: Logistic regression model.

3Here, for the explanation, we will consider document classification, i.e., the input for any classifiers is a
document 𝑑 and output is its class 𝑐.
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First, let us introduce a notation we follow for a training dataset that consists of the
following training examples {(x(1) , 𝑦 (1)), . . . , (x(𝑚) , 𝑦 (𝑚))}, where 𝑦 (𝑖) ∈ {0, 1}, 𝑚 is a size
of the training dataset and x( 𝑗) ∈ R𝑛 is a vector of features [𝑥1, 𝑥2, . . . , 𝑥𝑛] thus a particular
feature 𝑖 of training example x( 𝑗) is referred to as x( 𝑗)

𝑖
. All vectors of training examples can

also be written as the matrix X ∈ R𝑛×𝑚 and all labels as a vector y ∈ R𝑚.
The logistic regression model optimizes vector of weights w and a bias parameter 𝑏.

The model is learning by minimizing an error on training examples. The error is computed
by the objective function, e.g., cross-entropy loss function. The algorithm that optimizes the
parameters according to the objective function is, for example, stochastic gradient descent or
gradient descent (Jurafsky & Martin, 2009).
For input vector x we want to compute the probability 𝑝( 𝑦 = 1 | x), i.e., the input

x belongs to class 𝑦 = 1 which could, for example, indicate that the document is spam.
Conversely, for 𝑦 = 0, it implies that the input document is non-spam. To be exact, the model
estimates the probability 𝑝̂( 𝑦 = 1 | x) of the true probability 𝑝( 𝑦 = 1 | x). The prediction
of the classifier on a test example is computed in two steps. First, the 𝑧 ∈ R scalar term is
computed from the input x and model’s parametersw and 𝑏 in the following way:

𝑧 = wTx + 𝑏 (3.8)

Since the 𝑧 is a real number, we need to convert it into a probability output 𝑦̂. The 𝑦̂
represents the estimation of the true 𝑦. The estimation is achieved by applying the sigmoid
function as follows:

𝑝̂( 𝑦 = 1 | x) = 𝑦̂ = 𝜎 (𝑧) = 1
1 + 𝑒−𝑧 (3.9)

The sigmoid function maps the input real number to the range [0, 1] , see Figure 3.2. The
sigmoid function is also called the logistic function, hence the name logistic regression.
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Figure 3.2: Sigmoid function illustration.

As we mentioned, the output of the model is the estimated probability 𝑝̂( 𝑦 = 1 | x) of
the input x being assigned to the class 𝑦 = 1 thus for the binary classification the probability
𝑝̂( 𝑦 = 0 | x) can be computed as follows
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𝑝̂( 𝑦 = 0 | x) = 1 − 𝑝̂( 𝑦 = 1 | x) (3.10)

and 𝑝̂( 𝑦 = 1 | x) plus 𝑝̂( 𝑦 = 0 | x) sum up to one:

𝑝̂( 𝑦 = 1 | x) + 𝑝̂( 𝑦 = 0 | x) = 1 (3.11)

Finally, the predicted class 𝑦 is 1 if the estimated probability 𝑝̂( 𝑦 = 1 | x) is greater than
threshold 0.5 (which is called the decision boundary), 0 otherwise, see Figure 3.1, it can also
be written as follows:

prediction =

{
1 if 𝑝̂( 𝑦 = 1 | x) > 0.5

0 otherwise
(3.12)

3.2.3 Cost Function

In the previous section, we assumed that the parameters w and 𝑏 are already optimized.
Logistic regression is a supervised machine learning algorithm, so in order to learn its pa-
rameters, two components are needed, i.e., the cost function and the optimization algorithm.
The cost or loss function is a metric that tells us how different the outputs are for the model’s
training data compared to the true (gold) labels. Logistic regression uses cross-entropy cost
function. The second component is the optimization algorithm that updates the model’s
parameters to minimize the cost function. Usually, the gradient descent or stochastic gradient
descent is used as the optimization algorithm (Jurafsky & Martin, 2009).
Given one training example x, the gold label 𝑦 and the prediction of the model 𝑦̂ (i.e.,

the 𝑝̂( 𝑦 = 1 | x) probability), the cross-entropy loss function L𝐶 ( 𝑦̂, 𝑦) is defined as follows:

L𝐶 ( 𝑦̂, 𝑦) = −(1 − 𝑦) log(1 − 𝑦̂) − 𝑦 log 𝑦̂ (3.13)

Using equations 3.9 and 3.8 we can rewrite the cross-entropy loss function as follows:

L𝐶 ( 𝑦,x; w, 𝑏) = −(1 − 𝑦) log(1 − 𝜎 (wTx + 𝑏)) − 𝑦 log 𝜎 (wTx + 𝑏) (3.14)

The goal of the optimization algorithm is to optimize the parameters w and 𝑏. The
previous definition of cross-entropy loss (equations 3.13 and 3.14) is focused only on a single
training example. The overall cost function 𝐽 (Θ) for the entire training dataset that we want
to minimize is defined as the average cross-entropy computed over all training examples:

𝐽 (Θ) = 1
𝑚

𝑚∑︁
𝑖=1

L𝐶 ( 𝑦 (𝑖) ,x(𝑖) ;Θ) (3.15)

where Θ = (𝜃1, 𝜃2, . . . , 𝜃𝑛, 𝜃𝑛+1) is a vector that represents the model parametersw and the
bias term 𝑏 that are being optimized. The dimension ofw is 𝑛.
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3.2.4 Learning and Gradient Descent

The learning (optimization of the parameters) is then performed by the gradient descent
algorithm. Gradient descent computes the gradient of the cost function by computing par-
tial derivative 𝜕𝐽 (Θ)

𝜕𝜃𝑖
with respect to each parameter 𝜃𝑖. Each parameter 𝜃𝑖 is updated in the

following way:

𝜃𝑡+1
𝑖 = 𝜃𝑡𝑖 − 𝛼

𝜕𝐽 (Θ)
𝜕𝜃𝑖

(3.16)

where 𝜃𝑡
𝑖
is the current parameter value, 𝜃𝑡+1

𝑖
is the new parameter value after the update, 𝛼

is a learning rate and 𝜕𝐽 (Θ)
𝜕𝜃𝑖

is the partial derivative of the cost function with respect to the
parameter 𝜃𝑖.
The computed gradient is represented by a vector ∇Θ 𝐽 (Θ) where each element corre-

sponds to the element in the vector of parameters Θ and contains the partial derivative with
respect to that parameter. Using the cost function from equation 3.15, the gradient vector
∇Θ 𝐽 (Θ) is computed as the average of partial derivatives for each training example:

∇Θ 𝐽 (Θ) =
1
𝑚

𝑚∑︁
𝑖=1

∇ΘL𝐶 ( 𝑦 (𝑖) ,x(𝑖) ;Θ) (3.17)

Then, one step (update) of the optimization can be rewritten as follows:

Θ𝑡+1 = Θ𝑡 − 𝛼∇Θ 𝐽 (Θ) (3.18)

Gradient descent is the iterative algorithm that can be stopped when the gradients are
smaller than some predefined value 𝜖 or when the cost function does not change by a pre-
defined value over the iterations or when the cost function starts to grow on some held-out
data (Jurafsky & Martin, 2009). The cross-entropy loss function for logistic regression is
convex. Thanks to this property, it is guaranteed that the gradient descent algorithm always
finds the (global) minimum.
The described basic version of gradient descent is computationally expensive since to

make one iteration (update), the gradient needs to be computed for all training examples.
Stochastic gradient descent is another version of gradient descent that performs the update
of the parameters for each training example x(𝑖) . The gradient ∇Θ 𝐽 (Θ) for one training
example x(𝑖) is then computed (technically estimated) as follows:

∇Θ 𝐽 (Θ) = ∇ΘL𝐶 ( 𝑦 (𝑖) ,x(𝑖) ;Θ) (3.19)

Another property of stochastic gradient descent is that, to a certain extent, it can be used
even for non-convex loss functions (e.g., neural networks) since it can get out of some local
optima of the function.
Alternatively, mini-batch gradient descent can be applied as well. Instead of computing

gradient for only one training example or all training examples, mini-batch gradient descent
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computes gradient for a batch of 𝑙 training examples and updates the model’s parameters
after each batch, as shown below in Equation 3.20.

∇Θ 𝐽 (Θ) =
1
𝑙

𝑙∑︁
𝑖=1

∇ΘL𝐶 ( 𝑦 (𝑖) ,x(𝑖) ;Θ) (3.20)

3.2.5 Regularization

In order to prevent the model from overfitting, a regularization technique is often used. It
allows the model to generalize on unseen test data (Jurafsky &Martin, 2009). The typical way
of implementing the regularization is by adding a new regularization term Σ(Θ) to the cost
function. The cost function is then given by:

𝐽 (Θ) = 1
𝑚

𝑚∑︁
𝑖=1

(L𝐶 ( 𝑦 (𝑖) ,x(𝑖) ;Θ) + 𝜆Σ(Θ)) (3.21)

where 𝜆 is a hyper-parameter that controls the strength of the regularization. If 𝜆 = 0 we get
the original cost function without any regularization. There are two standard methods for
computing the regularization term Σ(Θ). (1) ℓ1 regularization is the sum of absolute values
of the parameters and it is given by:

Σ(Θ) = | |Θ| |1 =

𝑛+1∑︁
𝑖=1

|𝜃𝑖 | (3.22)

(2) The ℓ2 reguralization is computed as follows:

Σ(Θ) = | |Θ| |22 =

𝑛+1∑︁
𝑖=1

𝜃2
𝑖 (3.23)

3.2.6 Multinomial Logistic Regression

Until now, we have described logistic regression for binary classification. For multi-class
classification, the multinomial logistic regression learns a separate set of parameters 𝜃𝑘 ∈ Θ

for each class 𝑐𝑘 ∈ 𝐶, the number of classes is 𝑙, i.e., |𝐶 | = 𝑙. Again, the goal is to estimate
probability 𝑝̂( 𝑦 = 𝑐 | x) of the true probability 𝑝( 𝑦 = 𝑐 | x) that the input x belongs to the
class 𝑐. First, vector z = [𝑧1, 𝑧2, . . . 𝑧𝑙] is computed, where each component of the vector is
computed4 from a set of parameters 𝜃𝑘 for a class 𝑐𝑘 and input x using the equation 3.8. Next,
the vector z is passed through the softmax function that produces the estimated probabilities
𝑦̂ = 𝑝̂( 𝑦 = 𝑐 | x;Θ) for each class. The estimated probability 𝑝̂( 𝑦 = 𝑐 | x;Θ) for a specific
class 𝑐𝑘 is computed as follows:

4In practice, all these operations are vectorized and parameters are in matrices.
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softmax(𝑧𝑘) = 𝑝̂( 𝑦 = 𝑐𝑘 | x;Θ) = 𝑒𝑧𝑘∑𝑙
𝑗=1 𝑒

𝑧 𝑗
=

𝑒Θ
T
𝑘

x+𝑏𝑘∑𝑙
𝑗=1 𝑒

ΘT
𝑗

x+𝑏𝑗
(3.24)

After applying the softmax function on the vector z, the output is a vector of probabili-
ties for the input x assigned to the corresponding classes. The cross-entropy loss function
L𝐶𝑅𝐸 ( 𝑦̂, 𝑦,x) for one training example x is given by:

L𝐶𝑅𝐸 ( 𝑦̂, 𝑦,x) = −
𝑙∑︁

𝑘=1

1{𝑦 = 𝑘} log 𝑝̂( 𝑦 = 𝑘 | x;Θ) (3.25)

where 1{𝑦 = 𝑘} is equal to 1 if 𝑦 = 𝑘, zero otherwise. In other words, it is equal to 1 if the
input x is labeled with the gold class 𝑐𝑘.

3.3 Neural Networks
We describe neural networks and their underlying concepts since, nowadays, neural networks
have become the fundamental machine learning tool for NLP. The term neural in their
name originates from the first proposal of an artificial neuron, calledMcCulloch-Pitts neuron
(McCulloch & Pitts, 1943). This artificial neuron was inspired by a simplification of the
biological neuron.

In general, neural networks are built from individual units (called neurons) and stacked
into layers, collectively forming the entire neural network. Logistic regression and neural
networks are closely related since a neural network can be seen as a composition of multi-
ple logistic regression models (or other functions) stacked on top of each other, where the
units are the individual logistic regression classifiers. Alternatively, logistic regression can be
considered as a simple neural network (Jurafsky & Martin, 2009). In the following sections,
we discuss different types of neural network architectures, i.e., feed-forward neural network,
recurrent neural network and Transformer architecture.

3.3.1 Deep Learning

In recent years, a very popular term deep learning has emerged in the context of AI and
neural networks. It refers to neural networks with many layers, regardless of the layer type,
hence deep learning. The fundamental concept behind deep learning is that the model can
learn representations of data, i.e., features are extracted by the network itself (automatically)
without any explicit or manual feature engineering. For example, neural networks for image
recognition or computer vision can contain dozens of layers, where the lower layers identify
simpler features, such as edges, while the higher layers recognize more complex features
(e.g., parts or even entire objects like digits, letters or faces) based on the outputs of the lower
layers. The deep neural networks are built by composing individual layers, which are typically
implemented by the feed-forward neural network, recurrent neural network or convolutional
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neural network, although any neural network type can be incorporated in general. Deep
learning has proven to be a powerful machine learning technique capable of producing state-
of-the-art results not only in NLP but also in various other domains, including computer
vision or speech recognition (Goodfellow et al., 2016; Jurafsky & Martin, 2009).

3.3.2 Feed-forward Neural Network
Feed-forward neural network, also known as multilayer perceptron (MLP) is composed of in-
dividual layers and each layer is built of individual units (neurons). Feed-forward network
consists of one input layer, one output layer and one or more hidden layers, see Figure 3.3.
Each neuron from one layer is connected with all neurons in the consecutive layer. Hence,
this network architecture is sometimes called fully-connected. These connections are called
weights and they are parameters of the entire network.

Input
Layer Hidden

Layer

Output
Layer

Figure 3.3: Example of feed-forward neural network.

The MLP with one hidden layer (see Figure 3.3) takes as input vector x and passes it
through the entire network, i.e., through each neuron. It can be written as follows:

h = 𝜎 (W1x + b1)
ŷ = softmax(W2h + b2)

(3.26)

whereW1 andW2 are weight matrices, b1 and b2 are bias vectors, h is an output vector of
the hidden layer, 𝜎 (·) is an activation function and ŷ is a vector of a probability distribution
over possible output classes.

First, for each neuron, the weighted sum (scalar) is computed, then the weighted sum is
passed through a non-linear function 𝜎 (·) that is called the activation function. An example
of the activation function is the sigmoid function (used in logistic regression) but other func-
tions like ReLU (Rectified Linear Unit), see equation 3.28, or hyperbolic tangent, see equation
3.27, can be used as well. Next, the output vector h of the hidden layer is passed through5 the

5In case of more than one layer, the output is passed into the next hidden layer instead.
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softmax function that produces the output vector of probabilities ŷ. The sequence of these
operations is called forward propagation.

tanh(𝑥) = 𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥 (3.27)

𝑅𝑒𝐿𝑈 (𝑥) = max(0, 𝑥) (3.28)

Since the MLP can generally contain more than one layer, we can rewrite the expression
3.26 representing the network in Figure 3.3 using the common notation (Jurafsky & Martin,
2009):

z(1) = W(1)a(0) + b(1)

a(1) = 𝑔 (1) (z(1))
z(2) = W(2)a(1) + b(2)

a(2) = 𝑔 (2) (z(2))
ŷ = a(2)

(3.29)

where the number in superscript refers to the 𝑛-th hidden layer starting from 1 and specifi-
cally the layer 0 means input, so a(0) is the input vector x, 𝑔 (𝑖) (·) is the activation function
in the 𝑖-ith layer, a(𝑖) is an output of the 𝑖-ith layer, z(1) is the weighted sum in the 𝑖-ith layer
and ŷ is the predicted output probability distribution. The activation function 𝑔 (2) in the
last (second) layer represents the softmax function in equation 3.26.

3.3.3 Learning of Neural Networks
As in the case of logistic regression, the goal is to optimize the parametersW(𝑖) and b(𝑖) in
a way that the outputs ŷ for training data produced by the model are similar as much as
possible to the true labels y. The learning is done by the same gradient descent algorithm that
was described in Section 3.2.4 and by the back-propagation algorithm (Rumelhart et al., 1986).
The same cross-entropy loss function (as for logistic regression, see equation 3.25) can be
rewritten more comprehensively as follows:

L𝐶𝑅𝐸 (ŷ, y) = −
𝑙∑︁
𝑖=1

𝑦𝑖 log 𝑦̂𝑖 (3.30)

where 𝑙 is number of classes, 𝑦𝑖 is the gold label for the class 𝑖 and 𝑦̂𝑖 is the prediction of the
model for the class 𝑖.
With the growing number of layers and parameters, the computation of the gradient

becomes a complex and non-trivial task. The back-propagation algorithm (Rumelhart et al.,
1986) allows computing the gradient. The back-propagation relies on the chain rule, given
a composite function 𝑓 (𝑥) = 𝑔(𝑢(𝑤(𝑥)))) the derivative 𝑑𝑓

𝑑𝑥
of the function 𝑓 (𝑥) with respect

to 𝑥 is computed in a following way:
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𝑑𝑓

𝑑𝑥
=
𝑑𝑔

𝑑𝑢
· 𝑑𝑢
𝑑𝑤
· 𝑑𝑤
𝑑𝑥

(3.31)

Using the chain rule, the back-propagation algorithm computes the gradient composed
of the partial derivative of the cost function with respect to each parameter of the model.
The computed gradient is used by gradient descent to update the parameters of the model
as described in 3.2.4.

3.3.4 Dropout
We introduced the technique of regularization in Section 3.2.5. Another approach used to
prevent the overfitting of neural networks is called dropout (Srivastava et al., 2014). This
technique randomly drops units (neurons) and their connections to a selected layer of the
network. In other words, the connections of units between two layers, i.e., weights, are not
used at a given learning step (when dropout is applied), see Figure 3.4. The choice of which
units to drop is random and given by probability p. Dropout is applied only during the
training of the neural network and disabled when test predictions are being made.

(a) Standard Neural Network. (b) Neural Network after applying dropout.

Figure 3.4: Illustration of the dropout technique. Left: (a) standard neural network with two
hidden layers. Right: (b) An example of a thinned network produced by applying dropout to
the network on the left. Empty units have been dropped. Inspired by Srivastava et al. (2014).

3.4 Recurrent Neural Network
The RecurrentNeural Network (RNN) (Elman, 1990) is intended for processing of sequential
data. Text is sequential in nature. RNN allows processing sequences of different lengths,
unlike the feed-forward neural network, where the input is always fixed-size. RNN also
allows “remember” information from the previous steps of the processed sequence because
RNN takes as input not only the current input but also a hidden state of the network from
the previous step, as shown in Figure 3.5.
More formally, RNN processes the input sequence X = [x1,x2 . . .x𝑇 ] and for each

element x𝑡 at time step 𝑡 it computes new hidden state h𝑡 from the input x𝑡 and the previous
hidden state h𝑡−1. The new hidden state h𝑡 is computed by hidden layer functionH :
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h𝑡 = H(x𝑡 ,h𝑡−1) (3.32)

In the simplest case, the hidden layer functionH is defined as:

h𝑡 = 𝜎 (W𝑥ℎx𝑡 +Wℎℎh𝑡−1 + bℎ) (3.33)

where the W terms correspond to weight matrices (e.g., W𝑥ℎ is the input-hidden weight
matrix) and bℎ term is hidden bias vector. The concrete implementation of theH function
depends on the type of the used RNNunit (Graves et al., 2013), for example, Long Short-Term
Memory (LSTM) (Hochreiter & Schmidhuber, 1997) or Gated Recurrent Unit (GRU) (Cho,
van Merriënboer, Gulcehre, et al., 2014). Each RNN unit shares the parameters (weights)
across all time steps.

A

xt

 = A

x1

A A A

x2 x3

ht

xt

ht h1 h2 h3

Figure 3.5: Basic RNN architecture6.

The common practice is also to use bidirectional RNN (BiRNN) (Schuster & Paliwal,
1997). BiRNN processes the sequence in both directions, which has shown to be beneficial
because the output at time 𝑡 can depend on the previous and future elements of the sequence.
It is usually implemented with two RNN units, where one processes the sequence in the
original order and the second RNN processes the sequence in reverse order. The outputs

−→
h𝑡

(for the original sequence direction, i.e., left to right) and
←−
h𝑡 (for the reversed direction) of

these two RNN units are usually concatenated and producing one output h𝑡 as follows:

h𝑡 = [
−→
h𝑡 ;
←−
h𝑡] (3.34)

The disadvantage of BiRNN is that the entire input sequence must be present when it is
being processed, which can be problematic for some specific tasks. An example of BiRNN is
a bidirectional LSTM (BiLSTM) (Graves & Schmidhuber, 2005).
There is one common issue with the simplest RNN implementation (described above)

called vanishing or exploding gradients. When RNN processes longer sequences during the
training, theweights inside theRNNaremultiplied in each time step. In the back-propagation
step, there is also a large amount of multiplication and thanks to that, the gradients either
“explodes” (become very large) or “vanishes” (become very small) and thus the model is not
able to learn, i.e., instead of converging it diverges.

6Image is based on http://colah.github.io/posts/2015-08-Understanding-LSTMs.
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3.4.1 Long Short-Term Memory

Long Short-TermMemory (LSTM) (Hochreiter & Schmidhuber, 1997) is an implementation
of the RNN capable and intentionally designed to “remember” or “store” some long-term
dependency information from the previous time steps. The architecture of LSTM is shown
in Figure 3.6.

Figure 3.6: LSTM architecture visualisation7.

The LSTM unit (or cell) is composed of structures called gates that can decide which
information should be stored and which information should be deleted. The gates take the
input x𝑡 and previous hidden state h𝑡−1 and produce output that is a part of the hidden
state. In addition, the LSTM also takes the cell state C𝑡−1 from the previous time step. More
concretely, each LSTM unit contains input, forget and output gates. Using the gates, the input
x𝑡 , previous hidden state h𝑡−1 and previous cell state C𝑡−1, the LSTM produces new hidden
state h𝑡 and new cell state C𝑡 . The entire model of LSTM can be written as follows:

f𝑡 = 𝜎
(
W𝑥𝑓x𝑡 +Wℎ𝑓h𝑡−1 + b𝑓

)
i𝑡 = 𝜎 (W𝑥𝑖x𝑡 +Wℎ𝑖h𝑡−1 + b𝑖)

o𝑡 = 𝜎 (W𝑥𝑜x𝑡 +Wℎ𝑜h𝑡−1 + b𝑜)
C̃𝑡 = tanh (W𝑥𝑐x𝑡 +Wℎ𝑐h𝑡−1 + b𝑐)
C𝑡 = f𝑡 ⊙ C𝑡−1 + i𝑡 ⊙ C̃𝑡

h𝑡 = o𝑡 ⊙ tanh (C𝑡)

(3.35)

where ⊙ is element-wise multiplication, x𝑡 is the current input vector,W terms correspond
to weight matrices and b terms are bias vectors, i𝑡 , f𝑡 , o𝑡 are the outputs of the input, forget
and output gates, respectively, C̃𝑡 is the vector of new candidate information that can be
added and 𝜎 is the sigmoid function.

7Image based is on https://colah.github.io/posts/2015-08-Understanding-LSTMs.
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The forget gate f𝑡 decides what information will be removed from the cell state. It pro-
duces values between 0 and 1multiplied by the values fromC𝑡−1. The amount of information
that will be deleted is controlled by the output where 0 means forgot (drop, delete) the entire
information from the previous cell state C𝑡−1 and 1 do not delete anything.
Next, the input gate i𝑡 decides which values will be updated and C̃𝑡 computes the new

candidates’ values (information) that could be potentially added. These two vectors are then
point-wise multiplied together and the result is summed with f𝑡 ⊙ C𝑡−1 that gives the new
cell state C𝑡 . Finally, the new hidden state h𝑡 is computed from the output gate o𝑡 and the
new cell state C𝑡 . A slightly simplified variant of LSTM is called Gated Recurrent Unit (Cho,
van Merriënboer, Gulcehre, et al., 2014).

3.5 Sequence to Sequence

Specific neural network architectures can also be used to model and solve sequence problems
(Sutskever et al., 2014). Sequence problems can be divided into four categories: One-to-One,
One-to-Many,Many-to-One andMany-to-Many, as shown in Figure 3.7. The many-to-many
sequence problem is also called sequence to sequence or seq2seq.

One-to-One One-to-Many Many-to-One Many-to-Many

Figure 3.7: Sequence problems visualization8.

We summarize the four categories as follows:

1. One-to-One: The one-to-one problem can be seen as a special case of sequence prob-
lem, where there is only a single input and output9 with a fixed size. An example is
image classification, where the input is always an imagewith a fixed size and the output
is one category. Since text is in nature sequential, there are not many one-to-one ex-
amples in NLP. A common text classification problem could be potentially considered
as one-to-one because the problem used to be treated as a one-to-one problem. The
reason is that the input document (sequence) was transformed into one feature vector
with a fixed size regardless of the length of the document and then the document was
classified into one category.

8Image is based on http://karpathy.github.io/2015/05/21/rnn-effectiveness.
9By one input we mean one vector of features.
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2. One-to-Many: There is only one input and the output is a sequence. For example, the
input can be one word representing some topic and the output a sequence of words
about the topic.

3. Many-to-One: In many-to-one problems, there is only a single output for the input
sequence. Nowadays, a typical example is text classification, for example, the input is
a sequence of words and the output is a class label.

4. Many-to-Many: Many-to-many or sequence-to-sequence problems consist of se-
quence input and sequence output, the lengths of the input and output sequences
may differ. The most typical example is machine translation, where the input can be
a sentence in Czech and the output is its translation in English.

3.5.1 Encoder-decoder
The many-to-one and many-to-many problems are the most common in NLP. The common
practice for modeling the many-to-many sequence problems in NLP is to use the encoder-
decoder architecture (Cho, van Merriënboer, Gulcehre, et al., 2014; Sutskever et al., 2014),
see Figure 3.8 for basic visualization and Figure 3.9 for machine translation example imple-
mented by RNN.

Input Encoder Context
Vector Decoder Output

Figure 3.8: Basic visualization of the encoder-decoder architecture.

The encoder encodes the variable-length input sequence into the fixed-length vector
representation C (the inner state representing the input, also called context vector) and the
decoder decodes the fixed-length vector representation C and generates the output, see Cho,
van Merriënboer, Gulcehre, et al. (2014) for more detailed mathematical description. The
outputs of the encoder are discarded.

The encoder-decoder architecture is usually implemented by RNN (see Section 3.4) or by
the Transformermodel (see Section 3.6). Typically, the encoder and decoder are implemented
by the same type of neural network. Both the encoder and decoder can be composed of
multiple stacked layers of neural networks.
The simplest solution for obtaining the context vector C is to use the last hidden state

h𝑒𝑛 of the encoder and the context vector C is then used as the initial hidden state h𝑑0 of the
decoder (Jurafsky & Martin, 2009), that can be written as follows:

C = h𝑒𝑛
h𝑑0 = C

(3.36)

During the generation of the output sequence, the hidden state h𝑑𝑡 and the output proba-
bility distribution y𝑡 at time step 𝑡 is given by:
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RNN

Context Vector

RNN RNN RNN

How are you ?

Encoder RNN

Come

<START>

RNN

stai

RNN

?

RNN

<STOP>

Decoder

Figure 3.9: The example of the encoder-decoder architecture for machine translation. The
input sentence is encoded into context vector C. The output sentence is generated until the
end of sentence tag <STOP> is generated.

h𝑑𝑡 = H(y𝑡−1,h𝑑𝑡−1)
y𝑡 = softmax(h𝑑𝑡 )

(3.37)

where the functionH represents the RNN cell. Eventually, the generation at each time step
𝑡 can be conditioned by the context vector C and the previous output y𝑡−1 as follows:

h𝑑𝑡 = H(y𝑡−1,h𝑑𝑡−1,C)
y𝑡 = softmax(h𝑑𝑡 , y𝑡−1,C)

(3.38)

3.5.2 Attention Mechanism

The vanilla approach of the encoder-decoder architecture uses the hidden state of the last
unit (the last RNN cell in the encoder in Figure 3.9) as the context vector C. This solution
is not optimal since the context vector is the last hidden state h𝑛 of the encoder and the
decoder is forced to produce the output using only the last state. Thus, the last state must
contain all necessary information about the entire sequence. It is problematic in the case of
long dependencies where the information from the beginning of the sequence can fade away,
but it can be important to produce the output at the end of the sequence.

The attention mechanism (Bahdanau et al., 2015) allows modeling the long dependencies
without regard to their distance in the input or output sequences (Vaswani et al., 2017). The
attentionmechanism allows the decoder to use all hidden states of the encoder and also learn
their importance (i.e., “pay attention”) in order to produce the output at the current time step.

3.6 Transformer
A relatively recent type of neural network architecture is called Transformer, originally in-
troduced in Vaswani et al. (2017), where its effectiveness was demonstrated on machine
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translation. The Transformer is an example of the encoder-decoder architecture, as illus-
trated in Figure 3.10. Most of the recent generalized language models like BERT or GPT-2
(see Section 4.1.5) leverage the Transformer as a basic building block. These models have
consistently achieved state-of-the-art results in a variety of NLP tasks, thereby establishing
the Transformer architecture as the de facto standard forNLP applications. The Transformer
architecture is shown in Figure 3.11. The Transformer is able to handle long dependencies
in sequences using the attention mechanism without any RNN. Furthermore, the Trans-
former’s design offers the advantage of easy parallelization, in stark contrast to architectures
like LSTM.

Encoder

Encoder

Encoder

Encoder

Encoder

Encoder

Decoder

Decoder

Decoder

Decoder

Decoder

Decoder

Input:

Output:

Já jsem student

I am a student

Figure 3.10: Visualization of stacked layers in the Transformer architecture10.

The reason behind the rise of the Transformer architecture and its success lies in the
self-attentionmechanism (see Section 3.6.2) and the Transformer’s ability to be pre-trained
and consequentially fine-tuned. Typically, the Transformer is pre-trained via a language
modeling task with a tremendous quantity of unlabeled text. Thanks to the pre-training,
the model acquires a general knowledge of the language (e.g., syntax and semantics). The
knowledge acquired during pre-training is then utilized in the fine-tuning phase of a specific
NLP task. Thanks to prior knowledge, Transformer consistently outperforms other mod-
els and exhibits superior performance compared to models lacking the pre-training phase.
This strategy is commonly known as transfer learning and it is discussed in greater detail
in Chapter 4. Here, we describe the common underlying principles and the Transformer
architecture.

3.6.1 Transformer Architecture

The Transformer architecture follows the encoder-decoder principle. For an input sequence
(x1,x2, . . . ,x𝑛), the encoder produces a continuous representationZ = (z1, z2, . . . , z𝑛). Then,
the decoder generates an output sequence (y1, y2, . . . , y𝑚).
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The encoder (left part of Figure 3.11) of the Transformer consists of 𝑁 identical layers11

that are stacked on each other (𝑁 can be seen as a hyper-parameter of the model) as shown in
Figure 3.10. Each layer is composed of another two sub-layers. The first sub-layer is a multi-
head self-attention mechanism and the second sub-layer is a fully connected feed-forward
neural network. The output of each sub-layer is added to a residual connection (He et al.,
2016) vector and a layer normalization (Ba et al., 2016) is performed. All sub-layers in the
model and also the input embedding layers produce outputs with a dimension 𝑑model = 512.

Figure 3.11: The architecture of the Transformer model. The left part represents the encoder
and the right part represents the decoder. Image is taken from Vaswani et al. (2017).

The decoder (right part of Figure 3.11) of the Transformer also contains 𝑁 stacked layers
identical to the encoder part besides the two following modifications. (1) One extra sub-layer
is added and it performs multi-head attention over the output of the encoder. (2) The first
sub-layer (masked multi-head attention) is a modified self-attention mechanism to ensure
that the model predictions for position i depend only on the previous known outputs.
In each Transformer layer block, the fully connected feed-forward network is applied

to each sequence position separately. In each layer, the feed-forward neural network has its
own parameters. It consists of two linear transformations with ReLU activation function
between them. The feed-forward layer FFN(𝑥) is given by:

11In the original Transformer paper (Vaswani et al., 2017) the authors used 𝑁 = 6.
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FFN(x) = max(0,xW1 + b1)W2 + b2 (3.39)

The input sequence of the entire model is firstly used as an input for the two embedding
layers that produce vector representations for the tokens, the two embedding layers share
parameters. There is no information about the token position in the produced vector repre-
sentation. Thus, the position is encoded and added to this vector. Each position is encoded
with sine and cosine functions, the produced positional encoding has the same dimension
as the 𝑑model.

The output of the final decoder layer is passed to the learned linear transformation layer
and then the softmax function is used in order to produce the output tokens probabilities.
As we mentioned, the original Transformer architecture is composed of encoder and

decoder parts. However, not every model that is based on Transformer architecture uses
both of these components. Some use only the encoder or decoder parts. We discuss these
differences and describe the underlying models in Section 4.3.

3.6.2 Self-attention
Self-attention or intra-attention is an attention mechanism relating different positions of
a single sequence to compute a representation of the same sequence (Vaswani et al., 2017). It
allows the model to capture dependencies and correlations between the current output at
time step 𝑡 and the other parts of the sequence. In other words, the model is able to attend
to different parts of the input sequence to better learn long-range dependencies between
tokens.

(a) Scaled Dot-Product Attention visualization. (b) Multi-head attention visualization that con-
sists of several attention layers running in parallel.

Figure 3.12: Attention visualization. Images are taken from Vaswani et al. (2017).

The attention mechanism used in the Transformer is called Scaled Dot-Product Attention,
see Figure 3.12a. This attention takes as an input query and key vectors of dimension 𝑑𝑘
a values vector of dimension 𝑑𝑣. Firstly, the dot product of the query with all keys (i.e., size of

47



3. Machine Learning for Sentiment Analysis

the input sequence) is computed (theMatMul part in Figure 3.12a) and each of the computed
dot products is divided (scaled) by

√
𝑑𝑘. Next, the softmax function is applied12. The result

is then multiplied with the values vector using the dot product.
In reality, the queries are stacked into a matrix Q, the keys and values are also stacked

into matrix K and V, respectively. The computation is then done by matrix multiplication
and the matrix of outputs can be written as follows:

Attention(Q,K,V) = softmax
(

QKT

√
𝑑𝑘

)
V (3.40)

3.6.3 Multi-head Attention
Instead of computing the attention only once,multiple parallel attentions can be employed. In
this approach, the attention is computed ℎ timeswith separate parameters for each individual
attention, where ℎ denotes the number of heads (i.e., number of parallel attentions), see
Figure 3.12b. The benefit of multi-head attention is that it gives an opportunity to the model
to learn different types of information. For example, one attention head may specialize in
capturing syntactic patterns, while another may focus on semantic content13. The outputs
of the individual attention heads are concatenated, linearly transformed and the result is
passed to higher layers. The multi-head attention mechanism can be written as follows:

MultiHead(Q,K,V) = Concat(head1, head2, . . . , headℎ)W𝑂

= [head1, head2, . . . , headℎ]W𝑂
(3.41)

where W𝑂 ∈ Rℎ𝑑𝑣×𝑑model is the matrix with parameters for the final linear transformation.
The head head𝑖 is given by:

head𝑖 = Attention(QW𝑄

𝑖
,KW𝐾

𝑖 ,VW𝑉
𝑖 ) (3.42)

where W𝑄

𝑖
∈ R𝑑model×𝑑𝑘 , W𝐾

𝑖
∈ R𝑑model×𝑑𝑘 , W𝑉

𝑖
∈ R𝑑model×𝑑𝑣 are matrices with parameters

corresponding to each head. The authors of Vaswani et al. (2017) used ℎ = 8 and 𝑑𝑘 = 𝑑𝑣 =
𝑑model/ℎ = 64.

3.6.4 Tokenization
The raw text cannot be processed directly by the Transformer model. Firstly, it has to be con-
verted into a form the model can process. Such a process is called tokenization. Tokenization
is the procedure of transforming text into a sequence of individual units, such as words or
subwords, and assigning a unique numerical identifier to each unit (Jurafsky &Martin, 2009)
as shown in Figure 3.1314. The process results in a sequence of numbers. The Transformer

12In the case of decoder, the masking is also applied, see Vaswani et al. (2017) for details.
13This example is just to give you an idea; in reality, it does not have to be so clear.
14The examples are inspired by https://huggingface.co/docs/transformers/tokenizer summary.
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model further processes the sequence by converting each number into a word vector (also
called word embedding).

Input: Don’t you like the sea? The happiest fish live in sea.

Output: don’t you like the sea? the happiest fish live in sea.

Figure 3.13: An example of tokenization by space.

The issue associated with simple tokenization, where complete words are considered
as tokens, is the potential explosion in vocabulary size, which can result in the vocabulary
containing hundreds of thousands or even millions of unique entries. Since each token is
mapped to aword vector, the resultingword embeddingsmatrixwould require a tremendous
amount ofmemory. As an alternative, the smaller parts of words are used as tokens, which are
called subwords as shown in Figure 3.14. Subword tokenizers typically operate with a more
manageable vocabulary size, usually in the order of tens of thousands. For example, the BERT
(Devlin et al., 2019) model has a vocabulary size of 30k.

Input: Don’t you like the sea? The happiest fish live in sea.

Output: do n’t you like the sea ? the ha ##pp ##iest fish live in sea .

Figure 3.14: An example of subword tokenizer.

The idea of subword tokenizers is to tokenize the most frequent words as single tokens
and rare words are tokenized into subwords with some particular meaning. For example,
consider theword “unhappiness”. A subword tokenizermay break it down into “un-”, “happi-”,
and “-ness” as subword units, which can provide more flexibility in handling similar words
like “happiness” or “unhappy”. This approach can effectively handle languages with complex
morphology, rare, long or unknown words, and out-of-vocabulary (OOV) words. This pro-
cess allows the tokenizer to create subword units that capture common word fragments or
recurring patterns in the data. Subword tokenizers such as Byte-Pair Encoding orWordPiece
are nowadays a standard for Transformer-based models. The subword tokenizer is usually
built specifically for each model. The tokenizer is trained on a raw training corpus (Jurafsky
& Martin, 2024), during this process, the vocabulary is built.

3.6.4.1 Byte-Pair Encoding

The byte-pair encoding (BPE) algorithm (Sennrich et al., 2016) usually expects that the training
corpus is already pre-tokenized into words. The pre-tokenization can be done simply by
splitting the text by spaces. The algorithm starts with a vocabulary that contains all individual
characters present in a given corpus. Then, it iterates over the training corpus and chooses
the two most common adjacent characters (subwords), merges them and adds them to the
vocabulary, creating a new subword and merging rule. Additionally, the algorithm replaces
each occurrence of the selected adjacent characters (subwords) in the corpus with the new
subword.

49



3. Machine Learning for Sentiment Analysis

This process of creating andmerging new subwords continues until a predefined number
k of new subwords has been formed, where k is a hyper-parameter of the tokenizer. At the
end of the training, the vocabulary contains the initially used characters and all newly created
subwords. When any text is to be tokenized, the tokenizer just applies the merging rules in
the order in which they were created.

3.6.4.2 WordPiece

The WordPiece tokenization algorithm (Schuster & Nakajima, 2012) is similar to the BPE
tokenizer. It also uses every character from the training corpus to create an initial vocabulary.
The difference lies in the choice of the pair of subwords (characters) that are merged. Instead
of choosing the most frequent subword pair, the algorithm selects the pair that maximizes
the likelihood of the training data when added to the vocabulary.

3.6.4.3 Other Subword Tokenizers

Another subword tokenization algorithm is called unigram (Kudo, 2018). In contrast to the
BPE and WordPiece, the initial vocabulary of the unigram algorithm is set to a large number
of subwords, which can be thewords split by space. The algorithm then iteratively reduces the
vocabulary. The SentencePiece algorithm (Kudo & Richardson, 2018) mitigates the problem
of the previous algorithms that assumed that the input is already pre-tokenized, usually by
spaces. SentencePiece uses the input as a raw input stream including spaces.
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Transfer learning is a technique used in machine learning, especially in computer vision
and NLP and it has proven to be highly effective. The core idea is to pre-train a model on
a large volume of data and then adapt this pre-trained model to a specific task or domain,
effectively transferring and leveraging the acquired knowledge. The detailed description
and categorization of transfer learning techniques can be found in Pan and Yang (2010) and
Zhuang et al. (2020).

The motivation for this technique is that for most supervised NLP tasks, the labeled data
are limited (insufficient amount of training data). Transfer learning allows the utilization of
general knowledge acquired during pre-training, leading to improved performance on tasks
with limited data compared to approaches reliant solely on that limited data. This transferred
knowledge often encompasses insights and patterns that would be challenging to learn from
the limited data available for a specific task. The pre-trained models for transfer learning can
be split according to their usage in downstream tasks into two groups (Devlin et al., 2019):

1. Feature-based approach: The pre-trained model produces vector representations of
text as additional features for another custom model for a specific task. The word2vec
(Mikolov, Chen, et al., 2013), fastText (Bojanowski et al., 2017) word embeddings or
ELMo (Peters et al., 2018) architecture belongs under this category.

2. Fine-tuning approach: The pre-trained model (its parameters) is directly fine-tuned on
the downstream task and no additional model is needed. Examples of this approach
are BERT (Devlin et al., 2019) or GPT (Radford et al., 2018).

The feature-based approach is older, but it has shown to be very efficient. With the
rise of the Transformers, the fine-tuning approach nowadays become a de facto standard.
We describe the fine-tuning approach for classification with the Transformer-based models
in Section 4.3.6. Very recently, a new technique called prompt-based learning emerged, see
Section 4.3.7.
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4.1 Word Embeddings
To use machine learning algorithms, it is necessary to convert text into numerical vectors, as
these algorithms work with numerical inputs. These vectors should effectively capture both
the syntax and semantic information.

Word embeddings, sometimes called word vectors or simply embeddings, have emerged
as a pivotal component for various NLP tasks. They have become an essential part of many
NLP systems since they can capture words’ meaning (semantics). Probably the most famous
methods for learning word embeddings are word2vec (Mikolov, Chen, et al., 2013), GloVe
(Pennington et al., 2014) and fastText (Bojanowski et al., 2017). They are based on the Distri-
butional Hypothesis (Harris, 1954) that says that words that occur in similar contexts tend to
have similar meanings. It was popularized by (Firth, 1957) and his famous quote, “a word is
characterized by the company it keeps”.

The word embeddings can be divided into two groups static word embeddings and contex-
tual word embeddings also called dynamic word embeddings. Static word embeddings always
assign the same vector to each word regardless of the context in which the word occurs. In
contrast, contextual word embeddings generate a new word vector based on the context in
which the word appears.

4.1.1 Static Word Embeddings

Static word embeddings such as word2vec, GloVe or fastText are typically pre-trained and
represented by an n-dimensional vector space, also called semantic space. Each word 𝑤𝑖
from vocabulary 𝑉 is represented by a static vector h𝑖 ∈ R𝑛 (Hewitt, 2019). They are usually
stored in one matrix, used as a lookup table that maps words to vectors. It can be expressed
as a mapping function:

𝑓𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟 𝑦 : 𝑤𝑖 → h𝑖 (4.1)

The disadvantage of static word embeddings is that they cannot handle polysemy. In
other words, one word can have multiple meanings and the specific interpretation relies on
the context in which the word is used. For example, consider these two sentences: “I love
Coca-Cola in the new can” and “I can buy Coca-Cola for you tonight”. In both sentences, the
word “can” is used, but each time, depending on the context, it means something different
and using the static word embeddings, it will always be represented by the same vector. In
contrast, the contextual word embeddings can handle different contexts, see Section 4.1.5.

4.1.2 Similarity Between Word Vectors

The similarity between word vectors is usually measured with cosine similarity, which cor-
responds to the cosine of the angle 𝛼 between the two vectors x and ywith dimension 𝑑 and
it is computed as follows:
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cos(x, y) = x · y
| |x| | | |y| | =

𝑑∑
𝑖=1
𝑥𝑖 𝑦𝑖√︄

𝑑∑
𝑖=1
𝑥2
𝑖

√︄
𝑑∑
𝑖=1

𝑦2
𝑖

= cos(𝛼) (4.2)

4.1.3 Word2vec

The famous word2vec is a pair of two models for efficient learning of word embeddings, i.e.,
continuous bag-of-words (CBOW) and Skip-gram proposed by Mikolov, Chen, et al. (2013).
Both word2vec models (CBOW and Skip-gram) are actually neural networks1 with three
layers: input layer, projection layer and output layer, see Figure 4.1. The models are inspired by
the feed-forward neural network for language modeling (NNLM) proposed in Bengio et al.
(2003). The proposed NNLM consists of input, projection, hidden and output layers, but the
network is also computationally expensive, which is caused by the non-linear hidden layer.
In word2vec, the hidden layer is removed and thus, the proposedmodels are computationally
less expensive.

w(t-2)

w(t-1)

w(t+1)

w(t+2)

w(t)

SUM

CBOW

INPUT OUTPUT

Skip-gram

INPUT PROJECTION OUTPUT

w(t+2)

w(t+1)

w(t-1)

w(t-2)

w(t)

PROJECTION

Figure 4.1: The CBOW architecture predicts the current word based on the context and the
Skip-gram predicts surrounding words given the current word.

4.1.3.1 Skip-gram with Negative Sampling

Skip-gram model learns to predict the surrounding context words within a certain range 𝐶
(context size) before and after the current word 𝑤𝑡 as shown on the right side of Figure 4.1.
The model’s input is only the current word 𝑤𝑡 encoded with a one-hot vector and the output

1Sometimes word2vec is not considered as a neural network because of the removed non-linearity that is
so characteristic for neural networks.
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is a probability distribution over a vocabulary 𝑉 . The probability distribution denotes how
likely the words will occur as context words around the word 𝑤𝑡 .
The model is represented by an embedding matrix X ∈ R|𝑉 |×𝑑 (between the input and

projection layer) and a context embedding matrix X̂ ∈ R|𝑉 |×𝑑 (between the projection and
output layer), where 𝑑 is specified dimension. These two matrices are the model’s parameters
Θ. Given a sequence of training words 𝑤1, 𝑤2, . . . , 𝑤𝑇 , the model is optimized by minimizing
the following objective function2 𝐽𝑆𝐺𝑁𝑆 (Θ):

𝐽𝑆𝐺𝑁𝑆 (Θ) = −
1
𝑇

𝑇∑︁
𝑡=1

∑︁
−𝐶≤ 𝑗≤𝐶,𝑗≠0

log 𝑝(𝑤𝑡+𝑗 | 𝑤𝑡) (4.3)

and 𝑝(𝑤𝑡+𝑗 | 𝑤𝑡) is computed using the softmax function:

𝑝(𝑤𝑡+𝑗 | 𝑤𝑡) =
exp(x̂𝑤𝑡+𝑗Tx𝑤𝑡)∑|𝑉 |
𝑖=1 exp(x̂𝑤𝑖Tx𝑤𝑡)

(4.4)

where x̂𝑖 is the context word vector from matrix X̂ for word 𝑤𝑖 and x𝑖 is the embedding
word vector from matrix X for word 𝑤𝑖.

The original formulation of log 𝑝(𝑤𝑡+𝑗 | 𝑤𝑡) is very expensive to compute (because of
the denominator) and thus the negative sampling as an alternative solution for estimating
the probability was proposed by Mikolov, Sutskever, et al. (2013). The idea of the negative
sampling is to help the model distinguish the target word 𝑤𝑡 from words (called negative
samples) taken from a noise distribution 𝑃𝑛(𝑤). Words from the noise distribution 𝑃𝑛(𝑤) are
unlikely to occur as the context words of the target word 𝑤𝑡 . The noise distribution 𝑃𝑛(𝑤)
was empirically estimated and set to the unigram distribution raised to the 3/4𝑡ℎ power. The
usual number of negative samples is 5 − 20. The negative sampling is given by:

𝑝(𝑤𝑡+𝑗 | 𝑤𝑡) = log 𝜎 (x̂𝑤𝑡+𝑗Tx𝑤𝑡) +
𝑁∑︁
𝑖=1

E𝑤𝑖∼𝑃𝑛 (𝑤)
[
log 𝜎 (−x̂𝑤𝑖

Tx𝑤𝑡)
]

(4.5)

where 𝑁 is a number of negative samples and 𝜎 is the sigmoid function.

4.1.3.2 Continuous Bag-of-Words

The continuous bag-of-words architecture is similar to the Skip-gram architecture. The goal
of the CBOW model is to predict the target center word 𝑤𝑖 using all surrounding context
words given by context size 𝐶. The CBOW objective function to be minimized is defined as:

𝐽𝐶𝐵𝑂𝑊 (Θ) = −
1
𝑇

𝑇∑︁
𝑡=1

log 𝑝(𝑤𝑡 | 𝑤𝑡−𝐶 , . . . , 𝑤𝑡−1, 𝑤𝑡+1, . . . 𝑤𝑡+𝐶) (4.6)

and 𝑝(𝑤𝑡 | 𝑤𝑡−𝐶 , . . . , 𝑤𝑡−1, 𝑤𝑡+1, . . . 𝑤𝑡+𝐶) is defined as:
2SGNS stands for Skip-gram with negative sampling.

54



4.1.4. FastText

𝑝(𝑤𝑡 | 𝑤𝑡−𝐶 , . . . , 𝑤𝑡−1, 𝑤𝑡+1, . . . 𝑤𝑡+𝐶) =
exp(x̂𝑤𝑡Tx𝑤𝑡)∑|𝑉 |
𝑖=1 exp(x̂𝑤𝑖Tx𝑤𝑡)

(4.7)

where the vector x𝑤𝑡 is the sum of vectors of context words 𝑤𝑡−𝐶 , . . . , 𝑤𝑡−1, 𝑤𝑡+1, . . . 𝑤𝑡+𝐶
defined as follows:

x𝑤𝑡 =
∑︁

−𝐶≤𝑖≤𝐶,𝑖≠0

x𝑤𝑡+𝑗 (4.8)

The negative sampling technique can be used for the CBOW as well. According to experi-
ments presented in Mikolov, Chen, et al. (2013), the CBOWmodel works slightly better than
the Skip-gram model in capturing syntactic information, but the Skip-gram significantly
outperforms the CBOWmodel in capturing semantic information.

4.1.4 FastText
FastText (Bojanowski et al., 2017) is based on the skip-gram model with negative sampling
and employs sub-words (character n-grams). FastText uses character n-grams (hereinafter
only n-grams) instead of entire words for training. Each n-gram has its own vector repre-
sentation, the vector representation of words is computed as a sum of its character n-grams.
Employing the sub-word information improves the vector representation for morpholog-
ically rich languages. The advantage of this approach is that the model can obtain vector
representation even for words that did not appear in the training corpus.

4.1.5 Contextual Word Embeddings
Unlike static word embeddings, contextual word embeddings embed the word representation
of word w into a vector, based on its actual context (surrounding text). Thus, the vector rep-
resentation will be different for different contexts. Contextual embeddings are usually gener-
ated by pre-trained language models like BERT or ELMo. However, the Transformer-based
models such as BERT or GPT are, in principle, not intended to generate word embeddings,
although they can do so. This is because the entire model is directly fine-tuned for a specific
downstream task. ELMo, on the other hand, is supposed to be used to extract contextual
word embeddings, which will then be employed in another model without modifying the
weights of the ELMo model. Models that produce word embeddings differ in architecture
and many other aspects, but usually, they have two main properties in common. (1) They
are intended to learn and build a strong contextual representation of language. (2) They are
trained on objectives similar or closely related to language modeling (Hewitt, 2019).

The dynamic embeddings can be formalized as a function of an entire sequence of text,
unlike the static embeddings where the input is only a single word. These models take into
account not only the word itself but also the context of the word and thus, they eliminate
the polysemy problem from static word embeddings. We can define such a model as the
function:
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𝑓𝑐𝑜𝑛𝑡𝑒𝑥𝑡 =: (𝑤1, 𝑤2, . . . , 𝑤𝑁 ) → (h1,h2, . . . ,h𝑁 ) (4.9)

where (𝑤1, 𝑤2, . . . , 𝑤𝑁 ) is a text sequence of words, (h1,h2, . . . ,h𝑁 ) are vectors for the corre-
spondingwords and eachword𝑤𝑖 ∈ 𝑉 . In this case, theword embeddings are not pre-trained,
but they are produced by the pre-trained model on demand.

The disadvantage is that models for dynamic embeddings usually need much more com-
putational resources to be trained. Thus, even though dynamic embeddings outperform
static embeddings, static embeddings are still used because they can be easily trained for any
language or domain using only a fraction of computation power compared to models for
dynamic embeddings.

4.2 Language Modeling for Transformers
As we mentioned, the Transformer-based models are usually language models pre-trained
on a huge amount of text. The idea behind using large amounts of text for pre-training is
based on the self-supervised learning paradigm. Generally speaking, the data are utilized in
the way in which the model is learned on a supervised task with unlabeled data. Usually, the
model is trained to predict or reconstruct missing parts of the input data, such as artificially
masked or removed words in the text or parts of images. Such an approach allows the model
to extract useful representations from unlabeled data without explicit human annotations
and learn meaningful representations that can be later transferred to downstream tasks. The
obvious advantage is that it enables models to learn from vast amounts of unannotated data,
reducing the reliance on expensive labeled datasets (Jurafsky & Martin, 2024).

In NLP, the language modeling (LM) tasks in different variants are used for self-supervised
learning. The goal of a language model is to assign a probability to a sequence of words.
Thanks to language modeling, the model gains general knowledge about the language (e.g.,
semantic and syntax information) that can be later exploited for fine-tuning. According to
Jurafsky and Martin (2009), the language modeling tasks can be roughly categorized into
two types: causal language modeling andmasked language modeling also called cloze task (W. L.
Taylor, 1953). Transformer-based models use both of these tasks for pre-training.

4.2.1 Causal Language Modeling

The goal of causal language modeling task is to predict the next word or token in text sequence
based on the preceding context, as illustrated in Figure 4.2. Models built on causal language
modeling are often used for text generation. Such a model works left-to-right, generating
one output token at a time, conditioning its predictions solely on the history of previously
generated tokens. This approach of using a language model to incrementally generate words
by repeatedly sampling the next word conditioned on our previous choices is nowadays
called autoregressive generation or causal LM generation (Jurafsky &Martin, 2024). The typical
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examples are the models from the Generative Pre-trained Transformer (GPT) family, see
Section 4.3.1.

The happiest fish live in

Figure 4.2: An example of causal language modeling task.

The older n-gram languagemodels (Jurafsky&Martin, 2009) used the chain rule of proba-
bility to estimate the probability of the next token 𝑥𝑘 in a sequence of 𝑛 tokens (𝑥1, 𝑥2, . . . , 𝑥𝑛)
based on the history (𝑥1, . . . , 𝑥𝑘−1) as follows:

𝑝(𝑥1, 𝑥2, . . . , 𝑥𝑛) =
𝑛∏
𝑘=1

𝑝(𝑥𝑘 | 𝑥1, 𝑥2, . . . , 𝑥𝑘−1) (4.10)

4.2.2 Masked Language Modeling

Masked language modeling (MLM)models predict amasked token orword in textual sequence
based on the entire sequence (context), as shown in Figure 4.3. It means that the model has
access to all tokens on the left and right sides of the masked token, unlike in the case of causal
language modeling, where only the previous tokens (history) were accessible. The task is also
referred to as cloze task (W. L. Taylor, 1953).

The happiest live in sea.

Figure 4.3: An example of masked language modeling task.

The example of a model that uses MLM is the BERT model (Devlin et al., 2019). The
model is trained on a large unlabeled text corpus. From the sentences of the corpus, random
tokens are sampled to be masked and predicted. The “masking” procedure includes three
possibilities:

• The sampled token is replaced (masked) with the artificial [MASK] token.

• The sampled token is replacedwith another randomly sampled token from themodel’s
vocabulary.

• The sampled token is unchanged.

In BERT 15% input tokens are sampled for the masking procedure. Then 80% out of this
15% are masked as the [MASK] token, 10% are replaced with a random existing token and
10% remain unchanged. Then, the training objective is to predict the original tokens before
the masking phase and only the masked tokens are used for learning, i.e., only these tokens
are used in the cross-entropy loss function.
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4.3 Transformer-based Models
Transformer-based models are built upon the Transformer architecture described in Section
3.6 and trained on a huge amount of unannotated text with the language modeling objective
or its variant explained in the previous sections. Transformer-based models brought a sig-
nificant improvement in performance in almost any NLP task (Raffel et al., 2020). Individual
models use different parts of the Transformer architecture and different variants of the LM
task. For example, as shown in Figure 4.4, the BERT model uses only the encoder part of the
Transformer with MLM objective, GPT models use the causal language modeling objective
with the decoder part of the Transformer, whereas the T5 model (Raffel et al., 2020) uses the
original entire encoder-decoder architecture of the Transformer with a modified version of
MLM.

Transformer
Encoder

enjoyed          lunch 

I     really   [MASK]  the  [MASK] 
(I really enjoyed the lunch)

(a) Encoder-only BERT.

Transformer
Decoder

lunch 

     <s>      I    really enjoyed  the
(I really enjoyed the lunch)

(b) Decoder-only GPT.

Transformer
Decoder

Transformer
Encoder

Translate EN-DE: This is good

Das ist gut

x

(c) Encoder-decoder T5.

Figure 4.4: Language modeling objective and models comparison.

4.3.1 GPT Models Family
Generative Pre-trained Transformer (GPT) (Radford et al., 2018) follows the idea of training
a languagemodel on a huge amount of text data, which brings strong contextualized language
representation that can be used in downstream tasks. GPT is a multi-layer Transformer
decoder. The model is firstly pre-trained using the causal language modeling task. Then,
for its usage in downstream tasks (e.g., sentiment analysis), the model is fine-tuned for the
specific task. Fine-tuning means learning to modify the model’s weights to produce desired
outputs for the given downstream task.
GPT is the predecessor of the GPT-2 (Radford et al., 2019), GPT-3 (Brown et al., 2020),

GPT-4 (OpenAI, 2023) and the famous ChatGPT (OpenAI, 2022)models. Unlike the first GPT
model, the later models are not directly fine-tuned for the downstream tasks, but the prompt-
ing or prompt-based learning is used instead, see Section 4.3.7 for details. Loosely speaking,

3Image is based on https://lilianweng.github.io/lil-log.
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Masked Multi Self-Attention

Layer Norm

Feed Forward

Layer Norm

Softmax

12 x

Figure 4.5: Architecture of the GPT model3.

when prompting is applied, the description of the downstream task is part of the input and
the model itself has to deduce the task and produce the desired output. Such an approach is
used in zero-shot learning, where the model should be able to produce outputs for the task
that has not been explicitly trained and for which it has not seen any examples. A similar
concept is few-shot learning, where the model is fine-tuned only on a small number of exam-
ples, usually up to dozens of examples. The new GPT models (since GPT-2) demonstrated
outstanding abilities in zero-shot learning on various NLP tasks. Next, we describe the first
GPT model (Radford et al., 2018) since the newer models are built on its architecture.

The architecture of GPT is based on the original Transformer (Vaswani et al., 2017), but
it is modified and it uses only the decoder part of the Transformer architecture, which is
called Transformer decoder (P. J. Liu et al., 2018). The proposed model stacks 12 layers of
Transformers followed by the final softmax layer that produces a distribution over the target
tokens, see Figure 4.5 for the architecture overview.

During pre-training, themodel for a given training sequence of tokensX = (𝑥1, 𝑥2, . . . , 𝑥𝑛)
minimizes the following objective function 𝐽𝐺𝑃𝑇 (X,Θ):

𝐽𝐺𝑃𝑇 (X,Θ) = −
𝑛∑︁
𝑘=1

log 𝑝(𝑥𝑘 | 𝑥𝑘−𝑗, . . . , 𝑥𝑘−1;Θ) (4.11)

where Θ are the optimized parameters of the model, 𝑗 is the size of the context window and
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𝑘 is the currently predicted token. The model can be expressed as follows:

h0 = uW𝑒 +W𝑝

hℓ = transformer_block(hℓ−1),∀ℓ ∈ [1, 𝐿]
𝑝(𝑉 ) = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(h𝐿W𝑒

T)
(4.12)

where h0 is the hidden state (output) of the input layer, u = (𝑢−𝑗, . . . 𝑢−1) is a context vector
of tokens, 𝐿 is a number of Transformer layers4,hℓ are outputs of stacked Transformer layers,
W𝑒 is the token embeddings matrix andW𝑝 is the position embeddings matrix and 𝑝(𝑉 ) is
a probability distribution over the vocabulary 𝑉 .
After the unsupervised training with the objective from Equation 4.11, the resulting

pre-trained model can be fine-tuned for a certain task, for example, text classification. As
a classification token, GPT uses the representation of the last token in the input sequence.
The representation of the last token is obtained from the output h𝐿 of the last layer of the
model. Please see Section 4.3.6 for an explanation of the classification token and details about
the classification with Transformers.

4.3.2 BERT
BERT stands for Bidirectional Encoder Representations from Transformers (Devlin et al., 2019).
It is a model for language representation based on the Transformer architecture. BERT lan-
guage modeling pre-training objective is to predict the masked tokens using the left context
(previous tokens) and the right context (following tokens) jointly at once. This property is
called bidirectionality (hence, the bidirectional word in BERT name).

The authors of BERT proposed two models. BERTBASE has the same size as GPT (i.e., 12
stacked layers of Transformer blocks, it contains 110 million parameters in total) in order to
be comparable with GPT. BERT uses the WordPiece subword tokenizer with a vocabulary
size set to 30𝑘, the size of the hidden layers is set to 768 and it uses 12 attention heads. The
second proposed model, BERTLARGE consists of 24 stacked layers of Transformer blocks
with a total of 340 million parameters.

BERT pre-training is similar to GPT, but it differs mainly due to the mentioned ability to
learn jointly from both (backward and forward) directions when iterating over text. BERT is
trained on a large unlabeled text corpus with two auxiliary tasks instead of the basic language
task. (1)Masked Language Modeling, for a given input word sequence, a certain portion of
words are replaced by a special symbol [MASK] and the goal of the task is to recover the
replaced original words without any information about them. (2) Next Sentence Prediction
(NSP) is a task where for a given sentence pairs A and B, the goal is to decide whether the B
sentence follows the A sentence in a training corpus. The authors generated training corpus
so that 50% of sentence pairs remained in the correct order and for 50% of sentence pairs,
the B sentence was replaced by other random sentences from the corpus. Then, the trained
model is utilized for a specific downstream task in a similar way as GPT.

4The authors used 12 layers, but any number could be used.
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An issue with the original Transformers, in general, is that the size of the input layer
decides the complexity of the model. Both the time and memory requirements in the Trans-
former grow quadratically with the length of the input. Therefore, it is necessary to set a fixed
input length long enough to provide sufficient context for the model to function and yet still
be computationally tractable. For BERT, a fixed input size of 512 subword tokens was used
which is also a common value for other Transformer-based models.

4.3.3 RoBERTa

RoBERTa model (Y. Liu et al., 2019) comes from A Robustly Optimized BERT Pretraining
Approach and is a descendant of the BERT model. The authors stated that the original BERT
model was significantly undertrained. They compared different key hyper-parameters and
training data sizes and showed their important impact on the model’s performance.
The architecture of RoBERTa is the same as the BERT model, but they modify the pre-

train phase in multiple aspects. In the original BERT pre-training, the masking of tokens
was done once during the pre-processing of training data and remained the same during the
entire training. In RoBERTa, the masking is performed multiple times during the training, so
the models do not always predict the same tokens. Secondly, they removed the next sentence
prediction task. Next, they trained the model with a large batch size of 8𝑘 examples and they
used a much larger text corpus for pre-training, 16GB of text was used for BERT and 160GB
was used for RoBERTa. Finally, they increased the vocabulary size from 30𝑘 to 50𝑘.

4.3.4 T5

T5 model (Raffel et al., 2020) (from Text-to-Text Transfer Transformer) is a sequence-to-
sequence model that processes the input text and as an output, it also produces text. Unlike
traditional models trained for specific tasks, T5 follows a "text-to-text" framework where
all tasks are reformulated as text generation problems. T5 model uses both parts of the
Transformer architecture, i.e., encoder and decoder, with minor modifications.

The unsupervised pre-training language modeling objective differs from classical MLM
in the way that instead of masking single tokens, T5 masks (corrupts) multiple tokens at once
(spans) and replaces them with one sentinel token as shown in Figure 4.6.

The goal of the model is to generate and reconstruct the dropped-out spans (tokens se-
quences) delimited by the sentinel tokens used to replace them in the input plus a final sentinel
token. Further, the model is trained (fine-tuned) with supervised tasks. Since each dataset
is converted into a unified text-to-text format, as illustrated in Figure 4.7, they use a con-
catenation of all different datasets as one big supervised multitask dataset. The concatenated
dataset consists of various NLP tasks such as machine translation, text summarization, text
classification, question answering etc. Some are part of the GLUE (A. Wang et al., 2018) and
SuperGLUE (A. Wang et al., 2019) benchmarks. In summary, while BERT focuses on bidirec-
tional representations and specific pretraining objectives, T5 takes a text-to-text framework,
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Original text

Don’t you like the sea? The happiest fish live in sea.

Inputs

Don’t you <X> The happiest fish <Y> in sea.

Targets   

<X> like the sea? <Y> live <Z>

Figure 4.6: T5 model language modeling objective.

incorporating both encoder and decoder components, and handles a broader range of tasks
through a unified text generation approach.

Figure 4.7: T5 pre-training and fine-tuning visualization. Image taken from Jurafsky and
Martin (2009)

Later, a modified version of T5 were released, such as byT5 model (Xue et al., 2022) or
T5v1.1 model which is an improved version of T5. T5v1.1 has some architectural updates
and it is only pre-trained using the MLM without incorporating the supervised tasks. The
BART model (Lewis et al., 2020) is a similar sequence-to-sequence model, although it is not
based on the T5 model.

4.3.5 Multilingual Models

In the field of NLP, English is the prevailing and primarily used language. Thus, all the
mentioned models were English monolingual models, i.e., they were trained and intended to
be used only for English. However, there are many other languages and the need for models
in these languages quickly emerged. To tackle the lack of models in other languages, there
are two possible approaches: (1) train a monolingual model in the required language or (2)
train a multilingual model that can handle multiple languages at once.

62



4.3.6. Classification with Transformers

There are many monolingual models in other languages, for example, Czech (Kocián
et al., 2022; Sido et al., 2021; Straka et al., 2021), French (Le et al., 2020; Martin et al., 2020),
Arabic (Safaya et al., 2020), Romanian (Dumitrescu et al., 2020), Dutch (Delobelle et al., 2020;
de Vries et al., 2019), Finnish (Virtanen et al., 2019), Polish (Kłeczek, 2020), Turkish (Schweter,
2020) or German (Chan et al., 2020).

Alternatively, a multilingual model can be trained. The multilingual model is pre-trained
in multiple languages at once. The model can be used for multiple languages, i.e., it can
be fine-tuned for different downstream tasks in different languages. In addition, thanks to
the multilingual pre-training, the model usually gains cross-lingual capabilities to transfer
knowledge from one language to another. Such cross-lingual property is very useful because,
for example, the model can be trained for text classification in English and can be applied to
evaluate the same task on data from another language. Examples ofmultilingual Transformer-
based models are mBERT (Devlin et al., 2019), XLM (Conneau & Lample, 2019), XLM-R
(Conneau et al., 2020), SlavicBERT (Arkhipov et al., 2019), mT5 (Xue et al., 2021) or mBART
(Y. Liu et al., 2020). We discuss the cross-lingual capability in more detail in Section 6.3.

4.3.6 Classification with Transformers

The process of fine-tuning a pre-trained Transformer-basedmodel for classification typically
treats it as a sequence classification task. In this context, the input sequence (sequence of
tokens) is passed through the entire model and the information important for classification
is accumulated into one vector used for final predictions.
More formally, given a training corpus T , each training sample 𝑡𝑖 ∈ T contains a se-

quence of tokens (𝑥1, . . . , 𝑥𝑚) alongwith a label 𝑦. The training sample is then passed through
the pre-trained model. The hidden vector h ∈ R𝐻 of the classification token [CLS] is often
extracted from the pooling layer, which is usually a fully-connected layer of size 𝐻 and
a hyperbolic tangent activation function. The dropout is applied to the vector, which is then
passed through a task-specific linear layer represented by the matrixW ∈ R|𝐶 |×𝐻 , where C
is a set of classes and 𝐻 is the hidden size of the model. The output class 𝑐 ∈ 𝐶 is computed
as 𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥(hW𝑇 ). To obtain the probability distribution y of the possible output labels,
the softmax activation is used as follows:

𝑝(y | 𝑥1, . . . , 𝑥𝑚) = 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥(hW𝑇 ) (4.13)

The model is then fine-tuned by minimizing the following objective 𝐽 (T ,Θ):

𝐽 (T ,Θ) = −
𝑛∑︁
𝑘=1

log 𝑝(y | 𝑥1, . . . , 𝑥𝑚;Θ) (4.14)

whereΘ are themodel’s optimized parameters (weights). Usually, all parameters of themodel
are optimized. The cross-entropy loss function is usually used. The additional matrix W
along with the softmax is often referred to as classification head, as illustrated in Figure
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4.8. Generally, any introduced neural network or layer added at the top of the underlying
Transformer can be called a classification head.

Transformer
Encoder

[CLS]      I     really   enjoyed  the  lunch 
(I really enjoyed the lunch)

Classification
Head

softmax(hWT)

Predictions
 

positive
negative
neutral

Figure 4.8: Visualization of classification principle with Transformer-based models.

The described approach is applicable for binary or single-label multi-class classification.
For multi-label classification, the softmax activation is replaced with the sigmoid function.
Then, each class 𝑐 will obtain its own independent probability of the classified example,
denoting if it belongs to the given class. These probabilities are then used in the objective
function. The classes whose probability overcomes a predefined threshold (usually 0.5) are
assigned as the predictions.

The classification token is usually referred to as [CLS] token5 or for example <s> in the
case of RoBERTa model. This token is artificially added to the input sequence’s beginning or
end (usually in the case of causal language models such as GPT). The idea behind the classifi-
cation token is that during the fine-tuning, the model learns to accumulate any information
important for the classification from the entire sequence into the classification token. The
classification token is directly used for the classification as described above.
The sequence-to-sequence models like T5 or BART can be fine-tuned in the same way,

but more often, they are fine-tuned to generate the predictions or output as plain text.

4.3.7 Prompt-based Learning
An alternative paradigm to the fine-tuning approach called prompting or prompt-based learn-
ing emerged recently. Prompting is a technique based on language models that modifies the
original input (text) to contain a prompt that encourages the model to produce output for
a given task. In the fine-tuning paradigm, the language model is firstly pre-trained and then
utilized (fine-tuned) for a specific downstream task. However, in prompting, the model is
usually6 directly used for predictions because the downstream tasks are reformulated to be

5In the model’s vocabulary, it is also literally represented as [CLS].
6It can also be further trained (fine-tuned) for the specific task, but it follows the prompting paradigm.
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similar to the original language modeling task with the help of the added prompt (P. Liu et al.,
2023). For example, when performing polarity detection of the following sentence: “I love
the movie!!!”, we can add a prompt like this: “Overall, the movie was ” and let the model
fill in the blank with a word that can be mapped to sentiment, for example, “great” would
indicate the positive sentiment, as shown in Figure 4.9.

Input:

x = "I love the movie !!!"

Prediction:

y = positive

(a) Classical fine-tuning.

Input:

x = "I love the movie !!!"
Template:

"[X] - Overall, the movie was [Z]"

Prompting:

x' = "I love the movie !!! - Overall, the movie was [Z]"

Model prediction:

x' = "I love the movie !!! - Overall, the movie was great"

Label mapping:

great => positive

(b) Prompting.

Figure 4.9: Comparison of classical fine-tuning approach and prompt-based learning.

To define the prompting formally, let us first recall the goal of traditional supervised
learning in NLP, particularly in text classification. For input text x = (𝑥1, . . . , 𝑥𝑚) and as-
signed label 𝑦7 being class 𝑐, the model produces the estimation of 𝑦̂ of the true 𝑦. To predict
the 𝑦̂, the model computes the probability 𝑝̂( 𝑦 = 𝑐 | x) which is the estimation of the true
probability 𝑝( 𝑦 = 𝑐 | x). The model’s estimation is obtained as follows:

𝑦̂ = 𝑝̂( 𝑦 = 𝑐 | x;Θ) (4.15)

whereΘ are the parameters of the model. The model learns the parameters from a dataset of
annotated examples, where each input has assigned the expected output. Supervised data are
required to train the model and utilize its parameters, but in some cases, getting a supervised
dataset with sufficient examples can be problematic.

The prompt-based approaches tackle this problem by directly modeling the probability
𝑝(x;Θ) of text x itself and using this probability to predict 𝑦, eliminating the need for the
annotated dataset. Prompting modifies the input text x into a prompted input x′. A template
with two slots is used tomodify the input. The input slot [X] for the input x and an answer slot
[Z] for a generated answer 𝑧 by the model that will be mapped into 𝑦. Then, the template for
polarity detection may look as follows: “[X] - Overall, the movie was [Z]”. Then the model
is asked to fill in the answer slot [Z] using its language modeling ability and based on the
answer 𝑧, the output 𝑦 is derived with a mapping function 𝑃𝑦 (𝑧) that maps the answer 𝑧 to
the label 𝑦, the mapping function may look as follows:

7It can be a scalar in case of binary classification or a probability distribution, i.e., vector of probabilities
for each class.
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𝑃𝑦 (𝑧) =


positive if 𝑧 ∈ {great, nice, amazing}
neutral if 𝑧 ∈ {ok, decent}
negative if 𝑧 ∈ {bad, terrible,boring}

(4.16)

The number of input and answer slots can be changed according to the solved task (P.
Liu et al., 2023).
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5

This chapter introduces datasets for SA and other related tasks. Further, we provide an
overview of the tasks’ approaches and related work that is important according to us.

In general, all approaches can be placed into three groups: lexicon-based approaches, ma-
chine learning approaches and hybrid approaches. The machine learning approach can be fur-
ther divided into supervised learning approach and unsupervised learning approach (Giachanou
& Crestani, 2016; B. Liu, 2012; Maynard & Funk, 2011; Medhat et al., 2014) as is shown in
Figure 5.1 that illustrates the categorization of approaches that for SA.

Sentiment Analysis

Machine Learning
Approach

Lexicon-Based
Approach

Approaches for Lexicon
Generation

Supervised Learning
Approach

Unsupervised Learning
Approach

Hybrid Approach

Dictionary-Based
Approach

Corpus-Based
Approach

Decision Tree
Classifier

Linear 
Classifiers

Rule-based
Classifiers

Probabilistic
Classifiers

Pointwise Mutual
Information (PMI)

Support Vector Machines

Logistic Regression

Naive Bayes

Maximum Entropy

Latent Dirichlet
Allocation (LDA)

Latent Semantic
Analysis (LSA)

Deep Learning
Techniques

Figure 5.1: Sentiment analysis techniques overview.

Since our work and contributions in this thesis are mainly focused on methods based
on supervised machine learning, we do not describe other approaches such as unsupervised
learning, lexicon-based or hybrid approaches. These techniques are usually obsolete and they
performmuchworse compared to the latest supervisedmethods, although in some situations
(lack of data, unusual data domain), they may still be useful. For more detailed descriptions,
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please see Přibáň (2020). Section 5.2 focuses on the methods used before the Transformer era.
In Section 5.3, we describe the latest techniques that utilize models based on the Transformer
architecture that fall under the deep learning category in Figure 5.1.

5.1 Datasets
Datasets are required not only to train the supervised machine learning models but also to
evaluate the performance of any system or approach dealing with any SA related task. This
section summarises well-known and popular English datasets for the polarity detection task,
emotion detection and subjectivity classification. We also include examples of datasets for
other languages, even though most of the research was focused on English.
Process of manual annotation of datasets for NLP tasks is usually very expensive and

time-consuming; therefore, researchers are trying to find approaches to get labeled data in
another way. In SA, there are two main approaches to obtain annotated data: (1) manual
annotation and (2) distant supervision (Giachanou & Crestani, 2016).

5.1.1 Manual Annotation

For tasks like polarity detection, the manual annotation can be done in any spreadsheet
(MS Excel, Google Sheets etc.) or software specialized for data annotating, for example,
Amazon Mechanical Turk1. The manual annotation is usually applied for more complex tasks
like ABSA. Examples of manually annotated datasets can be found in L. Dong et al. (2014),
Habernal et al. (2013), Saeidi et al. (2016), and Socher et al. (2013) or Rosenthal et al. (2017).
The advantage of manual annotation is that the labels are usually more reliable and less
erroneous.

5.1.2 Distant Supervision Annotation

The second option is the distant supervision approach. It automatically allows labeling data
with minimal human interaction or completely without incorporating humans into the
annotating process. The distant supervision techniques use metadata or other specific data
properties to obtain the label. There are two main sources for distant supervision datasets.
The first one is a review of any type. The textual reviews usually contain additional

explicit ratings (e.g., number of stars). This explicit rating is used as a label for the textual
review. Such an approach was used, for example, in Maas et al. (2011), Pang and Lee (2004),
and Pang et al. (2002) or Habernal et al. (2013).

The second source is social media websites (e.g., Twitter, Facebook). In this case, prede-
fined emoticons, emojis or hashtags are used as a noisy label. The predefined emoticons or
hashtags are tied up with a certain label (class) and based on their presence in the post, the
corresponding class is used as the label. For example, in Tweet “I’m so happy :) #cool #amazing”

1https://www.mturk.com
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emoticon “:)” the hashtag “#amazing” is assigned to the positive sentiment. Thus, the Tweet
is labeled as positive. A similar method was used in Go et al. (2009) and Speriosu et al. (2011).

With these approaches, a huge amount of annotated data can be obtained, but the relia-
bility is lower than the manual approach.

We applied both the manual and the distant supervision approaches in our paper (Přibáň
& Steinberger, 2022), where we present the dataset for subjectivity classification, see Section
8.3.

5.1.3 Corpora for Sentiment Analysis
The datasets for sentence-level and document-level tasks are listed in Table 5.1 and datasets
for aspect-based task are shown in Table 5.2.

Here, we mention one well-known and commonly used2 Cornell Movie Review Dataset3

(Pang & Lee, 2004, 2005; Pang et al., 2002). The corpora consist of two datasets for SA and
one for the classification of sentence subjectivity. The dataset for subjectivity classification
consists of 5,000 subjective and 5,000 objective sentences obtained in a distant supervision
manner. To gather subjective sentences, they downloadedmovie review sentences or phrases.
To obtain objective data, they took sentences from plot summaries of movies from the Inter-
net Movie Database4. As mentioned above, we built the Czech dataset (Přibáň & Steinberger,
2022) for subjectivity classification. See the corresponding papers for further details of the
datasets.

2According to authors, more than 100 papers used their dataset until 2012. The paper describing the
dataset has more than 4, 600 citations according to https://scholar.google.com (July 2023).

3Available at http://www.cs.cornell.edu/people/pabo/movie-review-data/
4https://www.imdb.com
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Paper Name Size Classes Text Domain Source Annotation Language

(Pang et al., 2002) Movie Reviews v1.0 1,400 P, N review movie reviews IMDb ratings English
(Pang & Lee, 2004) Movie Reviews v2.0 2,000 P, N review movie reviews IMDb ratings English
(Pang & Lee, 2005) Sentence Polarity 10,662 P, N sentence movie reviews Rott. Tom. ratings English
(Go et al., 2009) Sentiment140 1,600,000 P, N tweet multiple Twitter emoticons English
(Go et al., 2009) Sentiment140 Test 359 P, N tweet multiple Twitter manual English
(Shamma et al., 2009) Obama-McCain Debate 1,904 P, N tweet Obama McCain Twitter manual English
(Maas et al., 2011) IMDb 50,000 P, N review movie reviews IMDb ratings English
(Socher et al., 2013) SST-5 11,855 P+, N+, O sentence movie reviews Rott. Tom. manual English
(Socher et al., 2013) SST-2 9,613 P, N sentence movie reviews Rott. Tom. manual English
(X. Zhang et al., 2015) Yelp-Fine 140,000 P+, N+, O review multiple Yelp ratings English
(X. Zhang et al., 2015) Yelp-Binary 299,000 P, N review multiple Yelp ratings English
(Rosenthal et al., 2017) SemEval-2017 62,617 P, N, O tweet multiple Twitter manual English
(Speriosu et al., 2011) Health Care Reform 2,394 P, N, O tweet health care tweets Twitter emoticons English
(Habernal et al., 2013) Czech Social Media 10,000 P, N, O FB post multiple Facebook manual Czech
(Habernal et al., 2013) Czech Movie Reviews 91,381 P, N, O review movie reviews CSFD ratings Czech
(Habernal et al., 2013) Czech Product Reviews 145,307 P, N, O review product reviews MALL.cz ratings Czech
(Villena-Román, 2013) TASS-2013 68,017 P+, N+, O, X tweet multiple Twitter mixed Spanish
(Barbieri et al., 2016) Evalita-2016 9,410 P, N, O, M tweet multiple Twitter mixed Italian
(Rosenthal et al., 2017) SemEval-2017-AR 9,455 P, N, O tweet multiple Twitter manual Arabic
(Théophile, 2020) Allocine 200,000 P, N review movie reviews Allociné ratings French

Table 5.1: Overview of datasets for sentiment polarity classification. Values in column Size denote the number of examples in the dataset.
Values in columnClasses refer to the following classes: [P]: positive, [N]: negative, [P+]: very positive and positive, [N+]: very negative and negative,
[O]: neutral, [M]: mixed, [X]: none. Values in column Text denote the type (granularity) of textual examples in the dataset (FB post stands for
Facebook post). Values in column Domain represent a domain of the text. Values in column Source refer to the source web pages where the
data comes from: (IMDb: www.imdb.com, Rott. Tom.: www.rottentomatoes.com, Twitter: www.twitter.com, Yelp: www.yelp.com, Facebook:
www.facebook.com,CSFD:www.csfd.cz,MALL.cz: www.mall.cz), Allociné: https://www.allocine.fr.AnnotationColumndenotes the approach
used for obtaining labels; ratings and emoticons values refer to the distant supervision method,mixed values mean that a combination of manual
and distant supervision was used.
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Paper Name Size Classes Text Domain Source Annotation Language

(Saeidi et al., 2016) SentiHood 5,215 P, N answers quiestion answering Yahoo manual English
(Pontiki et al., 2014) SemEval-2014 7,686 P, N, O, C sentence laptops and restaurants reviews - manual English
(Pontiki et al., 2015) SemEval-2015 5,596 P, N, O sentence, review multiple - manual English
(Hercig, Brychcín, Svoboda, Konkol, & Steinberger, 2016) Czech ABSA 2,149 P, N, O sentence restaurants - manual Czech
(Pontiki et al., 2016) SemEval-2016 70,790 P, N, O sentence multiple - manual Multilingual
(Barnes et al., 2022) SemEval-2022 32,030 P, N, O sentence multiple - manual Multilingual
(L. Dong et al., 2014) Target Dependent 6,940 P, N, O tweet multiple Twitter manual English

Table 5.2: Overview of datasets for aspect-based SA. Values in all columns have the same meaning as in Table 5.1. The letter C in column
Classes refers to the conflict class and the Yahoo string refers to the www.yahoo.com website.
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5.1.4 Datasets for Emotion Analysis
As we mentioned in Section 2.4.3, there are two main tasks: emotion detection and emotion
intensity detection. Overviews of datasets for both tasks are organized in Tables 5.3 and 5.4.
See the corresponding papers for further details of the datasets. Bostan and Klinger (2018)
summarize and describe other existing and available datasets for emotion detection andmap
them to a common format in a way that can be used for future research.

Paper Dataset Text Size Topic Emotions Multi

(Strapparava & Mihalcea, 2007) SemEval 2007 Headlines 1,250 News E∗, R yes
(Scherer & Wallbott, 1994) ISEAR Descriptions 7,667 Events E∗, G, M no
(Roberts et al., 2012) EmpaTweet Tweets 7,000 General E∗, R, L+N no
(Mohammad et al., 2018) SemEval 2018 Tweets 10,983 General E∗, P∗, R+O, N yes
(Chatterjee et al., 2019) SemEval 2019 Dialogues 38,424 General A, H, S+O no
(Shrivastava et al., 2019) TV-Charmed Utterances 13,354 TV show E∗, R+O no
(Schuff et al., 2017) SSEC Tweets 4,868 General E∗, R, T, U yes
(Buechel & Hahn, 2017) EmoBank Sentences 10,548 General - -

Table 5.3: Overview of datasets for the emotion intensity detection task. Values in column
Multi denote whether the dataset contains multi-label annotations. Values in column Emo-
tions refer to the following emotions and classes: [E∗]: anger, disgust, fear, joy, sadness, [P∗]:
trust, anticipation, love, optimism, pessimism, [R]: surprise, [G]: guilt, [M]: shame, [L]: love, [H]:
happy, [S]: sadness, [T]: trust, [U]: anticipation, [A]: anger, [O]: other or neutral class, [N]: no
emotion.

Paper Dataset Text Size Topic Emotions

(Mohammad et al., 2018) SemEval 2018 Tweets 12,634 General anger, fear, joy, sad.
(Mohammad & Bravo-Marquez, 2017) WASSA 2017 Tweets 7,097 General anger, fear, joy, sad.

Table 5.4: Overview of datasets for the emotion detection task.

5.2 Classical Supervised Approaches
Supervised learning is the most common way to solve the SA tasks (B. Liu, 2012; Medhat
et al., 2014). There are numerous papers using supervised machine learning. For example,
(Balahur & Turchi, 2012; Baziotis et al., 2017; Go et al., 2009; Y. Kim, 2014; Kiritchenko, Zhu,
& Mohammad, 2014; Martineau & Finin, 2009; Pak & Paroubek, 2010; Pang et al., 2002;
Socher et al., 2013; Sun, Qiu, et al., 2019) and many more.

5.2.1 Feature-based Approaches
The initial supervised approaches (Balahur & Turchi, 2012; Go et al., 2009; Habernal et al.,
2013; Kiritchenko, Zhu, & Mohammad, 2014; Martineau & Finin, 2009; Pak & Paroubek,
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2010; Pang et al., 2002) heavily relied on feature engineering. The input of supervised machine
learning algorithms is a vector of numbers, but inNLP, there is usually only unstructured text
as the input for any task. To use text as the input for traditional machine learning methods,
features from the text must be extracted and converted to vectors. In feature engineering, the
domain knowledge of an engineer or researcher is used to define and extract characteristic
and important features from raw data (i.e., text) for the given task. We list the commonly
used features in SA:

• Terms Presence and Frequency. One of the most common and basic features is the
presence of individual words (unigrams) or other n-grams with their frequency. An-
other option is to use a weighting method for the number of occurrences, for example,
tf-idf weighting scheme (Manning et al., 2010).

• Part of Speech. The part-of-speech (POS) tags of words can hold valuable information
related to SA, such as adjectives. So, the presence of certain POS tags, their combination
or counts can be used as separate features.

• SentimentWords and Phrases. Words, phrases and idioms from sentiment lexicons
can also be used as features. The presence of positive (good, nice) or negative (bad, poor)
words is a beneficial indicator of sentiment. Most sentiment words are adjectives or
adverbs, but verbs (e.g., hate, like or love) and nouns (e.g., junk, rubbish) hold some
sentiment as well (B. Liu, 2012).

• Negations. Negations in text change the sentiment orientation. Thus, their presence
can be used as a feature.

• Syntactic Features. Other syntactic features besides the POS tags can be generated
from parsing or dependency trees. These features capture word dependencies and the
structure of sentences.

• Stylistic Features. Stylistic features (Giachanou & Crestani, 2016) are typically used
for a text from social media websites (Facebook, Twitter). They capture non-standard
writing styles like emoticons, emojis, abbreviations, slang expressions or specific punc-
tuation.

Work presented in Pang et al. (2002) is one of the earliest that uses supervised machine
learning. They classifiedmovie reviews as positive or negative with the Naive Bayes classifier,
SVM and Maximum Entropy classifier. They experimented with the following features:
unigrams, bigrams, adjectives and POS tags.
Go et al. (2009) focused on classifying Tweets with distant supervision using the Naive

Bayes classifier, Maximum Entropy classifier and SVM. The work was based on Pang et
al. (2002) and used similar features and machine learning algorithms. They automatically
created a training dataset of 1.6M tweets (50% negative and 50% positive). Pak and Paroubek
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(2010) built a Naive Bayes classifier based on traditional n-gram and POS features that can
classify Tweets as positive, negative or neutral. Habernal et al. (2013) created three Czech
datasets for polarity detection and performed initial experiments with SVM and Maximum
Entropy classifier using n-gram and POS features.

So far, wementionedworks focused solely on the document-level or sentence-level polarity
detection between which we do not distinguish. Similar feature-based approaches can also
be utilized for other tasks, including emotion analysis or subjectivity classification as shown
in Balahur et al. (2012), Barbosa and Feng (2010), and Roberts et al. (2012).

The aspect-based SA can usually be divided into several sub-tasks, such as aspect extraction
or aspect sentiment classification, as discussed in Section 2.3.3. The aspect sentiment classifi-
cation is very similar to the sentence and document-level. Often, it can be transformed into
classification tasks, and approaches similar to the ones used for sentence- and document-
level SA can be applied. The common methods for aspect extraction are based on sequential
learning, for example, Hidden Markov Models (HMM) (Rabiner, 1990) or Conditional Random
Fields (CRF) (Lafferty et al., 2001). The HMM approach was used in Jin and Ho (2009) and us-
age of CRF can be found, for example, in Choi and Cardie (2010), Hercig, Brychcín, Svoboda,
and Konkol (2016), and Jakob and Gurevych (2010).

We used the classical feature-based approach supervised learning for polarity detection
in Přibáň and Balahur (2023) and for emotion intensity detection task in Přibáň et al. (2018).

5.2.2 Deep Learning and Neural Networks

With the progress and more frequent usage of neural network models, the focus has shifted
to architecture engineering. In these approaches (Baziotis et al., 2017; Y. Kim, 2014; Socher
et al., 2013), the model is designed for one specific task in such a way that features are
learned internally by the model itself instead of manually defining and extracting features
from the text (P. Liu et al., 2023). Such approaches are also referred to as deep learning. These
approaches are usually used with the pre-trained word embeddings discussed in Section 4.1
that represent the input text.

Socher et al. (2013) introduced neural network architecture calledRecursive Neural Tensor
Network and nowadays very known Stanford Sentiment Treebank dataset. The model was able
to capture accurately the effect of negation and its scope at various tree levels for both positive
and negative phrases. They used a corpus of movie reviews from Pang and Lee (2005) and
parsed the dataset’s sentences into o parse trees, which were subsequently annotated by
human judges. Using the novel Recursive Neural Tensor Network and the created dataset,
they were able to push state-of-the-art results in sentence positive/negative classification
from 80% of accuracy up to 85.4%.
Another breakthrough work is presented in Y. Kim (2014). He was the first, who effec-

tively used a convolutional neural network (CNN) and pre-trained word embeddings for po-
larity detection and other sentence-level classification tasks. The proposed model improved
the state-of-the-art results on 4 out of 7 tasks.
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Baziotis et al. (2017) won with their deep learning system the SemEval-2017 Task 4
competition called Sentiment Analysis in Twitter (Rosenthal et al., 2017). They employed
LSTM network with an attention mechanism on top of pre-trained word embeddings (they
classified Tweets as positive/negative/neutral).
Huang et al. (2019) used a combination of CNN and BiLSTM (Graves & Schmidhuber,

2005) for emotion detection and predicting emotion intensity. Abdul-Mageed and Ungar
(2017) applied Gated Recurrent Neural Network (Cho, van Merriënboer, Gulcehre, et al.,
2014; Chung et al., 2015). The authors of Abdul-Mageed and Ungar (2017), Agrawal and
Suri (2019), Baziotis et al. (2018), Huang et al. (2019), Polignano et al. (2019), and Shrivastava
et al. (2019) also used deep learning models based on CNN or recurrent neural networks.
We compare some works focused on emotion analysis in Tables 5.5 and 5.6.

Paper Emotion Model Approach Dataset Result

(Strapparava & Mihalcea, 2008) Categorical LSA Semeval 2007 18% 𝐹1 Score
(Balabantaray et al., 2012) Categorical SVM Their own 73% Accuracy
(Balahur et al., 2012) Categorical SVM ISEAR 45% 𝐹1 Score
(Roberts et al., 2012) Categorical SVM EmpaTweet 67% 𝐹1 Score
(Buechel & Hahn, 2016) VAD/Categorical SVM Semeval 2007 0.42 Pearson Correl.
(Abdul-Mageed & Ungar, 2017) Categorical GRU Their own 96% 𝐹1 Score
(Baziotis et al., 2018) Categorical LSTM SemEval 2018 53% 𝐹1 Score
(Huang et al., 2019) Categorical CNN, LSTM SemEval 2018 65% 𝐹1 Score
(Alhuzali & Ananiadou, 2021) Categorical BERT SemEval 2018 58% 𝐹1

(Polignano et al., 2019) Categorical CNN, LSTM SemEval 2018 84% 𝐹1 Micro Score
(Alhuzali & Ananiadou, 2021) Categorical BERT SemEval 2018 71% 𝐹1 Micro Score
(Polignano et al., 2019) Categorical CNN, LSTM SemEval 2019 70% 𝐹1 Micro Score
(Agrawal & Suri, 2019) Categorical LSTM SemEval 2019 78% 𝐹1 Micro Score
(Polignano et al., 2019) Categorical CNN, LSTM ISEAR 52-78% 𝐹1 Score
(Shrivastava et al., 2019) Categorical CNN TV-Charmed 72% 𝐹1 Score

Table 5.5: Overview of papers related to the emotion detection task.

Paper Approach Dataset Result

(Köper et al., 2017) Random Forrest, CNN, LSTM WASSA 2017 0.72 Pearson Correlation
(Goel et al., 2017) CNN, LSTM WASSA 2017 0.74 Pearson Correlation
(Duppada et al., 2018) XG Boost, Random Forrest SemEval 2018 0.80 Pearson Correlation
(Huang et al., 2019) CNN, LSTM WASSA 2017 0.77 Pearson Correlation

Table 5.6: Overview of papers related to the emotion intensity detection task.

To the best of our knowledge, the best results on subjectivity classification were achieved
by AdaSent model (Zhao et al., 2015) with 95.5% of accuracy. AdaSent stands for a self-
adaptive hierarchical sentence model, a deep learning model for representing sentence mean-
ing. AdaSent is inspired by the gated recursive convolutional neural network (Cho, van
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Merriënboer, Bahdanau, & Bengio, 2014) and forms the representation of the sentence from
traditional word embeddings (e.g., word2vec, GloVe or fastText) but can incorporate the or-
der of words in the sentence and thus improve results on downstream tasks like subjectivity
classification. Cer et al. (2018) achieved 93.9% of accuracy with another model for sentence
semantic representation, called Universal Sentence Encoder. The model produces an input
sentence’s fixed-length vector (sentence embeddings).
Poria et al. (2016) first used the deep learning approach to aspect extraction. They em-

ployed CNN in combination with linguistic patterns and word embeddings to tag each word
in a sentence as either an aspect or non-aspect word. Shu et al. (2017) tried to tackle the
problem of domain dependency. They proposed using a pre-trained CRF model for aspect
extraction on different domains to improve results on a new domain. In H. Xu et al. (2018),
a novel convolutional neural network model is proposed with two types of pre-trained
word embeddings, i.e., general-purpose and domain-specific. Using two types of embeddings
brought performance improvement and the model outperformed the other state-of-the-art
methods at that time.

In the case of the aspect sentiment classification task, supervised methods for sentence-
level polarity detection can also be applied. Khalil and El-Beltagy (2016) used aCNNclassifier
with fine-tuned word embeddings for a specific domain to detect aspect sentiment polarity
of laptops and restaurant reviews. P. Chen et al. (2017) proposed a novel model that adopts
a multiple-attention mechanism to capture sentiment features separated by a long distance.
They combined multiple attentions with a recurrent neural network, concretely Long Short-
TermMemory and Gated Recurrent Unit. Liu et al. (2018) proposed a novel recurrent neural
network architecture with external memory and a delayed memory update mechanism to
track entities specifically for the ABSA task. Liang et al. (2022) and C. Zhang et al. (2019)
employed graph convolutional networks. Another related work can be found in Li et al.
(2020).

The mentioned works showed that incorporating deep learning techniques and neural
networks is beneficial, significantly outperforming the traditional supervised machine learn-
ing algorithms and pushing forward the state-of-the-art results. For other deep learning
approaches and a more comprehensive survey, see L. Zhang et al. (2018).
We applied similar deep learning techniques for polarity detection, aspect-based senti-

ment analysis and emotion analysis tasks in Přibáň and Martínek (2018), Přibáň and Pražák
(2023), Přibáň and Steinberger (2021), and Přibáň et al. (2022, 2024).

5.3 Transformer-based Approaches
Finally, with the advent of Transformer-based models, a sea change arrived and the pre-train
and fine-tune paradigm emerged. Usually, the Transformer-based model is pre-trained as
a language model to obtain general knowledge about the language. Then, this pre-trained
model is utilized for a given task by introducing additional task-specific weights into the
model and being fine-tuned on the annotated task data. Within this paradigm, the focus
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turned mainly to objective engineering, designing the training objectives used at both the
pre-training and fine-tuning stages (P. Liu et al., 2023).
In the original paper (Devlin et al., 2019), BERT achieved 94.9% of accuracy on SST-2

dataset. Sun, Qiu, et al. (2019) utilize BERT fine-tuning methods for text classification tasks.
They were able to achieve 95.79% of accuracy on IMDb dataset, 28.62 of error rate5 on
Yelp-Fine dataset and 1.81 of error rate on Yelp-Binary dataset.

XLNet Yang et al. (2019), an improved variant of BERT, outperformed BERT on 20 NLP
tasks, including four well-known datasets for sentiment polarity classification. More con-
cretely, for polarity detection, XLNet achieved 96.2% of accuracy on IMDb dataset, 96.8% of
accuracy on SST-2 dataset, 27.8% of error rate on Yelp-Fine dataset and 1.55 of error rate on
Yelp-Binary dataset. Jiang et al. (2020) proposed an enhanced framework for the fine-tuning
phase of Transformer models and achieved an accuracy of 97.5% on the SST dataset.

In Nandi et al. (2021b), the authors compared multiple approaches for subjectivity clas-
sification. They also fine-tuned the BERT model, obtaining 96.6% accuracy on the Cornell
Movie Review dataset. Q. Chen et al. (2022) used BERT and RoBERTamodels and contrastive
learning techniques for text classification, including subjectivity classification, achieving an
accuracy of 97.3% on the same CornellMovie Review dataset. Alhuzali and Ananiadou (2021)
utilized the BERT model and introduced a new span prediction technique for emotion clas-
sification.

Sun, Huang, and Qiu (2019) simultaneously solve aspect extraction and aspect sentiment
classification tasks by introducing auxiliary sentences and transforming the problem into
a sentence-pair classification task. H. Xu et al. (2019) and Rietzler et al. (2020) improved
results by pre-training the model on the task domain data of the ABSA task. J. Liu et al.
(2021) treated the ABSA task as a text generation task outperforming the previous SotA
results.

We employed the Transformer-based models for subjectivity classification and polarity
detection tasks in Přibáň and Pražák (2023), Přibáň and Steinberger (2021, 2022), Přibáň
et al. (2024), Sido et al. (2021), and Šmíd and Přibáň (2023)

5.3.1 Prompt-based Learning

The second sea change is currently in progress, in which the pre-train and fine-tune paradigm
is fading from the main interest of researchers and is being replaced by the prompting or
prompt-based learning. This paradigm usually utilizes the pre-trained (language) model to
reformulate the solved problem into a form similar to the pre-training language modeling
task by using a textual prompt. The model can then predict the output directly by using
the language modeling ability that was pre-trained. See Section 4.3.7 for a more detailed
description.

Gao et al. (2021) experimented with prompt-based fine-tuning for SC. With the English
T5model, they automatically generated prompts for BERT and RoBERTamodels, which they

5The error rate is computed as 1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
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consequently fine-tuned for the SC task. They demonstrated that their few-shot approach
leads to better results than traditional fine-tuning. Hosseini-Asl et al. (2022) leverage the
text generation ability of the GPT-2 model and apply it to the ABSA and polarity detection
tasks. Mao et al. (2022) conducted an empirical study of prompt-based polarity and emotion
detection tasks. They utilized RoBERTa and BERT models and analyzed the biases of these
models for the evaluated tasks.

W. Zhang, Li, et al. (2021) formulate the ABSA tasks as a text generation problem. They
propose two paradigms to deal with the ABSA tasks, namely annotation-style and extraction-
style modeling, both generating textual output in a desired format. They utilize the English
T5 text-to-text Transformer-basedmodel and evaluate their approach on various ABSA tasks
on datasets from the SemEval competitions (Pontiki et al., 2014, 2015, 2016). They showed
the effectiveness of their approach by establishing new SotA results. Similarly, the work ofW.
Zhang, Deng, et al. (2021) used the same English T5 model to solve a newly introduced ABSA
task called aspect sentiment quad prediction by generating textual output. Another approach
proposed by Gao et al. (2022) aims to solve multiple ABSA tasks simultaneously. The authors
applied the English T5 model to a prompt created from the individual ABSA tasks. They
evaluated their model on the same datasets as W. Zhang, Li, et al. (2021), outperforming the
previously mentioned approach and achieving new SotA results.

5.3.1.1 Sentiment Analysis with LLMs

Currently, for prompting the large language models (LLMs) such as GPT-3 (Brown et al.,
2020), GPT-4 (OpenAI, 2023), Llama (Touvron, Lavril, et al., 2023), Llama 2 (Touvron,Martin,
et al., 2023), PaLM 2 (Anil et al., 2023) or Orca (Mukherjee et al., 2023) are used.
Qin et al. (2023) evaluated the ChatGPT model on seven downstream NLP tasks, in-

cluding sentiment classification of the SST-2 dataset. They use a simple prompt to predict
the sentiment of movie reviews, achieving 87.6% accuracy on 876 test examples. In Zhong
et al. (2023), the authors evaluated ChatGPT on the popular GLUE (A. Wang et al., 2018)
benchmark that contains the SST-2 dataset. They achieved 92.0% of accuracy on 50 examples
and showed that ChatGPT achieves lower performance compared to fine-tuned BERT-like
models. Further, they improved the results with a technique called chain-of-thought (CoT)
proposed by Wei et al. (2022) and improved the accuracy to 96%.

Fei et al. (2023) utilized ChatGPT and the CoT prompt technique to detect implicit sen-
timent. Han et al. (2023) evaluated ChatGPT on a wide range set of aspect-based sentiment
tasks, showing a significant performance gap between ChatGPT and other SotA methods.
The authors claim that as the complexity of the task increases, the decline in ChatGPT’s per-
formance becomes more pronounced when compared to leading SotA techniques. W. Zhang
et al. (2023) comprehensively explored the performance of ChatGPT on various sentiment
classification and aspect-based sentiment analysis tasks. They also state that the performance
of LLMmodels decreases with more complex tasks requiring deeper understanding or struc-
tured sentiment information compared to supervised fine-tuning.
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We applied the prompt-based learning for the sentiment classification and ABSA tasks
in Přibáň et al. (2024) and Šmíd and Přibáň (2023).
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Multilingual Sentiment
Analysis 6
This chapter focuses on the approaches for multilingual SA, the underlying techniques and
their details. Additionally, we present related work for cross-lingual sentiment analysis
(CLSA).

The CLSA is a challenging task, aiming to enable SA in other languages1 with limited or
no labeled data (in these, i.e., target languages) by transferring knowledge from a language
(called source language), typically English, where the annotated data are available, see Figure
6.1 for visualization. A more advanced and difficult version of CLSA is the so-called zero-
shot CLSA, which relies exclusively on data from the source language (e.g., English) to build
the system.

English
Train Data

Czech Test
Data

The breakfast wasn’t great.
Predictions

Positive
Negative
Neutral

Snídaně mi velmi chutnala.
(I enjoyed the breakfast very much.)

Cross-lingual system

The bed is very comfortable.

source
language

target
language

Figure 6.1: Visualization of a model for cross-lingual sentiment analysis.

6.1 Cross-lingual Sentiment Analysis
At the beginning of the SA research, the predominant focus was almost exclusively on En-
glish. However, in the following years, the attention has moved and research has been done
even for other languages. Consequently, multilingual and cross-lingual methods have been
developed in recent years. Nonetheless, the development of effective multilingual techniques
for a majority of NLP tasks remains an ongoing and intricate challenge. Additionally, a per-
sistent issue concerns the prevalence of English-centric datasets. In other words, there is

1These languages are often called the low-resource languages.
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very little (or any) of SA datasets for other languages, so-called low-resource languages (Bala-
bantaray et al., 2012; X. Chen et al., 2018; Dashtipour et al., 2016; B. Liu, 2012; Ruder et al.,
2019) compared to the English language.

6.1.1 The Multilingual and Cross-lingual Concepts
The multilingual and cross-lingual concepts are very closely related and there is a significant
overlap between them, yet they are not equal. Generally, in NLP, a multilingual system or
approach is designed to process text (perform some NLP task) in more than one language.
Such systems often encompass components or parts shared across all languages (e.g., some
common preprocessing steps) and language-specific parts, for example, training sentiment
classifiers for each language separately. On the other hand, the cross-lingual system transfers
or adapts knowledge of other languages to perform the task. The approach (or its parts) for
a particular language depends on other languages’ approaches, data, or tools. Themultilingual
and cross-lingual concepts are often used interchangeably, even though they are not equal.

6.1.2 Cross-lingual Approaches
The primary motivation for developing cross-lingual methods is to enable transfer learn-
ing across languages, in most cases between resource-rich language (e.g., English) and low-
resource language. The goal is to develop methods that will allow us to use resources (data,
methods etc.) of resource-rich languages in a certain NLP task for low-resource languages
(Ruder et al., 2019). A resource-rich language is a language that has enough available re-
sources for a specific NLP task. Let us explain the concept of target and source language.
The source language denotes the language used for obtaining some knowledge or training
data, usually, it is the resource-rich language. The target language is usually the low-resource
language and aims to solve the task in the target language.
We divide the existing CLSA approaches into three main categories – machine transla-

tion approaches, methods for explicit transfer of knowledge between languages and multilingual
Transformers-based models.

Machine translation can be utilized to translate annotated data from the source language
to the target language and employ these translations to train a model as shown in Balahur
and Turchi (2012).
Second, methods that transfer knowledge between languages explicitly. For example,

use linear transformation to align semantic spaces in different languages into one common
space. The shared cross-lingual space (word embeddings) represents the input used to train
neural networks, such as CNN or LSTM, as used in Abdalla and Hirst (2017) and Přibáň et al.
(2022).

Lastly, multilingual Transformer-based models like mBERT or XLM-R can be fine-tuned
with annotated source language data. The fine-tuned model can classify text in the target
languages due to the model’s cross-lingual properties. The cross-lingual ability of these
models to transfer knowledge between languages is obtained during their pre-training phase.
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The cross-lingual approaches are based on the monolingual techniques and principles
described previously. The main idea of the cross-lingual approach is to add a method that
transfers the knowledge necessary for a given task between languages. As mentioned, we
divide the approaches according to the type ofmethod that does the transformation. Based on
the thesis’ goals, this thesis focuses solely on the multilingual Transformer-based models and
methods that explicitly transfer knowledge between languages (i.e., linear transformations
in our case).

6.2 Cross-lingual Word Embeddings
As described in Section 4.1, word embeddings, allow us to capture the meaning of words
in a vector representation. Recently, they have become extremely useful and important in
building NLP systems. Cross-lingual word embeddings (CLWE) project multiple monolin-
gual word embeddings spaces into one shared space where vectors are in different languages.
CLWE allows representing words multilingually. It means that vectors representing seman-
tically close words in different languages are similar, see Figure 6.2.
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Figure 6.2: Sample visualisation of monolingual embeddings for English and German before
and after their projections into a shared cross-lingual space.

In SA (and in NLP generally), CLWE allows transferring knowledge between languages,
which is very useful, especially for low-resource languages. For example, with CLWE, ap-
proaches usingmonolingual embeddings that were already developed can be trainedwith the
training data from resource-rich language and CLWE. Thanks to the cross-lingual embed-
dings and their properties, the trainedmodel can now predict samples from the low-resource
language.
Next, we focus on mapping only two monolingual embeddings. These CLWE are also

called bilingual word embeddings (BWE). The ultimate, more complex goal of CLWE is to
learn a shared embedding space between words in all languages (Ruder et al., 2019).
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6. Multilingual Sentiment Analysis

Ruder et al. (2019) categorize cross-lingual embedding methods mainly by the parallel
data required by themethods. The parallel data represent the bilingual supervision signal that
allows us to learn to align two monolingual spaces into one cross-lingual space. The main
differences between the models usually come from the required data. The other differences
are not so important since they are just implementation details for the specific architecture.
To support this claim, they showed that the methods usually optimize the same or similar
learning objectives (it is just written in different forms).

The parallel data utilized in these methods have two key properties that distinguish them:
(1) type of alignment and (2) comparability of the parallel data. The parallel data alignment
defines whether the data are aligned at the level of words, sentences or documents. The com-
parability means howmuch are the parallel data similar, i.e., whether it is a literal translation
(data are parallel) or whether the parallel data are just similar (comparable). Here, we do not
distinguish between them. Finally, we can define the fundamental categorization according
to the type of data alignment:

1. Word-level alignment: Most methods use data aligned at the word level, typically
in bilingual or multilingual dictionaries containing pairs of translated words. Such
dictionaries are easy to obtain for most languages. Most of these approaches utilize
pre-trained monolingual word embeddings, a bilingual dictionary and linear transfor-
mation.

2. Sentence-level alignment: A parallel corpus aligned at a sentence level is another
type of data used by cross-lingual methods. An example of a commonly used sentence-
level aligned dataset is Europarl corpus (Koehn, 2005).

3. Document-level alignment: A parallel corpus that contains translated documents
in different languages. An example of such a corpus is Wikipedia, where many pages
(about the same topic) are in multiple languages.

Further, we aim for word-level alignment methods since we use them in our research
contribution of this thesis. We summarize the multi-level categorization of methods for
CLWE in Figure 6.3. We do not describe all the mentioned types of methods. A detailed
description of the other methods not mentioned, including the original papers, can be found
in Ruder et al. (2019).

6.2.1 Methods for Word-level Alignment Data
Mapping-based approaches transform pre-trained monolingual word embeddings using lin-
ear transformation and bilingual dictionaries into one joint space (Brychcín, 2020). Linear
transformation allows transformation between two vector spaces2 using affine transforma-
tions, e.g., scaling, rotation, translation or reflection.

2By space, we mean word embeddings, also called semantic space, expressed by matrix X.
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Figure 6.3: An overview of categorization of methods for creating CLWE according to Ruder
et al. (2019).

Let us define monolingual vector spaces and a dictionary of translated pairs of words.
The dictionary 𝐷 contains 𝑛 translated pairs of words (called seed words or seed dictionary)
((𝑤𝑠1, 𝑤𝑡1), (𝑤𝑠2, 𝑤𝑡2), . . . , (𝑤𝑠𝑛, 𝑤𝑡𝑛)). Vector space of the source language 𝑠 is represented by
a matrix X𝑠 ∈ R𝑑×𝑛 and vector space of the target language 𝑡 is represented by a matrix
X𝑡 ∈ R𝑑×𝑛 where 𝑛 is the size of the seed dictionary and 𝑑 is a dimension of the vector spaces.
Each word 𝑤𝑖 from the dictionary 𝐷 is in matrices X𝑠 and X𝑡 represented by vectors x𝑠

𝑖
, x𝑡

𝑖
,

respectively.
The goal of the linear transformation is to find a transformation matrix W𝑠→𝑡 ∈ R𝑑×𝑑

that projects the semantic space X𝑠 of the source language into the semantic space X𝑡 of the
target language. The transformed source space is represented by X̂𝑠 and is obtained through
matrix multiplication as shown below:

X̂𝑠 = W𝑠→𝑡X𝑠 (6.1)

Any word vector from the source space that is not present inX𝑠 can be transformed into
the target space by multiplication with the transformation matrixW𝑠→𝑡 .

6.2.1.1 Mean Squared Error Transformation

The transformation method described in Mikolov, Le, and Sutskever (2013) estimates the
transformation matrix by minimizing the mean squared error (MSE) between the pairs of
vectors (x𝑠

𝑖
,x𝑡

𝑖
) for the corresponding word from the dictionary 𝐷. This method minimizes
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6. Multilingual Sentiment Analysis

the MSE by finding the transformation matrix that produces the smallest error between the
source and target language word vectors. This method belongs under the regression methods.
The MSE is calculated as follows:

𝑀𝑆𝐸 =

𝑛∑︁
𝑖=1



W𝑠→𝑡x𝑠𝑖 − x𝑡𝑖


2 (6.2)

6.2.1.2 Orthogonal Transformation

The orthogonal transformation method (Orto) constrains the transformation matrixW𝑠→𝑡

to be orthogonal, meaning that it is a square matrix with columns and rows that are or-
thonormal vectors (WTW = WWT = 𝐼 , where 𝐼 is the identity matrix). This method has the
same objective as the MSE transformation but with the added orthogonality restriction. The
optimal transformation matrixW𝑠→𝑡 can be computed using Singular Value Decomposition
(SVD) as follows:

W𝑠→𝑡 = VUT (6.3)

where matrices V and U are computed with SVD as X𝑡TX𝑠 = UΣVT as described in Artetxe
et al. (2016). The orthogonality constraint ensures that the transformation does not squeeze
or re-scale the transformed space but rather only rotates it. This helps to preserve the rela-
tionships between words (vectors) in the space, particularly the angles between words and,
thus, the similarity between words in the transformed space.

6.2.1.3 Canonical Transformation

The Canonical methods are based on Canonical Correlation Analysis (CCA), which provides
a way of measuring a linear relationship between two multivariate variables (i.e., vectors)
(Brychcín, 2020). The method aligns monolingual vector spaces X𝑠 and X𝑡 to a shared space
represented by matrix Y𝑜 (Ruder et al., 2019). To achieve this, CCA computes transformation
matrices W𝑠→𝑜 for the source language and W𝑡→𝑜 for the target language that maps the
spaces into the shared space Y𝑜. These transformation matrices can be computed analytically
using SVD (Hardoon et al., 2004)3 or by minimizing the negative correlation (denoted as
𝑁𝑐𝑜𝑟) between the source language vectors x𝑠

𝑖
and target language vectors x𝑡

𝑖
projected into

the shared space Y𝑜. The negative correlation is given by:

𝑁𝑐𝑜𝑟 = −
𝑛∑︁
𝑖=1

𝜌(W𝑠→𝑜x𝑠𝑖 ,W
𝑡→𝑜x𝑡𝑖) (6.4)

The correlation between the transformed source language vectorsW𝑠→𝑜x𝑠
𝑖
and the trans-

formed target language vectorsW𝑡→𝑜x𝑡
𝑖
is computed using the following equation:

3We use this approach in our experiments.
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𝜌(W𝑠→𝑜x𝑠𝑖 ,W
𝑡→𝑜x𝑡𝑖) =

𝑐𝑜𝑣(W𝑠→𝑜x𝑠
𝑖
,W𝑡→𝑜x𝑡

𝑖
)√︃

𝑣𝑎𝑟(W𝑠→𝑜x𝑠
𝑖
) × 𝑣𝑎𝑟(W𝑡→𝑜x𝑡

𝑖
)

(6.5)

where 𝑐𝑜𝑣 is the covariance and 𝑣𝑎𝑟 is the variance. The CCA method was first used by
Faruqui and Dyer (2014) to map two monolingual word embedding spaces into a cross-
lingual space and was later extended to multiple languages by Ammar et al. (2016). Using
the approach from Ammar et al. (2016), we can modify the CCA method to transform only
the source space into the target space without using the shared space. The transformation
matrixW𝑠→𝑡 can be then computed as follows:

W𝑠→𝑡 = W𝑠→𝑜(W𝑡→𝑜)−1 (6.6)

6.2.1.4 Ranking Transformation

The Ranking Transformation (Rank) method (Lazaridou et al., 2015) uses the max-margin
hinge loss (MML) instead of MSE to address and reduce the hubness problem (Radovanović
et al., 2010). The goal of this method is to rank the correct translations of a word 𝑤𝑖 (vectors
x𝑠
𝑖
and x𝑡

𝑖
) higher than random translations (negative examples) of the same word 𝑤𝑖 (vectors

x𝑠
𝑖
and x𝑡

𝑗
). The optimization goal is to minimize the following function:

𝑀𝑀𝐿 =

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗≠𝑖

max{0, 𝛾 − cos(W𝑠→𝑡x𝑠𝑖 ,x
𝑡
𝑖) + cos(W𝑠→𝑡x𝑠𝑖 ,x

𝑡
𝑗)} (6.7)

where 𝛾 and 𝑘 are hyper-parameters representing the margin and the number of negative
examples, respectively.

6.2.1.5 Orthogonal Ranking Transformation

Brychcín (2020) combined the orthogonal and ranking transformations to create a new
method called the Orthogonal Ranking Transformation (Or-Ra). This method aims to both
keep the transformationmatrixW𝑠→𝑡 orthogonal and reduce hubness. The objective function
and details of this method can be found in Brychcín (2020).

6.2.1.6 Other Transformations

We are aware that there are other methods (Adams et al., 2017; Lample et al., 2018; Xiao
& Guo, 2014; Zou et al., 2013) to align semantic spaces, but we decided to use the five
named methods for our experiments. For example, in the VecMap method (Artetxe et al.,
2018), the authors proposed an unsupervised approach to automatically induct the dictionary
𝐷 based on the observation that two equivalent words in different languages should have
a similar distribution. Using the observation, they induct an initial dictionary, which they
then iteratively improve. They use the orthogonal transformation tomap the semantic spaces.
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We decided to incorporate the first four methods (MSE, Orto, CCA, Rank) for our ex-
periments in this thesis because Ruder et al. (2019) divided the methods into the same four
categories4. Based on Ruder et al. (2019), we consider these four methods to be the principal
methods for cross-lingual word embeddings. The other methods, such as VecMap (Artetxe et
al., 2018), are based or built on top of these basic methods and, as shown in Ruder et al. (2019),
although they are different methods, they optimize very similar objectives with differences in
used data and regularization. Additionally, we introduced a fifth method (Or-Ra), that serves
as a complement to these essential methods. The inclusion of this method was motivated
by our favorable prior experiences with it and our intention to subject it to comparative
analysis alongside the initial four methods in the context of CLSA.

6.3 Multilingual Transformer-based Models
The cross-lingual capability of multilingual Transfomer-basedmodels like XLM-R (Conneau
et al., 2020) is learned during the pre-training phase thanks to the similarity ofwords between
languages. Some words are universal or have quite similar surface forms across languages,
e.g., numbers, words like coffee, metro, football and others. These words usually appear in
the same contexts across all languages. Thus, the model learns to align the information or
meaning between different languages. It helps the model develop a shared understanding of
transferable linguistic patterns and representations across languages.

In other words, themodel learns to project words or tokens from different languages into
a shared embedding space. This shared space allows similar or semantically related words in
different languages to have similar representations. Consequently, themodel can leverage the
similarities and transfer knowledge across languages, enabling cross-lingual capabilities. The
alignment is done implicitly during the pre-training compared to cross-lingual embeddings,
where the alignment is performed explicitly, i.e., by learning some additional function that
can project or align different word embeddings into one shared cross-lingual space.
The usage of the multilingual model for cross-lingual sentiment classification does not

differ from the monolingual approach. Unlike cross-lingual embeddings, here, the model is
trained on data in the source language (e.g., English) and can be directly used or evaluated
on data from any other languages that the multilingual model supports.

6.4 Related Work for Cross-lingual Sentiment
Analysis

In recent years, much less research has been devoted to CLSA compared to the monolingual
task. As we mentioned in Section 6.1.2, the CLSA approaches can be roughly divided into
three groups: (1) machine translation (MT), (2) explicit methods for knowledge transfer between

4We use slightly different names than Ruder et al. (2019).
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languages, including linear transformations (EM/LT) and (3) multilingual Transformer-based
models (EMB)

Table 6.1 provides an overview of selected works devoted to CLSA. The table compares
various aspects of these works, including employed machine learning models, methods for
knowledge transfer between languages5, data domains and involved languages. Earlier ap-
proaches rely on SVM or logistic regression classifiers, usually using machine translation.
Along with the evolution of neural networks, we saw the integration of CNN or LSTMmod-
els in combination with explicit methods for transferring knowledge between languages,
such as linear transformations. With the advent of Transformer-based models, multilingual
versions with inherent and embedded cross-lingual capabilities gained prominence in CLSA.
Most recently, the LLMs6 have been introduced and used for SA, although for now, almost
exclusively for English.
The works are mostly focused on the movie, product or restaurant review domains

with two or three classes, infrequently with more fine-grained class partition. Furthermore,
English is the dominant resource-rich source language across most cases, while the target
languages are predominantly French, Chinese or Spanish. Occasionally, other languages
are incorporated into the analysis, reflecting a limited but growing exploration of diverse
linguistic contexts within CLSA research.

The early works in CLSA relied on machine translation (Balahur & Turchi, 2012, 2014;
Can et al., 2018; Sharma, 2020; X. Wan, 2008, 2009; P. Zhou et al., 2016). They usually trans-
lated or exploited data from English to obtain training data for another language. Ghorbel
(2012) translated the lexical resource of SenitWordNet from English to French to improve
the performance of SA in French. Sazzed (2020) compiled a large manually annotated dataset
of Bengali reviews, translated it into English and compared different methods, including su-
pervised machine learning classifier, unsupervised approach and transfer learning for CLSA.
Barriere and Balahur (2020) used multilingual BERT-like models and machine transla-

tion to augment a dataset to improve results of Twitter SA in French, Spanish, German and
Italian. In W. Zhang, He, et al. (2021), the authors focused on cross-lingual ABSA by using
multilingual BERT-like models and data augmentation. The closely related work to ours
can be found in Thakkar et al. (2021), where the authors use the neural machine translation
encoder-based model and English data to perform zero-shot cross-lingual sentiment classifi-
cation on French. Eriguchi et al. (2018) performed the zero-shot classification from Slovene
to Croatian.
Jain and Batra (2015) employed a recursive autoencoder architecture and sentence-

aligned corpora of Hindi and English and evaluated the system on the Hindi movie reviews
dataset. H. Zhou et al. (2015) proposed a method for creating cross-lingual word embed-
dings specifically for SA. They used an SVM classifier based on these embeddings for the

5Although linear transformations belong under the explicit transfer methods due to their importance in
our work, we list this approach separately in Table 6.1 with the LT abbreviation.

6Despite the fact that the listed works use LLMs for English only, we include them in our cross-lingual
overview as they also have cross-lingual capabilities and we use them for Czech and French in our experiments.
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Source Approach Method (Model) Transfer Method Data Domain #Classes Languages

X. Wan (2009) ML SVM MT Product reviews 2 EN, CN
Balahur and Turchi (2014) ML SVM MT News articles 2 EN, FR, DE, ES
H. Zhou et al. (2015) ML SVM EM Product reviews 2 EN, CN
Barnes et al. (2016) ML SVM EM, MT, LT Hotel reviews 2 EN, ES
Abdalla and Hirst (2017) ML Log. regression LT Restaurant reviews 5 EN, CN
Can et al. (2018) NN GRU MT Restaurant reviews 2 EN, ES, RU, NL, TR
Eriguchi et al. (2018) NN LSTM MT Product reviews 2 EN, FR
Barnes et al. (2018) NN Feedforward neural net. EM, LT Hotel reviews 4 ES, CA, EU
X. Dong and de Melo (2018) NN CNN EM, LT Movie reviews 2 EN, FR
X. Chen et al. (2018) NN Adversial neural net. EM Hotel reviews 5 EN, CN
Sharma (2020) ML Log. regression MT Tweets 2 EN, FR
Sazzed (2020) ML SVM MT Youtube reviews 2 EN, BN
Barriere and Balahur (2020) T multilingual BERT-like EMB Tweets 2 EN, FR, ES, DE, IT
Aliramezani et al. (2020) NN GRU EM, LT Food reviews 2 EN, FA
Kuriyozov et al. (2020) NN GRU EM, LT Hotel reviews 2 TR, UZ

Přibáň and Steinberger (2021) T multilingual BERT-like EMB
Movie reviews,
Facebook posts,
Product reviews

2-3 EN, CS

W. Zhang, He, et al. (2021) T multilingual BERT-like EMB Restaurant reviews 2 EN, FR, ES, NL, RU
Thakkar et al. (2021) T multilingual BERT-like EMB News articles 3 EN, SL, HR
C. Wang and Banko (2021) T multilingual BERT-like EMB Product reviews 2 EN, FR, DE, JA
Přibáň et al. (2022) NN CNN, LSTM LT Movie reviews 2-3 EN, CS, FR
Catelli et al. (2022) T multilingual BERT-like EMB Hotel reviews 2 EN, IT
Qin et al. (2023) T LLMs EMB Movie reviews 2 EN
Zhong et al. (2023) T LLMs EMB Movie reviews 2 EN
Han et al. (2023) T LLMs EMB Hotel reviews 3 EN
W. Zhang et al. (2023) T LLMs EMB Hotel reviews 3 EN

Table 6.1: Overview of selected works focused on CLSA. We classify different machine learn-
ing approaches in theApproach column as classical machine learning (ML), neural networks
(NN) and Transformers (T). The columnMethod (Model) denotes the type ofmachine learn-
ing model or method for classification. The type of method for knowledge transfer between
languages is presented under the column Transfer Method as machine translation (MT),
explicit method (EM), linear transformation (LT) and embedded (EMB). The Languages
column enumerates the involved languages using ISO 639-1 codes.

task of polarity classification. Barnes et al. (2016) compared multiple techniques for cross-
lingual aspect-based sentiment classification, including the technique fromMikolov, Le, and
Sutskever (2013). Abdalla and Hirst (2017) used the same least square linear transformation
method fromMikolov, Le, and Sutskever (2013) to conduct experiments on English, Spanish
and Chinese. Barnes et al. (2018) introduced an approach for creating bilingual sentiment
word embeddings. These embeddings are optimized to represent semantic information in the
source and target languages using a small bilingual dictionary and sentiment information ex-
tracted only from the source language. The effectiveness of this approach was demonstrated
through comparison with other cross-lingual methods. X. Dong and de Melo (2018) pre-
sented an algorithm to cross-lingually project word vector information to other languages
and transfer sentiment information across languages. They used a CNN for classification
and they evaluated their approach on nine languages, including French. X. Chen et al. (2018)
trained an adversarial neural network with bilingual embeddings for polarity classification
in Arabic and Chinese only with English training data. Similarly to our work, Aliramezani

90



6.4. Related Work for Cross-lingual Sentiment Analysis

et al. (2020) and Kuriyozov et al. (2020) used linear transformations for Persian and Turkish,
respectively.
C. Wang and Banko (2021) compared multiple Transfomer-based models for monolin-

gual and cross-lingual text classification tasks in an industry setting for various languages,
including Japanese, German or Spanish. In Přibáň and Steinberger (2021), we introduced the
Czech dataset for subjectivity classification, which was later used to test zero-shot subjectiv-
ity classification between English and Czech with multilingual Transformer-based models.
The authors in Winata et al. (2022) studied possibilities for cross-lingual classification for
languages unseen during pre-training of Transformer-based models. They analyze the ef-
fectiveness of several few-shot learning strategies for the zero-shot classification of unseen
languages. Catelli et al. (2022) utilized the mBERT to perform cross-lingual sentiment clas-
sification of TripAdvisor reviews between English and Italian. A more detailed overview of
cross-lingual and multilingual SA can be found in Agüero-Torales et al. (2021), Farra (2019),
and Y. Xu et al. (2022).

In Přibáň and Steinberger (2021), we demonstrated the effectiveness of huge multilingual
BERT-like models for cross-lingual SAw between Czech and English. In the study from
Přibáň et al. (2022, 2024), we evaluated the usage of linear transformations for zero-shot
CLSA between Czech, French and English. In Chapter 7, we describe these publications and
our contributions in detail.
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Thesis Contributions



Cross-lingual Sentiment
Classification 7
The main contribution of this thesis is focused on cross-lingual sentiment analysis (CLSA),
more specifically on zero-shot cross-lingual sentiment classification. We have already described
the theory necessary to understand the problem of CLSA in Chapter 6, but it is important
to remember that in the zero-shot settings, we use annotated data only from one language
(source) while performing the sentiment classification on data from the second language
(target).

We use two approaches, namely modern multilingual Transformer-based models and
linear transformations in conjunction with CNN and LSTM neural networks and we eval-
uate their performance on Czech, French, and English datasets. We aim to compare and
assess the models’ ability to transfer knowledge across languages and discuss the trade-off
between their performance and training/inference speed. To establish robust benchmarks,
we build strong monolingual baselines for all languages comparable with the current SotA
approaches, achieving state-of-the-art results in Czech (96.0% accuracy) and French (97.6%
accuracy). Further, we compare these models with the cross-lingual models and the latest
large language models (LLMs), such as Llama 2 and ChatGPT.

We show that the large multilingual Transformer-based XLM-R model consistently out-
performs all other cross-lingual approaches in zero-shot cross-lingual sentiment classifica-
tion. It surpasses them by at least 3%, but a difference larger than 5% is not unusual. The
large XLM-R model also performs close to monolingual results, proving its great capability
to transfer knowledge between languages for the SA task. Next, we show that the smaller
Transformer-based models are comparable in performance to older but much faster cross-
lingual approaches with linear transformations. For example, the best-performing cross-
lingual LSTMmodel with linear transformation trained on English data achieved an accu-
racy of 92.1% on the French dataset, compared to the smaller XLM-R model’s accuracy of
90.3%. Remarkably, this performance is achieved with just approximately 0.01 of the training
time required for the smaller XLM-R model. This underscores the potential of linear trans-
formations as a pragmatic alternative to resource-intensive and slower Transformer-based
models in real-world applications. The LLMs achieved remarkable results compared to the
large XLM-Rmodel. The results are on par or better, at least by 1% – 3%, but with significant
additional hardware requirements and limitations.
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To the best of our knowledge, there is no prior work that simultaneously and adequately
compared in detail these two crucial aspects: task performance and training and inference
times of Transformer-based models and their older counterparts. While some studies such
as (Park et al., 2022) focus solely on comparing the relative speed-ups of Transformer-based
models, and others like (Karita et al., 2019; Lakew et al., 2018; Zeyer et al., 2019) analyze task
performance differences between Transformer-based models and older models based on
CNN and LSTM neural networks, none of these investigations is focused on cross-lingual
sentiment and does not offer the detailed, dedicated and thorough examination that we
provide.

Overall, we contribute to the understanding of CLSA and provide valuable insights into
the strengths and limitations of the cross-lingual approaches for SA. We see and highlight
our key contributions as follows:

1. We propose and evaluate approaches that deal with CLSA in Czech, French and English,
showing their great ability to transfer knowledge between the languages.

2. We compare the performance and speed of these models and place these two aspects in
a common context.We examine and compare the important aspects of training and inference
speed between the two approaches, as well as their potential limitations when applied in
real-world scenarios.

3. Based on the extensive experiments, we propose a set of recommendations for the configu-
ration and usage of linear transformations for the CLSA task.

The work described in this chapter is mainly based on three publications: “Are the Mul-
tilingual Models Better? Improving Czech Sentiment with Transformers” (Přibáň & Stein-
berger, 2021), “Linear Transformations for Cross-lingual Sentiment Analysis” (Přibáň et al.,
2022) and “A comparative study of cross-lingual sentiment analysis” (Přibáň et al., 2024). We
released all our resources and source codes1 freely for research purposes.

Additionally, our study encompassed an assessment of multilingual systems designed for
sentiment classification across various languages employed in practical applications. This
evaluation is presented in the paper titled “Comparative Analyses of Multilingual Sentiment
Analysis Systems for News and Social Media” (Přibáň & Balahur, 2023). Furthermore, we
conducted a series of cross-lingual experiments targeting subjectivity classification, as doc-
umented in the publication “Czech Dataset for Cross-lingual Subjectivity Classification”
(Přibáň & Steinberger, 2022). Given the nuanced distinctions between these two works and
the cross-lingual sentiment classification, we decided to include them in Chapter 8.
This chapter is organized as follows. The limitations and challenges of CLSA are dis-

cussed in Section 7.1. We introduce the data and datasets used in our experiments in Section
7.2. In Section 7.3, we describe themodels for classification. Section 7.4 is focused onmethod-
ology and experimental setup. We put monolingual results in a separate Section 7.5. The core

1The resources and source codes are available at https://github.com/pauli31/linear-transformation-4-cs-sa.
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7.1. Challenges and Limitations

cross-lingual results, findings and comparisons are presented in Section 7.6. Supplementary
experiments are placed in Section 7.7. The discussion and the implications of our findings
are included in Section 7.8. Finally, we provide the conclusion in Section
reflabel:conclusion. The related work for CLSA was already discussed in Section 6.4, thus,
we do not focus on it here.

7.1 Challenges and Limitations
As previously outlined, we categorize cross-lingual approaches for SA into three key cat-
egories: machine translation, explicit methods for knowledge transfer between languages and
multilingual Transformer-based models.

The earlier cross-lingual approaches, often reliant on machine translation, exhibit infe-
rior results compared to monolingual counterparts. The weakness of the approach utilizing
machine translation is the required system for machine translation itself since it can be slow,
expensive, unsatisfactory or, in some cases, even unavailable. As we show, explicit methods,
like linear transformations, are much faster and require only a fraction of computational
resources compared to Transformer-based models at the cost of not achieving SotA results.
The newest LLMs in zero-shot settings provide similar results for the polarity detection
task compared to the SotA results obtained by fine-tuned Transformer-based models. How-
ever, these SotA results are redeemed by the tremendous computational resources that are
required. It should also be noted that, as shown in W. Zhang et al. (2023), the LLMs are
significantly outperformed in more complex tasks such as ABSA by the fine-tuned models.
The results of existing cross-lingual methods can hardly be compared with each other

because eachwork usually uses a different dataset or pairs of languages. In contrast, our study
compares different cross-lingual methods in three languages both in terms of accuracy and
their training and inference speed. The existing cross-lingual works are usually restricted
only to English, French, Spanish or Chinese and are merely dedicated to accuracy while
completely ignoring other aspects, such as training or inference speed, which are crucial in
real-world deployment.
Another limitation of the very recent works with LLMs is their exclusive focus on SA

evaluations conducted nearly solely for English. To the best of our knowledge, we provide
the first SA results for LLMs in French and Czech, expanding the scope of cross-lingual
evaluations.

7.2 Data for Experiments
This section describes the polarity detection datasets we used in our experiments. We also
provide information about pre-trainedword embeddings required for theCLSAwith a linear
transformation approach. Additionally, we cover building bilingual dictionaries needed for
linear transformations. At last, we introduce a dataset for the word analogies task, specifically
designed to evaluate the linear transformations, see Section 7.2.5.
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7. Cross-lingual Sentiment Classification

7.2.1 Polarity Detection Datasets
For our experiments, we utilize four publicly available datasets with binary polarity labels
(positive and negative) from the movie review domain in English, Czech and French. We also
include the third neutral label for the Czech and one English dataset. Table 7.1 shows details
about the datasets.

• IMDB (Maas et al., 2011): This English dataset consists of 50k movie reviews obtained
from the InternetMovie Database2 with positive and negative classes. The reviewswere
split into training and testing sets of equal size. We selected a random subset of 2.5k
examples from the training set as development data.

• SST-2 (Socher et al., 2013): This English dataset contains around 12k manually an-
notated movie reviews split into two categories (positive and negative) with training,
testing, and development sets. It also has a fine-grained version (SST-5) with five la-
bels (very positive/negative, positive, negative, neutral). To create the SST-3 dataset, we
merged3 the labels positive and very positive into one class, analogously the negative
and very negative labels into one class, resulting in a dataset with three classes (positive,
negative, neutral).

• CSFD (Habernal et al., 2013): The Czech CSFD dataset consists of 90k movie reviews
from the Czech movie database4 that were annotated according to their star rating
(0–1 stars as negative, 2-3 stars as neutral, 4–5 stars as positive). We use both versions
of the dataset: a) CSFD-2 – only the examples labeled as positive or negative, and b)
CSFD-3 – all examples with positive, negative, and neutral labels. The data was split
according to the scheme used in Přibáň and Steinberger (2021).

• Allocine (Théophile, 2020): This dataset consists of 100k positive and 100k negative
movie reviews scraped from the Allociné5 website and annotated in the same way as
the CSFD dataset. The reviews were divided into three balanced training, testing, and
development sets.

7.2.2 Word Embeddings
In our experiments with linear transformations, we employed two types of pre-trained fast-
Text (Bojanowski et al., 2017) word embeddings: a) existing fastText embeddings trained on
a corpus of Common Crawl and Wikipedia texts6 and b) in-domain embeddings that we
trained on the text from the training parts of the sentiment datasets. We trained separate

2https://www.imdb.com
3The SST-2 dataset was created in the same way, but the examples with the neutral label are omitted.
4https://www.csfd.cz
5https://www.allocine.fr
6https://fasttext.cc/docs/en/crawl-vectors.html
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7.2.2.1. Normalization of Vectors

IMDB (English) SST (English)
train dev test total train dev test total

Positive 11,242 1,258 12,500 25,000 3,610 444 909 4,963
Negative 11,258 1,242 12,500 25,000 3,310 428 912 4,650
Neutral - - - - 1,624 229 389 2,242
Total 22,500 2,500 25,000 50,000 8,544 1,101 2,210 11,855

CSFD (Czech) Allocine (French)
train dev test total train dev test total

Positive 22,117 2,456 6,324 30,897 79,413 9,796 9,592 98,801
Negative 21,441 2,399 5,876 29,716 80,587 10,204 10,408 101,199
Neutral 22,235 2,456 6,077 30,768 - - - -
Total 65,793 7,311 18,277 91,381 160,000 20,000 20,000 200,000

Table 7.1: Polarity detection datasets statistics.

embeddings for each language, with the English embeddings being created by concatenat-
ing the texts from the SST and IMDB datasets. We used the skip-gram algorithm and the
gensim library (Řehůřek & Sojka, 2010) to train the embeddings, applying lowercasing and
filtering out words with a frequency below 5. The training was conducted for 15 epochs. In
all experiments, we used word embeddings with a dimension of 300.
An important note is that we used only a small portion of plain text (approximately

50MB for English and Czech and 100MB for French) to pre-train the in-domain embed-
dings, compared to the gigabytes of plain text from Wikipedia used to create the existing
general fastText embeddings. This means that our in-domain embeddings were pre-trained
on a significantly smaller dataset than the general embeddings. As shown in the results in
Section 7.6.1, our in-domain embeddings still yielded favorable results in the CLSA task
despite this limitation.

7.2.2.1 Normalization of Vectors

As shown in Artetxe et al. (2016) and Brychcín et al. (2019), normalizing the word vectors
usually leads to improved results for the linear transformations. We follow the approaches
from Artetxe et al. (2016) and Brychcín et al. (2019) by using dimension-wise mean centering
of the semantic space (centering the space around the mean for each dimension). The mean
centering of a word vector x from space a X (word embeddings) results in a vector x̃ that is
obtained by the following equation:

x̃ = x − X̄ (7.1)

where X̄ is the mean of X along each dimension.
Next, we normalize each word vector x to be a unit vector (to have a unit length), so all

training instances contribute equally to the optimization goal (Artetxe et al., 2016). The unit
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vector x̂ can be computed as follows:

x̂ =
x
∥x∥ (7.2)

where ∥x∥ is the Euclidean norm.

7.2.3 Bilingual Dictionaries

The linear transformations require bilingual dictionaries to align the semantic spaces, see
Section 6.2. We obtained these dictionaries by translating the 40kmost commonwords from
the CSFD dataset into English and French using Google Translate7. We repeated this process
for the IMDB and Allocine datasets. Some translation errors were identified and manually
corrected. The dictionaries are available at our GitHub repository1.

7.2.4 Word Analogy Dataset

We use word analogies task for intrinsic evaluation, described in Section 7.2.5. The word
analogies dataset presented in Brychcín et al. (2019) consists of two types of analogies: se-
mantic and syntactic and includes nine categories for English and Czech. The semantic part
of the dataset focuses on the meaning of the words and includes three categories: capital-
common-countries, family, and state-currency. The syntactic part of the dataset is divided
into six categories: adjective-comparative, adjective-opposite, adjective-superlative, noun-plural,
state-adjective and verb-past-tense. The performance of the evaluated linear transformation
is calculated as the average accuracy score across all nine categories.

7.2.5 Evaluation of Linear Transformations

There are two main types of tasks to evaluate the quality of cross-lingual embeddings: in-
trinsic and extrinsic tasks (Brychcín et al., 2019; Ruder et al., 2019). Extrinsic tasks evaluate
the CLWE on downstream tasks or other NLP tasks where the CLWE can be applied. Cross-
lingual sentiment classification is an example of extrinsic evaluation.

The intrinsic evaluation aims to evaluate certain abilities of the CLWE, for example, se-
mantic or syntactic relationships between words. The good performance of a method on
the intrinsic task does not directly imply a good performance for a downstream task. Com-
mon examples of an intrinsic task are the word similarity or word analogy tasks (Brychcín,
2020; Brychcín et al., 2019; Ruder et al., 2019). We use the word analogy task to evaluate the
performance of the five selected linear transformations, i.e.,Mean Squared Error Transfor-
mation (MSE), Orthogonal Transformation (Orto), Canonical Transformation (CCA), Ranking
Transformation (Rank) andOrthogonal Ranking Transformation (Or-Ra), introduced in Section
6.2.1.

7https://translate.google.com
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7.3. Classification Models

The word analogy task involves questions of the form: word 𝑤1 is in a relationship to 𝑤2

as word 𝑤3 is in the same relationship to 𝑤4, where the goal is to predict 𝑤4 (Brychcín et al.,
2019). For instance, the word pair in Czech Paříž (Paris) and Francie (France) has the same
relationship as the word pairMadrid and Spain in English. In this case, the relationship is
between the capital city and the corresponding country and the goal is to predict the word
Spain.

Formally, we can label analogy word pair from the source spaceX𝑠 as (𝑤𝑠1, 𝑤𝑠2) and word
(vector) from the target language vector space X𝑡 as 𝑤𝑡3. To find the searched word (vector)
𝑤𝑡4, we first approximate the searched vector v using equation 7.3, where X̂𝑠 is the source
space X𝑠 transformed into the target space X𝑡 .

v = X̂𝑠(𝑤𝑠2) − X̂𝑠(𝑤𝑠1) + X𝑡 (𝑤𝑡3) (7.3)

Then, we search in the target space X𝑡 for the most similar word (vector) to the vector
v. The similarity between the vector v and the word 𝑤𝑡 from semantic space is computed
using the cosine similarity. The target vector 𝑤̂𝑡4 is then estimated using equation 7.4.

𝑤̂𝑡4 = argmax
𝑤𝑡

X𝑡 (𝑤𝑡) · v
∥X𝑡 (𝑤𝑡)∥2 · ∥v∥2

. (7.4)

If the found vector 𝑤̂𝑡4 is equal to the vector 𝑤
𝑡
4, then the answer is recorded as correct. The

accuracy metric is used.

7.3 Classification Models
Hereafter, we introduce classification models for our experiments: a) neural network classifi-
cation models used with linear transformations and b) the models based on the Transformer
architecture.

7.3.1 Models for Linear Transformations

We utilize two neural network models, a CNN-based model and an LSTM-based model, to
perform cross-lingual polarity detection using linear transformations. During the experi-
ments, the transformations are applied to obtain cross-lingual embeddings, which are then
used to represent the input text for the mentioned models.

The CNNmodel is based on the architecture proposed by Y. Kim (2014), and includes a sin-
gle convolutional layer applied to the word embeddings. See Figure 7.1a for an illustration of
the model’s architecture. The input text is transformed into a matrix with dimensions 𝑛 × 𝑑,
where 𝑛 is the length of the text and 𝑑 = 300 is the dimensionality of the word embeddings.
This matrix is then processed using 1-dimensional convolution with filter sizes of 2, 3, and
4 (256 filters for each size), followed by ReLU activation and max-over-time pooling. The
output is concatenated and passed through a fully-connected layer that produces prediction
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7. Cross-lingual Sentiment Classification

scores for each class. The class with the highest score is selected as the final class predic-
tion. To prevent overfitting, a dropout (Srivastava et al., 2014) of 0.5 is applied before the
fully-connected layer. The model has around 700k parameters.
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(a) The CNN-based model architecture.
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(b) The LSTM-based model architecture.

Figure 7.1: The figure illustrates the architecture neural network models for the CLSA task
with linear transformations.

The LSTM model has the same input embedding layer that converts the input text into
a matrix with dimensions identical to the CNN model input matrix. This matrix is then
processed through two BiLSTM layers, each with 512 units (hidden size). The output is then
passed into a fully-connected layer to predict the polarity classes. A dropout rate of 0.5 is
also applied before the fully-connected layer. The model has around 1.6M parameters.

7.3.1.1 Training Details

During the training of the models, the embeddings layer is kept frozen, meaning that the
embeddings are not fine-tuned. For out-of-vocabulary words, we use the ability of fastText
embeddings to generate vectors for unknown words. We train our model using the Adam
(Kingma & Ba, 2015) optimizer with a constant learning rate or linear learning rate decay.
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7.3.2. Transformer-based Models

The learning rates are set to 1e-3 or 1e-4. We use a batch size of 32. Training is conducted
for a maximum of 10 epochs. We randomly shuffle training data before each epoch.

We tokenize the English and Czech text with theMorphoDiTa (Straková et al., 2014) tool
from the CorPy8 library. For French text, we use the NLTK (Bird & Klein, 2009) tokenizer9.
We lowercase the input text after the tokenization.

7.3.2 Transformer-based Models

The second type of models we use for polarity detection are BERT-like models based on the
Transformer (Vaswani et al., 2017) architecture, namely BERT (Devlin et al., 2019). These
models are pre-trained on various modified language modeling tasks, usuallyMasked Lan-
guage Modeling (MLM). The exact pre-train procedure may differ, but in general, it is always
some language modeling objective. The pre-train model is then fine-tuned on the target
downstream task, which, in our case, is polarity detection. For our purposes, we can di-
vide the models into two groups: monolingual and multilingual. A monolingual model is
pre-trained on a single language and can only be used for that language, while a multilingual
model is pre-trained on multiple languages and can be used for all of them. The multilingual
property allows us to train the model with data in the source language and evaluate it on
data in the target language and thus obtain a cross-lingual model. The models differ in the
number of parameters, vocabulary size and number of supported languages, as shown in
Table 7.2. In the table, we also include the sizes of the LSTM and CNN models we use.

Type Model Parameters Vocab #Langs

Czech Electra 13M 30k 1
Czert-B 110M 30k 1Czech
RobeCzech 125M 52k 1

French CamemBERT 110M 32k 1

English BERTBase-Cased 110M 29k 1

mBERT 177M 120k 104
XLM 570M 200k 100
XLM-RBase 270M 250k 100

Multilingual

XLM-RLarge 559M 250k 100

Other
LSTM 1.6M - -
CNN 0.7M - -

Table 7.2: Models statistics with a number of parameters, vocabulary size and a number of
supported languages.

Czech Electra (Kocián et al., 2022) is a Czechmodel based on the Electra-small model
(Clark et al., 2020) pre-trained on 253GB of text documents. Czert-B (Sido et al., 2021)

8https://pypi.org/project/corpy/
9We use the TreebankWordTokenizer class https://www.nltk.org/ modules/nltk/tokenize/treebank.html.
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7. Cross-lingual Sentiment Classification

is a Czech cased version of the original BERTBASE model (Devlin et al., 2019). Unlike the
original BERT model, the authors adjusted the batch size to 2048 and slightly modified the
pre-training objective. RobeCzech (Straka et al., 2021) is a Czech variant of the RoBERTa
model (Y. Liu et al., 2019). CamemBERT (Martin et al., 2020) is a French model that follows
the architecture and pre-training approach of the RoBERTa model. BERTBase-Cased (Devlin
et al., 2019) is the original BERT model. mBERT (Devlin et al., 2019) is a multilingual model
with the same architecture as the BERTBase-Cased but pre-trained on the top of 104 languages,
including English, French and Czech. XLM-RBase and XLM-RLarge (Conneau et al., 2020) are
multilingual versions of the RoBERTa for 100 languages. XLM (Conneau & Lample, 2019)
is a multilingual model that modifies the training procedure of the original BERT model
for multilingual settings mainly by using the Byte-Pair Encoding (BPE) and increasing the
shared vocabulary between languages.

7.3.2.1 Transformers Fine-Tuning

Here, we address the task of polarity detection as a text classification problem. We fine-tune
our models for binary classification (positive and negative labels) or three-class classification
(positive, negative and neutral). The architecture we use for text classification follows the
approaches in the original papers for our models. Specifically, for models based on the BERT
model, we use the hidden vectorh ∈ R𝐻 of the classification token [CLS] as a representation
of the entire input sequence where 𝐻 is the hidden size of the model. The vector is obtained
from the pooling layer, which is a fully-connected layer of size 𝐻 and a hyperbolic tangent
activation function. A dropout of 0.1 is applied and it is then passed through a task-specific
linear layer represented by the matrixW ∈ R|𝐶 |×𝐻 , where C is a set of classes. The output
class 𝑐 ∈ 𝐶 is computed as 𝑐 = argmax (hW𝑇 ).
For the RoBERTa-based models, we use the same10 approach is used and in addition,

an extra dropout of 0.1 is applied before the pooling layer (as in the original RoBERTa
implementation). For the XLM model, we use the last hidden state of the first input token
(without any pooling layer) and apply the same linear layer (W ∈ R|𝐶 |×𝐻 ) and the same
approach to obtain the classification output.
We employ the Adam (Kingma & Ba, 2015) optimizer with default parameters (𝛽1 =

0.9, 𝛽2 = 0.999) and the cross-entropy loss function. We fine-tune all the parameters of the
models. The training data is shuffled randomly before each epoch, and the number of epochs
is determined by the performance of the development data, with the best-performing epoch
being selected. Due to the Transformer-based models’ restriction on the input length, the
maximum input sequence is 512. The batch size is set to 32. The input text is tokenized
using the HuggingFace library’s tokenizer11 for the corresponding model. We use either a
constant learning rate or a linear learning rate decay (without learning rate warm-up) with
initial learning rates of 2e-6 and 2e-5. We selected these learning rate values based on our

10The first artificial token <s> of the input sequence is used instead of the [CLS] token.
11https://github.com/huggingface/tokenizers
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previous experiment observation and the values used in Sun, Qiu, et al. (2019). The details
of the used hyper-parameters can be found in Appendix A.

7.3.3 Large Language Models

To compare CNN-based, LSTM-based and BERT-like models, we include results with large
language models (LLMs), specificallyChatGPT (OpenAI, 2022) and Llama 2 (Touvron, Mar-
tin, et al., 2023). LLMs are autoregressive generative transformers pre-trained on massive
datasets, often containing billions of parameters (Carlini et al., 2021).

After the initial pre-training phase, which largely aligns with the methodology employed
by BERT-like models, the LLMs undergo a distinctive training approach known as reinforce-
ment learning with human feedback (RLHF) (Ouyang et al., 2022), which is a model training
approach that enhances the alignment of a fine-tuned language model’s behavior with hu-
man preferences and its ability to follow instructions. One of the advantages of LLMs is
their ability to perform well on new tasks in various scenarios, including zero-shot settings
(where no examples are provided), few-shot settings with only a limited number of examples,
as demonstrated by Brown et al. (2020) and tasks guided by textual instructions, known as
prompts. In the case of zero-shot settings and prompting, there is no additional fine-tuning
on training data.

7.3.3.1 Sentiment Classification with Prompting

Prompting is a relatively new paradigm in NLP (P. Liu et al., 2023) that encourages a pre-
trained model to make specific predictions by providing a prompt specifying the task to be
done. This technique introduces the need for prompt engineering, which is the process of
searching for the most suitable prompt that enables a language model to effectively solve
the given task. In the era of LLMs, prompt engineering has gained even greater significance,
leading to a growing body of research in this area. For example, White et al. (2023) provide
a catalog of prompt patterns to solve various problems.
For our experiments, we use the large Llama 2 model with 70B parameters. Llama 2 is

based on Llama (Touvron, Lavril, et al., 2023), trained on 40% more data and has twice the
context length compared to its predecessor. This model is open source, unlike ChatGPT. Due
to the substantial size of the Llama 2model, deploying it on our own hardware infrastructure
proved unfeasible and given the fact that ChatGPT is a closed proprietary model, we were
forced to rely on the already deployed versions of these models and access them through the
available application programming interface (API). More concretely, we use the fine-tuned
version, denoted as Llama-2-70b-chat, tailored for dialogue interactions and applications.
We utilize the deployed version at HuggingChat12 and we use the hugging-chat-api library
to perform the API calls. Additionally, we employ the GPT-3.5 Turbo version of ChatGPT
for our experiments, which was developed on top of GPT-3 (Brown et al., 2020). We call the

12https://huggingface.co/chat/
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official paid OpenAI API13. Both of these models have a maximum input length set to 4096
tokens, if the input is longer, we trim the classified example14.

Influenced, in part, by thework ofWhite et al. (2023), we construct three types of prompts
– basic, advanced and in-contextwhich we use for our experiments. Since both of our selected
models exhibit multilingual capabilities, we exploit this feature to classify reviews across all
three evaluated languages. We employ identical English prompts for both Czech and French
datasets while preserving the original language of the review in each respective dataset.
The basic prompt simply instructs the model to act as a sentiment classifier for the

three-class classification of reviews. The example for the following review “The movie was
fantastic!!!” is shown in Figure 7.2.

Basic prompt

You are a sentiment classifier, classify the following review as “positive”,“negative” or “neutral”.
Answer in one word only.

The review:

The movie was fantastic!!!

Figure 7.2: Example of the basic prompt.

The advanced prompt is designed to give the model more details about the task. It
encompasses a comprehensive task description, delving into the nuances of the individual
classes, and provides explicit directives on approaching the task methodically, breaking it
down into distinct steps. The intention was to provide more context about the task and
thus achieve better results. The advanced prompt is inspired by the chain-of-thought (CoT)
prompting (Wei et al., 2022), which provides a series of intermediate reasoning steps. These
steps lead the model to output the final answer step by step and, as shown in Wei et al.
(2022) and improve the ability of LLMs to perform complex reasoning and performance.
The advanced prompt is shown in Figure 7.3.

Finally, the third in-context prompt is based on a technique called in-context learning
(ICL), which enables pre-trained language models to perform a previously unseen task with-
out any fine-tuning by feeding a small number of training examples as part of the input
(Brown et al., 2020; H. Liu et al., 2022; Min et al., 2022). In our case, the in-context prompt is
similar to the basic one, but in addition, it contains four randomly sampled examples from
the training dataset. The example can be seen in Figure 7.4.

The examples for the in-context prompt are always the same for each currently evaluated
sample and the examples are in the same language as the evaluated dataset. The examples
are sampled so that each class is represented at least once, i.e., for three-class classification,

13https://platform.openai.com/
14Such cases are very rare and can occur only for a few examples, due to the lengths of the relatively short

text in the datasets.
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Advanced prompt

You are a Movie and TV Show Review Sentiment Analyzer. You will be given a text of a movie or TV
show review, please analyze its content and determine the most appropriate category from the following
list. The categories are divided based on the type of sentiment:

Category 1 - positive: Includes reviews that are satisfied with the movie or TV show.
Category 2 - neutral: Includes reviews that are mixed or do not significantly express any sentiment.
Category 3 - negative: Includes reviews that are dissatisfied with the movie or TV show.

The text for analysis will be marked with four slashes, i.e., ////.

Step 1:#### Judge the overall mood of the text and determine which category the text most likely belongs
to.
Step 2:#### Focus more closely on the keywords used in the text. Check if the keywords suggest a specific
category. For instance, if the text extensively praises the movie or TV show, you should choose "Positive".
If the review is mixed or ambiguous, choose "Neutral". If the text criticizes the movie or TV show, choose
"Negative".
Step 3:#### Determine the final category based on the highest probability.

Use the following format:
Step 1:#### <rationale for Step 1>
Step 2:#### <rationale for Step 2>
Step 3:#### <rationale for Step 3>

User’s answer:#### <the evaluated sentiment itself>

Ensure that you are inserting #### to separate each step.

////The movie was fantastic!!!////

Figure 7.3: Example of the advanced prompt.

positive, negative and neutral classes are sampled at least once. The prompts for binary classi-
ficationmaintain a similar structure but exclude instructions for the neutral class, see Figures
A.4, A.5 and A.6 in Appendix A.5.

7.4 Methodology & Experimental Setup

This section describes the different types of experiments we carried out and additional de-
tails about them. Our study includes several types of experiments. The core cross-lingual
experiments are performed either by the Transformer-based models or the CNN or LSTM
models in conjunction with the linear transformations. Additionally, we experiment with
LLMs (Llama 2 and ChatGPT). We provide the main results for cross-lingual experiments in
Section 7.6. To establish the upper-performance threshold for cross-lingual experiments, we
conduct a series of monolingual experiments, see Section 7.5 for results along with a com-
parison to the state-of-the-art models.
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In-context prompt

You are a sentiment classifier. You will be given a review, please classify the review as “positive”,“negative”
or “neutral”. Answer in one word only. As an example, you will obtain examples of the reviews and the
desired output.

The examples:
Review:“An opportunity missed.” sentiment:negative
Review:“The most consistently funny of the Austin Powers films.” sentiment:positive
Review:“Kurys never shows why, of all the period’s volatile romantic lives, Sand and Musset are worth
particular attention.” sentiment:neutral
Review:“Even as I valiantly struggled to remain interested, or at least conscious” sentiment:negative

Ensure that the output is only one word, i.e., one of the sentiment classes.

The review:

The movie was fantastic!!!

Figure 7.4: Example of the in-context prompt.

7.4.1 Evaluation of the Polarity Detection Task
To evaluate the performance of our models on the polarity detection task, we perform mul-
tiple experiments for both monolingual and cross-lingual settings. For each experiment, we
report the average accuracy score with a 95% confidence interval for the test data obtained
by repeating the experiment at least six times. We repeat the experiments to account for
the random initialization of neural network weights and to provide more reliable results.
We always selected the model with hyper-parameters that achieved the best results on the
development data.
We experimented with various combinations of hyper-parameters (e.g., learning rate,

learning rate scheduler, optimizer, dropout) for both the linear transformation-based ap-
proach and the Transformer-based approach, and we converged to the combinations that
turned out to be optimal for our task. The optimal hyper-parameters for monolingual results
are reported in Tables A.1, A.2, A.3 and A.4 in Appendix A.

7.4.2 Zero-Shot Cross-lingual Sentiment Classification
Our cross-lingual experiments are performed in a zero-shot setting. The idea behind zero-
shot cross-lingual experiments for a pair of languages is to use data only from the source
language to train a cross-lingual model and evaluate the model on data from the target lan-
guage, as is indicated in Figure 6.1. This allows us to test the capacity of the model to transfer
knowledge between languages without any labeled data in the target language.
Such ability to transfer knowledge between languages can be very valuable and useful

in real-world scenarios because one may have enough labeled data only in one language
and creating data in other languages can be prohibitively expensive or even impossible.
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The binary classification experiments are done for all pairs of languages. The three-class
classification is performed only for the Czech-English pair, and to the best of our knowledge,
we are unaware of a suitable French dataset in the movie review domain with three classes
that we could use.

We slightly modified the training data for the source language compared to the monolin-
gual experiments. Still, more importantly, the data for testing remains unchanged to allow
comparison of the cross-lingual results with the monolingual. For model training, where
the source language is French, we use the same split as in the monolingual experiments. In
the case of Czech as the source language, we use the CSFD training and testing parts for
training and the dev part as development data. The same is valid for the English IMDB and
SST datasets, where we use the testing and training parts of the dataset for training mod-
els. We use the same hyper-parameter settings for the cross-lingual experiments as for the
corresponding models in the monolingual experiments.
We decided to extend the training data for English and Czech because otherwise, the

testing parts of the datasets would not be used in the cross-lingual experiments. We assume
that in real-world use, all available data would be used for training. For example, using the
IMDB dataset without extending the training data would discard half (25k examples) of the
dataset. Unfortunately, to the best of our knowledge, there are no other cross-lingual studies
available thatwe could use and directly comparewith our results. Consequently, we primarily
compare our results with our findings and additionally with the existing monolingual state-
of-the-art results.

7.4.3 Cross-lingual Sentiment Analysis with Linear
Transformations

In Section 7.2.5, we discussed the two tasks to evaluate linear transformations: intrinsic
and extrinsic. In this thesis, our main focus is on the extrinsic task of CLSA. These main
extrinsic results for CLSA based on linear transformations are outlined in Section 7.6.1.
Our recommendations for using linear transformations are discussed in Section 7.8.1. For
additional intrinsic experiment with linear transformations, see Section 7.7.1.

Each cross-lingual experiment for a pair of languages based on the linear transformation
starts by aligning two semantic spaces of the source and target languages using one of the
five linear transformations described in Section 6.2.1. To recall, the source language is the
one whose data is used to train the model, while the target language is the one used to
evaluate the model. We explore two options (directions) for transformation: a) transforming
the source word embeddings into the target space while leaving the target word embeddings
unchanged, and b) transforming the target word embeddings into the source space while
leaving the source word embeddings unchanged. In the case of the first option, the source
word embeddings are transformed into the target space, while the target word embeddings
remain unchanged. Analogously, for transformation from the target space into the source
one, the word embeddings of the target space are transformed into the source space, which
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is not changed. We use the resulting cross-lingual word embeddings space to represent the
input text for the CNN or LSTM neural network.
In our cross-lingual experiments based on linear transformations, we investigated two

modifications that could potentially impact the performance. Firstly, we examined the effect
of using in-domain (movie review) word embeddings in comparison to word embeddings
trained on general text, see Section 7.2.2 for their description. Secondly, as discussed in
Section 7.2.2.1, we noted that normalization of the word embeddings had been shown to
improve performance on intrinsic tasks. Therefore, we explored whether this modification
also enhances performance in the downstream task of polarity detection. We considered
three options in our experiments. First, we did not perform any normalization on the word
embeddings. Second, we normalized the embeddings only before the linear transformation.
Finally, we also normalized the embeddings before and after the linear transformation.
We perform the normalization after the linear transformation because the transforma-

tion may damage the transformed embeddings. If any normalization is performed, we apply
it to both the source and target word embeddings.

Prior to conducting all cross-lingual experiments using linear transformations, we sought
to determine the optimal dictionary size for aligning word embeddings and its impact on
accuracy. To achieve this, we selected various dictionary sizes, ranging from the first 20 most
common words to up to 20,000 of the most common words in our dictionary. We evaluated
the impact of the different dictionary sizes on the accuracy of zero-shot cross-lingual polarity
detection using a CNN model trained on the IMDB–CSFD-2 dataset pair. The chart with
the results and further details about the experiments with dictionary sizes are provided in
Section 7.7.1.2.

7.4.4 Cross-lingual Sentiment Analysis with Transformer-based
Models

The approach for cross-lingual experiments with multilingual Transformer-based models is
muchmore straightforward compared to thosewith linear transformations. Themultilingual
model is firstly fine-tuned on data from the source language and then evaluated on data from
the target language without the need for any explicit alignment between the two languages.
Notably, the model has no prior exposure to labeled data from the target language. In this
work, we experiment with four multilingual models: mBERT, XLM-RBase, XLM-RLarge and
XLM, mentioned in Section 7.3.2.

Additionally, we wanted to investigate how the performance of the Transformer-based
models is affected by limited training data.We started the fine-tuning of themodels with only
10% of the original training dataset and we evaluated them on the complete non-reduced
test part. We repeated this process, adding an additional 10% of the training data each time
until we used the full dataset. Since each model was fine-tuned ten times and testing each
cross-lingual dataset pair would be too expensive, we restricted these experiments to the
IMDB–CSFD-2 dataset pair only.
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7.4.5 Experiments with LLMs

As we mentioned, we do not fine-tune the Llama 2 and ChatGPT LLMs, but rather, we
leverage the technique called prompting with three types of prompts described in Section
7.3.3.1. In each prompt, the models are instructed to respond in a pre-defined single-word
format, signifying the predicted class. However, the output of these models is text in general
and itmay happen that themodel produces output in a different format than it was instructed.
In such scenarios, we consider the output as incorrect. We present these original results in
Table 7.10.

We observed that the incorrect outputs often contain the correct prediction, but the out-
put includes some additional text. For example, instead of the desired single-word response
like “positive”, the output was “overall, the movie has positive sentiment“. For these predictions,
we decided to manually fix the output and report the results in Table 7.1115. Despite the
manual correction, for some outputs, we were not able to assign the correct predictions
because the model returned text as follows “cannot determine sentiment”, “unclear sentiment
undetermined”, “n/a”, “mixed” etc. In these situations, we consider the output as incorrect.
Nonetheless, we have to note that such cases were mostly rare depending on the prompt–
dataset–model experiment configuration. The consistency or diversity of generated textual
outputs of both models can be controlled by the temperature hyper-parameter. Lower values
for temperature result in more consistent outputs, while higher values generate more diverse
and creative results (OpenAI, 2022). Based on our experiences and recommendations from
the model’s documentation, we use values similar to the default values, i.e., 1 for ChatGPT
and 0.2 for Llama 2.
Inspired by similar works focused on LLMs (Qin et al., 2023; W. Zhang et al., 2023;

Zhong et al., 2023), and guided by practical constraints, our experimental evaluations were
conducted exclusively on randomly selected subsets of each dataset16. Notably, the size
of these subsets consisted of 5,000 examples, with one exception being the SST dataset,
which, due to its more limited data volume, was evaluated in its entirety. The reason behind
this decision is that the ChatGPT API is a paid service and our budget was limited. These
limitations prohibited us from executing experiments on the full test sets of the datasets.
Furthermore, the openly deployed Llama 2model, while freely accessible, imposed significant
restrictions on the number of requests it could accommodate per minute, allowing only
about 6 requests per minute. Given these constraints and to maintain equitable evaluation
conditions for both large language models (LLMs), we opted to conduct evaluations on
a subset of 5,000 examples. It is worth noting that, in comparison, other relevant studies
typically employ much smaller evaluation sets, often consisting of only tens or hundreds of
examples.

15Sometimes, the output of the model is always in the correct format, in such cases, the results in Tables
7.10 and 7.11 are identical for the same experiment configuration.

16The sampling is done only once for each dataset, so in every experiment, we use the same subset of the
given dataset.
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To potentially mitigate the aforementioned challenges with incorrect predictions, a more
sophisticated approach to prompt design may be warranted with different values of the
temperature parameter, albeit demanding further experimental endeavors. Regrettably, con-
straints related to a limited budget and time compelled us to undertake only a restricted set
of experiments to yield results that are amenable to comparison with the older approaches.
We are aware that further experiments, analyses, and investigations are required to fully
understand the effect of individual prompts and models’ outputs. Consequently, we defer
these endeavors to future research.

7.5 Monolingual Results
We report the monolingual results as the accuracy score for all models in Tables 7.3, 7.4,
7.5 and 7.6. Our best results are highlighted in bold, while results from other papers that
outperformourmodels are underlined. Themodels denoted byCNN andLSTMwere trained
with in-domain embeddings, while the models with the suffix -F, i.e., CNN-F and LSTM-
F, were trained with the original fastText embeddings. For the LSTM and CNN models,
there are two results separated by a slash, where the first number represents the accuracy
score for the unnormalized embeddings, and the second number represents the score for
the normalized version of the word embeddings.

Model
CSFD (Czech)

2 Classes 3 Classes

CNN 93.9±0.1/93.4±0.1 83.7±0.1/82.9±0.2

CNN-F 91.5±0.2/92.6±0.1 80.3±0.1/81.7±0.2

LSTM 94.4±0.2/93.9±0.1 84.8±0.2/84.2±0.1

LSTM-F 92.1±0.3/92.6±0.3 81.8±0.3/82.8±0.2

Czert-B 94.4±0.1 84.9±0.1

RobeCzech 95.1±0.9 86.0±0.2

Czech Electra 93.2±0.4 81.8±0.1

mBERT 93.1±0.3 82.9±0.1

XLM 93.9±0.2 83.8±0.1

XLM-RBase 94.3±0.3 85.0±0.1

XLM-RLarge 96.0±0.0 87.2±0.1

Habernal et al. (2013)†ME - 79.0±0.3

Brychcín and Habernal (2013)†ME - 81.5±0.3

Libovický et al. (2018)* LSTM - 80.8±0.1

Lehečka et al. (2020)* Distill-BERT 93.8 -

Table 7.3: Monolingual accuracy results
for the Czech CSFD dataset. The models
from papers marked with † were evaluated
with 10-fold cross-validation and the ones
marked with * were evaluated on a custom
data split. The ME stands for Maximum en-
tropy classifier.

Model Allocine (French)

CNN 95.0±0.1/95.1±0.1

CNN-F 94.3±0.1/94.7±0.2

LSTM 96.4±0.1/96.4±0.1

LSTM-F 95.7±0.1/95.9±0.1

CamemBERT 97.5±0.0

mBERT 96.2±0.1

XLM 96.3±0.0

XLM-RBase 96.9±0.0

XLM-RLarge 97.6±0.0

Théophile (2020) CamemBERT 97.4
Théophile (2020) CNN 94.1
Soleymani et al. (2021) Reformer 95.1

Table 7.4: Monolingual accuracy results for
the French Allocine dataset (2 classes).

The normalization of the embeddings occasionally improves the monolingual results,
particularly for the English SST dataset, but we cannot state that it has some significant ef-
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fect on the monolingual performance. On the other hand, in-domain embeddings (CNN and
LSTM) generally yield better performance compared to models with the original fastText
embeddings (CNN-F and LSTM-F), although the difference is typically small. Additionally,
the LSTMmodel tends to outperform the CNNmodel, likely due to its greater number of
parameters (1.6M versus 0.7M for the CNNmodel). The performance of Transformer-based
models varies across languages, with the multilingual XLM-RLarge consistently outperform-
ing other models due to its larger number of parameters. However, monolingual models
generally tend to outperform comparable-sized multilingual models across all languages.

While Transformer-based models generally outperform the older CNN and LSTMmod-
els, the latter remain competitive for the Czech and French datasets. However, we observe
a significantly larger performance gap (around 5%) for the English SST dataset between
Transformer-based models and CNN or LSTM models. Another observation is that our re-
sults for English are, in general, less competitive compared to other state-of-the-art results.

Regarding our monolingual results for English, we were unable to surpass the perfor-
mance of XLNet (Yang et al., 2019) and SMARTRoBERTa (Jiang et al., 2020), which are English
monolingual models that have undergone improved pre-training phases, unlike the XLM-
RLarge. The possible clear explanation is that XLM-RLarge is a cross-lingual model that has
not been optimized exclusively for English, while the other two models were, thus achieving
better results. For the French CamemBERT model fine-tuned by us, we received almost an
identical number as Théophile (2020) did. We observed that the French dataset produces
the best results in absolute numbers compared to the other datasets. We attribute this to
the larger dataset size, as it contains more examples that can help the model achieve better
results.

Model
SST (English)

2 Classes 3 Classes

CNN 84.4±0.6/84.6±0.3 66.4±1.1/68.5±0.6

CNN-F 83.7±0.2/85.4±0.4 66.1±1.0/68.6±0.8

LSTM 85.3±0.4/84.5±1.2 69.7±1.1/68.2±1.7

LSTM-F 84.3±0.6/85.9±0.9 70.4±0.7/71.3±1.2

BERTBase-Cased 91.0±0.1 71.9±0.1

mBERT 85.2±0.9 65.1±0.4

XLM 89.6±0.2 70.5±0.4

XLM-RBase 90.9±0.2 73.5±0.2

XLM-RLarge 94.6±0.4 78.1±0.5

Jiang et al. (2020) SMARTRoBERTa 97.5 -
Yang et al. (2019) XLNet 97.1 -
Conneau et al. (2020) XLM-RLarge 95.0 -

Table 7.5: Monolingual accuracy results for
the English SST dataset.

Model IMDB (English)

CNN 91.8±0.1/91.6±0.2

CNN-F 89.3±0.6/91.1±0.2

LSTM 92.5±0.2/92.6±0.4

LSTM-F 90.7±0.7/91.5±0.5

BERTBase-Cased 93.7±0.0

mBERT 92.4±0.4

XLM 86.4±0.2

XLM-RBase 94.5±0.2

XLM-RLarge 96.2±0.1

Yang et al. (2019) XLNet 96.8
Sun, Qiu, et al. (2019) BERTLarge 95.8

Table 7.6: Monolingual accuracy results for
the English IMDB dataset (2 classes). NB
stands for NB-weighted-BON + DV-ngram
model from the paper.
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7.6 Cross-lingual Results
In this section, we present and compare the key outcomes of our cross-lingual experiments.
In Section 7.6.1, we assess the performance of the five linear transformations described in
Section 6.2.1. Section 7.6.2 contains results for experiments with LLMs. In Section 7.6.3, we
present the results obtained by multilingual Transformer-based models and compare them
with LLMs and models employing linear transformations. In Section 7.6.4, we compare the
cross-lingual models with each other. We compare the training and inference speeds of the
models in Section 7.6.5, as these factors are crucial for their practical usability in production.

7.6.1 Results for Linear Transformations
We present averaged accuracy results for cross-lingual experiments based on linear trans-
formations in Tables 7.7, 7.8 and 7.9 for Czech-English, English-French and Czech-French
language pairs, respectively. Each line in the tables provides an averaged accuracy over the
five linear transformations for a given experiment configuration.

Evaluated on Czech Evaluated on English

Model Norm. Monoling.
EN-s⇒CS-t CS-t⇒EN-s

Monoling.
CS-s⇒EN-t EN-t⇒CS-s

in-domain/fastText in-domain/fastText in-domain/fastText in-domain/fastText

CSFD (Czech) – IMDB (English)

C
N
N

- 93.9/91.5 86.8/77.3 88.4/78.7 91.8/89.3 83.1/78.4 78.3/74.6

B
93.4/92.6

87.9/85.7 87.7/85.7
91.6/91.1

85.5/82.9 82.5/81.6
B,A 88.1/85.7 87.2/85.6 84.9/83.8 82.8/83.7

LS
TM

- 94.4/92.1 85.9/78.5 86.8/81.5 92.5/90.7 79.8/74.3 78.6/81.7

B
93.9/92.6

86.0/81.2 87.3/82.0
92.6/91.5

83.1/78.7 78.9/81.9
B,A 86.5/83.2 86.1/82.2 80.5/81.2 81.4/85.2

CSFD (Czech) – SST (English)

C
N
N

- 93.9/91.5 85.1/72.7 85.1/73.5 84.4/83.7 76.4/73.9 73.9/74.0

B
93.4/92.6

85.0/81.3 84.7/81.2
84.6/85.4

77.5/77.1 75.9/77.0
B,A 85.3/81.9 83.5/80.5 78.1/78.8 76.7/77.7

LS
TM

- 94.4/92.1 83.2/73.3 80.6/74.1 85.3/84.3 74.6/77.2 75.3/76.9

B
93.9/92.6

80.5/79.0 81.6/79.9
84.5/85.9

76.7/76.2 74.7/78.1
B,A 82.0/78.8 82.5/79.6 77.1/77.4 76.8/77.9

CSFD (Czech) – SST (English) 3 Classes

C
N
N

- 83.7/80.3 55.7/47.6 55.7/44.9 66.4/66.1 46.2/48.5 50.4/52.5

B
82.9/81.7

57.2/52.6 57.1/53.7
68.5/68.6

48.9/50.1 51.4/53.0
B,A 57.5/53.7 55.7/53.8 49.7/54.1 51.4/53.4

LS
TM

- 84.8/81.8 53.6/48.1 51.7/40.0 69.7/70.4 44.7/45.2 48.9/50.3

B
84.2/82.8

52.9/53.5 51.6/53.5
68.2/71.3

51.2/45.6 50.5/50.9
B,A 52.6/53.6 51.2/52.2 49.5/47.9 52.3/51.6

Table 7.7: Averaged cross-lingual accuracy results for linear transformations obtained on the
Czech-English language pair. See the text in Section 7.6.1 for a full description.

In each table, we provide results for models trained with both the in-domain embeddings
pre-trained by us and the existing fastText embeddings, separated by a slash character. We
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report the results of experiments where the semantic spaces were transformed in both di-
rections17. We highlight the background of pairs where in-domain embeddings yield better
results than the existing fastText embeddings with a gray color. We also underline the re-
sult when the model with any normalization achieves a better performance than the model
without normalization18. The best results for each language and model pair are in bold.

The Norm. column in the tables indicates the type of normalization applied to the word
embeddings during the experiments. The B,A combination of letters represents that normal-
izationwas used before and after the linear transformation. TheB lettermarks normalization
before the transformation, while the sign -means no normalization. To facilitate compari-
son, we also include aMonoling. column for the monolingual results of our models19. Due to
many results and for better clarity and readability, we decided to report only the averaged
values here. The complete results for every linear transformation are separately placed in
Appendix A.2 in Tables A.5, A.6, A.7, A.8, A.9, A.10, A.11, A.12, A.13, A.14, A.15 and A.16.

Evaluated on French Evaluated on English

Model Norm. Monoling.
EN-s⇒FR-t FR-t⇒EN-s

Monoling.
FR-s⇒EN-t EN-t⇒FR-s

in-domain/fastText in-domain/fastText in-domain/fastText in-domain/fastText

Allocine (French) – IMDB (English)

C
N
N

- 95.0/94.3 89.1/76.8 86.2/79.3 91.8/89.3 84.3/78.5 80.0/77.0

B
95.1/94.7

90.1/85.5 88.4/86.1
91.6/91.1

86.5/85.1 83.7/83.0
B,A 90.5/86.4 88.8/87.1 83.8/86.4 86.7/85.7

LS
TM

- 96.4/95.7 89.7/81.2 88.8/82.6 92.5/90.7 79.3/83.1 86.7/83.5

B
96.4/95.9

90.5/79.1 89.9/84.0
92.6/91.5

85.6/85.6 88.1/85.6
B,A 91.2/86.0 88.4/87.5 81.2/88.4 89.3/86.0

Allocine (French) – SST (English)

C
N
N

- 95.0/94.3 87.1/71.3 84.0/74.1 84.4/83.7 77.0/78.1 74.6/77.1

B
95.1/94.7

89.0/84.5 86.2/83.9
84.6/85.4

79.9/79.8 79.9/78.8
B,A 89.2/85.6 85.8/84.5 79.5/80.4 80.9/80.2

LS
TM

- 96.4/95.7 85.4/75.7 84.6/76.3 85.3/84.3 76.7/79.1 80.9/78.6

B
96.4/95.9

85.3/80.0 83.7/81.4
84.5/85.9

80.5/81.2 82.0/80.0
B,A 86.2/81.4 83.7/80.9 80.7/81.4 82.3/80.9

Table 7.8: Averaged cross-lingual accuracy results for linear transformations obtained on the
English-French language pair. See the text in Section 7.6.1 for a full description.

17For example, the column labeled as EN-s⇒ CS-t in Table 7.7 means that the English space was trans-
formed into the Czech space. English is the source language (-s suffix) and Czech is the target language (-t
suffix), in other words, the English dataset is used for training (source) and Czech for the evaluation (target).
Analogously, the CS-t⇒ EN-s denotes that the Czech space was transformed into the English space, but still,
the source language (English) was used for training and the target language (Czech) for evaluation.

18We use these formatting techniques to make it easier to compare and observe (in a global view) the effect
of normalization and in-domain embeddings on the results.

19The slash character also separates the monolingual results pairs and has the same meaning in terms of
used in-domain and fastText embeddings.
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7.6.1.1 Language Comparison

The tables reveal a stark contrast between the monolingual and cross-lingual results, with
the former outperforming the latter by a significant margin with someminor exceptions. For
example, the best result (89.3% of accuracy) in Table 7.8 for English on the Allocine-IMDB
dataset pair is worse only by 3.3% than the corresponding monolingual result of 92.6%. It
may seem to be a large gap, but it is worth noting that the model has never encountered any
labeled English examples and thus, we consider it to be a fine result.

The difference between monolingual and cross-lingual settings for experiments with
three classes (the CSFD–SST dataset pair) is much more significant, 31% - 27% and 23% -
17% for evaluation of Czech and English, respectively. Such performance drop is caused by
the inability of the cross-lingual models to properly learn the neutral label (class). Here, we
do not show the results for each label separately, but the cross-lingual models are usually
able to classify only the positive and negative classes, whereas the monolingual models are
partly able to perform the classification. This can be caused by the fact that the CSFD dataset
was annotated in a distant supervised way (partly unsupervised), but the SST dataset was
annotated manually. Hence, the annotation of the neutral class might be perceived or shifted
and the sentiment label may vary. We discuss it in more detail in Section 7.8.4.

We have noticed that in general, the English-French language pair tends to achieve better
accuracy results in absolute numbers compared to cases where the language is paired with
the Czech language. For example, according to Table 7.8, the CNNmodel for French achieves
around 90% of accuracy on the Allocine-IMDB pair when trained on English and evaluated
on French. However, the results fromTable 7.9 indicate that the samemodel, when trained on
Czech and evaluated on French, achieves around 80%-85% accuracy. This can be explained by
the fact that French and English come from language families that are much closer and more
similar to each other than the Czech language, which belongs to the Slavic language family.
This makes the transfer of knowledge and transformation between English and Frenchmuch
easier than in cases involving Czech.

Evaluated on Czech Evaluated on French

Model Norm. Monoling.
FR-s⇒CS-t CS-t⇒FR-s

Monoling.
CS-s⇒FR-t FR-t⇒CS-s

in-domain/fastText in-domain/fastText in-domain/fastText in-domain/fastText

C
N
N

- 93.9/91.5 83.9/75.5 79.9/72.7 95.0/94.3 82.3/75.6 77.9/74.8

B
93.4/92.6

84.8/80.6 85.0/77.4
95.1/94.7

84.0/79.5 83.2/74.1
B,A 85.2/83.3 85.1/82.6 85.0/82.4 84.1/78.5

LS
TM

- 94.4/92.1 85.2/80.9 87.1/78.5 96.4/95.7 77.9/77.4 74.9/75.6

B
93.9/92.6

86.8/84.0 87.5/81.1
96.4/95.9

81.3/75.1 75.7/76.2
B,A 87.4/83.8 87.8/84.8 80.8/75.8 80.5/81.0

Table 7.9: Averaged cross-lingual accuracy results for linear transformations obtained on the
Czech-French language pair. See the text in Section 7.6.1 for a full description.
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7.6.1.2 General Observations

The obvious improvement in performance, particularly for the original fastText embeddings,
is attributed to the normalization, as indicated by the underlined numbers in the tables. For
example, in Table 7.7 the normalized CNN models for the combination of CSFD-IMDB
dataset pair evaluated on Czech using the fastText embeddings in the EN-s⇒CS-t direction
achieved 85.7 of accuracy, which is an 8.4% higher accuracy than the result (77.3%) for
the unnormalized model. The effect of improvement caused by the normalization is not
that visible for the in-domain embeddings. There is no significant difference or discernible
pattern in performance between the two versions (before and after the linear transformation)
of normalization that we apply. Nonetheless, the normalization consistently produces results
that are at least as good as, but usually better than, the unnormalized ones.

Another observation is that the results for models with in-domain embeddings achieved
mostly better results than those trained with the original fastText embeddings, even though
the in-domain embeddings were pre-trained on a much smaller amount of data (see Section
7.2.2) in comparison to the fastText embeddings.

Based on the results from the mentioned Tables in Appendix A.2, we can not mark any of
the five linear transformations as the best one. Although the MSE method performed worse
than the other four in some cases, no linear transformation consistently outperformed the
others.
There was not much difference in the accuracy performance between the LSTM and

CNNmodels. While the CNNmodel performed better for the Czech-English language pair,
both models yielded similar results overall. From reported confidence intervals in the Tables
in Appendix A.2 and partly from our experiences during the experiments, we observed that
the CNN is more stable during training compared to the LSTMmodel.

7.6.2 Results for LLMs

We present the accuracy results20 of unmodified outputs for LLMs in Table 7.10. Table 7.11
contains results with manually fixed predictions, as described above.
From Table 7.10 with unmodified results, we can clearly observe a superiority of Chat-

GPT in mean performance across all datasets. Typically, this advantage falls within the range
of 1% to 2%, except for the IMDB and Allocine datasets, where the difference is more distinc-
tive. The performance of ChatGPT remains consistent irrespective of the employed prompt.
Whereas, in the case of Llama 2 model, the in-context prompt results differ the most. We
hypothesize that this variance can be attributed to random sampling of examples, potentially
leading to suboptimal or non-representative selections which may confound the model. In
that case, we would expect the same behaviour for ChatGPT unless ChatGPT is more capa-
ble. However, we do not have any evidence for such an assumption and more experiments

20We present the outcomes for LLMs prior to the Transformer-based findings in Section 7.4.4. This se-
quencing is deliberate as, within the tables contained in this section, we conduct comprehensive comparisons
and summarize the results across all models.
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and analyses would be required to validate it. As such, we leave the question open for future
research.
The outcomes depicted in Table 7.11 display a higher degree of similarity between the

twomodels in comparison to those illustrated in Table 7.10. Themanual fixing of the outputs
resulted in a substantial improvement in the accuracy of the Llama 2 model. This observa-
tion suggests that the model has difficulties following the instructions for the desired output
format rather than with the task itself. From both tables, it is evident that we achieved com-
parable results as other works employing the ChatGPT model. The comparison of different
prompts (from Table 7.11) for ChatGPT shows that, in most cases, all prompts provide sim-
ilar performance. In the case of the Llama 2 model, the in-context prompt is significantly
better for the CSFD-2, IMDB and Allocine datasets.

Model Prompt
CSFD SST IMDB Allocine

2 classes 3 classes 2 classes 3 classes 2 classes 2 classes

Llama 2 (ours)

basic 91.9 66.5 94.8 77.8 91.7 94.9
advanced 88.7 62.9 91.1 76.7 86.7 92.8
in-context 89.4 50.8 94.7 77.2 72.4 87.4

average 90.0 60.1 93.5 77.2 83.6 91.7

ChatGPT (ours)

basic 92.0 62.2 95.3 79.8 94.2 94.8
advanced 89.4 62.5 91.7 78.3 92.5 94.2
in-context 93.1 63.5 95.7 79.2 95.1 95.5

average 91.5 62.7 94.2 79.1 93.9 94.8

ChatGPT (W. Zhang et al., 2023) 500 ex. simple - - - 93.6 - 94.2 -
ChatGPT (Qin et al., 2023) 800 ex. simple - - - 87.6 - - -
ChatGPT (Zhong et al., 2023) 50 ex. chain-of-thought - - - 96.0 - - -

Table 7.10: Accuracy results for LLMs without additional manual output fixing. Noteworthy
performance metrics are highlighted: bold numbers signify the top results for each dataset,
while underlined numbers indicate superior averages across the models. Information about
the number of evaluated examples is given for the related works.

7.6.3 Results for Transformer-based Models
We report the cross-lingual accuracy results for the multilingual Transformer-based models
for three languages Czech, French, and English. The results are presented in Tables 7.12, 7.13
and 7.14 for Czech, French and English, respectively21. Bold numbers in the tables indicate
the best results in a given column (language pair). We also include the best absolute results
achieved with the linear transformation approach for both the CNN and LSTMmodels, as
well as monolingual results22, including selected current state-of-the-art results.

From the tables, it is evident that the XLM-RLarge model dominates in the cross-lingual
experiments in all configurations (except for the SST-CSFD dataset pair for three-class clas-

21All results in this table were obtained by us unless otherwise indicated by a citation at the beginning of
the row. Results with citations were taken from the referenced works.

22These results come from the tables in Appendix A.2 and not from the averaged results in Section 7.6.1.
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7.6.3. Results for Transformer-based Models

Model Prompt
CSFD SST IMDB Allocine

2 classes 3 classes 2 classes 3 classes 2 classes 2 classes

Llama 2 (ours)

basic 92.1 66.8 95.9 77.8 95.2 94.9
advanced 90.8 64.1 94.3 77.1 94.3 94.3
in-context 90.1 74.1 95.2 77.2 97.6 97.1

average 91.0 68.4 95.1 77.4 95.7 95.4

ChatGPT (ours)

basic 92.0 62.2 95.5 79.8 94.4 95.1
advanced 94.1 63.8 95.4 78.5 93.8 95.6
in-context 93.2 63.5 95.7 79.2 95.1 95.5

average 93.1 63.2 95.6 79.2 94.4 95.4

ChatGPT (W. Zhang et al., 2023) 500 ex. simple - - - 93.6 - 94.2 -
ChatGPT (Qin et al., 2023) 800 ex. simple - - - 87.6 - - -
ChatGPT (Zhong et al., 2023) 50 ex. chain-of-thought - - - 96.0 - - -

Table 7.11: Accuracy results for LLMs with additional manual output fixing. Noteworthy
performance metrics are highlighted: bold numbers signify the top results for each dataset,
while underlined numbers indicate superior averages across the models. Information about
the number of evaluated examples is given for the related works.

Evaluated on Czech

CSFD (2 classes) CSFD (3 classes)

Model
EN→ CS EN→ CS FR→ CS

Monoling.
EN→ CS

Monoling.
(IMDB – CSFD) (SST-2 – CSFD) (Allocine – CSFD) (SST-3 – CSFD-3)

mBERT 76.2±0.5 70.0±0.9 79.1±0.0 93.1±0.3 45.8±0.8 82.9±0.1

XLM 82.1±0.5 79.6±0.6 84.1±0.1 93.9±0.2 51.1±0.6 83.8±0.1

XLM-RBase 88.1±0.4 85.2±0.3 89.4±0.4 94.3±0.3 59.8±0.3 85.0±0.1

XLM-RLarge 92.1±0.0 91.0±0.3 93.4±0.1 96.0±0.0 59.4±1.4 87.2±0.1

CNN-Best 89.2±0.1 86.3±0.2 87.0±0.2 93.9±0.1 59.7±0.5 83.7±0.1

LSTM-Best 89.1±0.3 86.7±0.9 88.9±0.2 94.4±0.2 57.2±0.4 84.8±0.2

Czert-B - - - 94.4±0.1 - 84.9±0.1

RobeCzech - - - 95.1±0.9 - 86.0±0.2

Czech Electra - - - 93.2±0.4 - 81.8±0.1

Lehečka et al. (2020)* - - - 93.8 - -
Libovický et al. (2018)* - - - - - 80.8±0.1

Table 7.12: Accuracy cross-lingual results for Transformer-based models evaluated on the
Czech CSFD dataset compared with the best results of models based on linear transforma-
tions. Models marked with * were evaluated on a custom data split.

sification) and outperforms other multilingual Transformer-based models by a large margin.
The model size partly causes this superiority since it has many more parameters than the
mBERT and XLM-RBase models. Despite the fact that the XLM model has roughly the same
number of parameters as the XLM-RLarge model, its cross-lingual results are worse, even
by more than 10% of accuracy. On the other hand, the differences in monolingual results
between these two models are not that distinctive, showing a much greater ability of the
XLM-RLarge to transfer knowledge between languages compared to the XLM model.

For the binary classifications, we can see that the results for the (zero-shot) cross-lingual
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Evaluated on French – Allocine (2 classes)

Model
EN→ FR EN→ FR CS→ FR

Monoling.
(IMDB – Allocine) (SST-2 – Allocine) (CSFD – Allocine)

mBERT 84.3±0.4 77.4±0.0 64.5±0.5 96.2±0.1

XLM 87.4±0.3 86.0±0.2 80.5±0.7 96.3±0.0

XLM-RBase 90.3±0.4 89.9±0.2 87.7±0.1 96.9±0.0

XLM-RLarge 94.0±0.5 93.7±0.1 92.8±0.1 97.6±0.0

CNN-Best 91.2±0.1 89.6±0.2 86.1±0.6 95.1±0.1

LSTM-Best 92.1±0.3 87.6±0.5 85.8±1.0 96.4±0.1

CamemBERT - - - 97.5±0.0

Théophile (2020) - - - 97.4
Soleymani et al. (2021) - - - 95.1

Table 7.13: Accuracy cross-lingual results for Transformer-based models evaluated on the
French Allocine dataset compared with the best results of models based on linear transfor-
mations.

classification for multilingual Transformers-based models in all languages are worse than
the monolingual results23. However, in some cases, the cross-lingual results are very close to
the monolingual ones. For example, the XLM-RLarge model achieved an accuracy of 95.1%
when trained on French and evaluated on English, which is only 1.1% worse than the mono-
lingual result (96.2% of accuracy) where the model was trained on English only. This result
is outstanding, considering that the model in the cross-lingual setting has never seen any
labeled data in English.

In the cases of experiments with three classes (the SST-CSFD dataset pair) when models
were evaluated on the Czech language (Table 7.12), both of the XLM-R models achieved
similar results, but far worse than the monolingual results. Again, as with linear transforma-
tions, the significantly worse performance of the multilingual Transformer-based models on
the three-class SST-3 dataset in comparison with the monolingual results is caused by their
inability to learn the neutral class. We believe the reason for this is the same as for the linear
transformation methods, i.e., the discrepancy in the data annotation. We discuss it in more
detail in Section 7.8.4.

7.6.4 Cross-lingual Models Comparison

Tables 7.12, 7.13 and 7.14 summarize the overall cross-lingual results for Czech, French and
English, respectively. In the cross-lingual experiments, the XLM-RLarge model significantly
outperforms cross-lingual models based on linear transformations. The XLM-RBase model
shows comparable performance to LSTM and CNN models, except for the evaluation on
English. The mBERT and XLM models mostly achieve much worse results than the CNN
and LSTMmodels with linear transformations in cross-lingual experiments when evaluated
on French and Czech. The mBERT is particularly weak in transferring knowledge between

23The model was trained with labeled data from the target language.
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Evaluated on English

IMDB (2 classes) SST-2 (2 classes) SST-3 (3 classes)

Model
CS→ EN FR→ EN

Monoling.
CS→ EN FR→ EN

Monoling.
CS→ EN

Monoling.
(CSFD – IMDB) (Allocine – IMDB) (CSFD – SST-2) (Allocine – SST-2) (CSFD – SST-3)

mBERT 65.7±1.5 80.1±0.3 92.4±0.4 65.2±0.6 78.9±0.3 85.2±0.9 47.9±3.2 65.1±0.4

XLM 85.1±0.7 88.7±0.3 93.8±0.2 78.4±1.7 85.3±0.4 89.6±0.2 47.9±0.1 70.5±0.4

XLM-RBase 89.5±0.1 92.6±0.1 94.5±0.2 82.9±0.1 87.0±0.1 90.9±0.2 51.2±3.2 73.5±0.2

XLM-RLarge 94.0±0.1 95.1±0.0 96.2±0.1 87.9±0.1 90.6±0.4 94.6±0.4 57.3±0.3 78.1±0.5

CNN-Best 85.9±0.1 88.1±0.2 91.8±0.1 79.2±0.1 82.0±0.3 85.4±0.3 61.4±1.1 68.6±0.8

LSTM-Best 86.2±1.0 90.1±0.5 92.6±0.4 80.3±0.4 83.0±0.5 85.9±0.9 59.4±0.0 71.3±1.2

BERTBase-Cased - - 93.7±0.9 - - 91.0±0.1 - 71.9±0.1

Yang et al. (2019) - - 96.8 - - 97.1 - -
Sun, Qiu, et al. (2019) - - 95.8 - - - - -
Jiang et al. (2020) - - - - - 97.5 - -

Table 7.14: Accuracy cross-lingual results for Transformer-based models evaluated on the
English IMDB and SST datasets compared with the best results of models based on linear
transformations.

languages and performs worse than the linear transformation methods in all cross-lingual
experiments.

The XLM-Rmodels are on par with the performance of the CNN and LSTMmodels that
use linear transformations in the three-class classification (CSFD and SST-3). Surprisingly,
the multilingual Transformer-based models are even surpassed by the linear transformation
approaches when evaluated on the English SST-3 dataset (Table 7.14). For example, the
XLM-RLarge model is worse by 4.1% than the CNN model (57.3% vs 61.4%).

In the context of cross-lingual sentiment classification, LLMs, including Llama 2 and
ChatGPT, consistently exhibit superior performancewhen compared24 to other cross-lingual
methods, encompassing multilingual Transformer-based models, CNN, and LSTMmodels
with linear transformations. For binary classification, the difference is not very distinctive;
there are instances, such as the Czech CSFD dataset, where LLMs deliver comparable results
to the XLM-RLarge model. However, the distinction becomes more apparent in three-class
classification tasks, where LLMs consistently outshine other cross-lingual methods. A stand-
out example is the SST-3 dataset, where ChatGPT achieves an impressive accuracy of 79.8%,
even surpassing the monolingual XLM-RLarge model, which achieves 78.1% accuracy. In the
case of French, LLMs perform at par with other monolingual models. LLMs showed an
impressive performance in absolute zero-shot settings without any fine-tuning or training
data. Despite these remarkable achievements, LLMs are not without their limitations, includ-
ing concerns related to security and substantial hardware requirements, which we further
discuss in Section 7.8.5.

24We placed the results under theMonoling. column in the summary Tables 7.12, 7.13 and 7.14 since they do
not fit under the other columns, as the numbers listed under those columns represent the outcomes achieved
by models fine-tuned specifically on corresponding data. In contrast, LLMs were not fine-tuned at all for
sentiment classification, making the "Monolingual" column the most suitable place for their placement in the
tables.
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7.6.5 Runtime Comparison of Models
Transformer-basedmodels have demonstrated better performance over older approaches, as
shown in our experiments and relatedwork. However, their fine-tuning process ismore time-
consuming and computationally demanding than older models such as CNN. Therefore, it is
important to consider training and inference speed when deploying a model in a real-world
application. Here, we compare the relative training and inference speed of the models used
in our experiments. We measure the runtimes of the models on a machine equipped with
Intel i7-7700k processor, 64GB of RAM, and NVIDIA RTX A4000 graphics card with 16GB
of memory. The Ubuntu 18.04.6 LTS operating system is used along with Python 3.725.

Model

Train Time Inference Time

GPU CPU GPU CPU

relative [sec]/1k relative [sec]/1k relative [sec]/1k relative [sec]/1k

BERTBase-Cased 1.00 48.11 20.53 987.94 1.00 17.73 16.91 299.70
Czert 0.95 45.83 21.99 1058.22 0.98 17.30 16.95 300.37
RobeCzech 0.95 45.89 21.23 1021.50 0.89 15.71 17.60 311.97
Czech Electra 0.21 9.88 5.17 248.53 0.19 3.29 3.53 62.53
CamemBERT 0.98 46.94 23.18 1115.07 0.92 16.32 19.02 337.19

mBERT 1.06 50.95 21.11 1015.84 1.01 17.94 17.03 301.78
XLM-M 3.59 172.55 67.56 3250.45 3.23 57.23 53.82 954.01
XLM-RBase 1.01 48.77 22.35 1075.07 1.01 17.91 17.54 310.84
XLM-RLarge 3.69 177.51 74.00 3560.21 3.38 59.86 60.26 1068.17

CNN 0.01 0.23 0.02 1.62 0.01 0.22 0.09 1.15
LSTM 0.01 0.71 2.05 98.43 0.02 0.34 0.08 1.41

Table 7.15: Runtimes for each model, relative to the BERTBase-Cased model trained on GPU
and CPU. The numbers in the columns marked as “relative” are relative speedups to the
underlined numbers which belong to the BERTBase-Cased. The numbers under the “[sec]/1k”
columns denote the number of seconds required to process 1,000 examples.

During our experiments, we measure the training and inference time in seconds for each
model-dataset pair. Then, we calculate the average time it takes to process 𝑁 examples per 𝑡
seconds during the training and testing (inference) phases, which we call the relative runtimes.
We obtain the relative runtimes for each model-dataset pair. For every Transformer-based
model, the relative runtimes are identical across all datasets because the input sequence length
is always 512 tokens26. However, for the CNN and LSTM models, the input is processed
up to 512 tokens without padding the examples. The relative runtimes differ because each
dataset has a different distribution of example lengths (some are shorter). We average the
relative runtimes across all datasets to obtain a single relative runtime for the CNN and
LSTMmodels.

25Details about the versions of the Python libraries used in our experiments are available in our GitHub
repository1.

26The shorter examples are padded to the 512 tokens and the longer examples are trimmed
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Following the approach above, we ensure that the relative speeds of training and infer-
ence phases across all models are comparable. We measure the relative runtimes for both
CPU and GPU and select the relative runtime of the BERTBase-Cased model as the baseline
speed. We then calculate the speedup relative to BERTBase-Cased by dividing the relative run-
times of all other models by the relative runtime of BERTBase-Cased. For instance, Table 7.15
shows that the XLM-RLarge model is 3.69 times slower than BERTBase-Cased during training
on GPU.

In addition to the relative runtimes, in Table 7.15, we also include the processing time
in seconds required by each model to handle 1,000 examples. We do not include the total
time required for training/inference because it depends on the number of examples in each
dataset and in the case of the training, also on the number of epochs for which the model is
trained. Please also note that the reported absolute times heavily depend on the hardware
configuration employed in our experiments and these times may vary under different con-
figurations. In contrast, the relative runtimes remain relatively independent27 between runs
on the same type of device (i.e., CPU or GPU), thus being less influenced by the hardware
configuration, making them a more robust metric and more suitable for general comparison.

The total time, denoted as 𝑡𝑡𝑜𝑡𝑎𝑙 , for training or inference can be computed28 as follows
𝑡𝑡𝑜𝑡𝑎𝑙 =

|𝐷 |
1000 × 𝑒 × 𝑡, where |𝐷 | represents the number of examples in the given dataset, 𝑒

is the number of epochs and 𝑡 stands for the number of seconds required to process 1,000
examples for the given model.29

Since for experiments with LLMs (Llama 2 and ChatGPT), we rely on the external infras-
tructure on which the models are deployed and we access them via API, we cannot provide
a fair comparison in terms of speed with the two mentioned approaches. Consequently, we
do not present the relative and absolute time values for the Llama 2 and ChatGPT models
in Table 7.15. In recognition of this drawback, we aim to provide some context by sharing
that, on average, the time to process 1,000 examples with the basic prompt over all datasets
was approximately 17 seconds for Llama 2 and 3 seconds for ChatGPT.

The runtime comparison results and conclusions are also valid for cross-lingual experi-
ments because the runtimes for Transformer-based models are the same. In the case of CNN
and LSTM models combined with linear transformations, the runtimes will be increased by
a small amount of time needed to compute the linear transformations, which is negligible30.

27The times will also depend on the batch size parameter. In our experiments, we use a batch size of 32.
28In the case of training, the time required to compute results of development data is not included.
29For example, to compute the total training time of RobeCzech model on CPU for the CSFD dataset, the

calculation would look like this: 65,793
1,000 × 13 × 1,021.5 � 873,698 seconds, which is almost 243 hours. 65,793

is the number of training examples, 13 is the number of epochs, taken from Table A.3 in the Appendix and
1,021.5 is the number of seconds required to process 1,000 examples during the training of the model.

30For the mentioned hardware, the computation time of linear transformations usually took less than
a minute depending on the particular linear transformation.
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7.7 Additional Experiments

This section presents the results of additional and supplementary experiments with Trans-
former models and linear transformations. In Section 7.7.1, we delve into supplementary
experiments concerning linear transformations. This encompasses a thorough examination
of word analogy as an intrinsic evaluation task, along with an exploration of the dictionary
size essential for optimal linear transformations. Section 7.7.2 evaluates the effect of training
data size on the overall performance of the Transformer-based models.

7.7.1 Supplementary Experiments with Linear Transformations

To comprehensively evaluate the employed linear transformations, we also incorporate an
intrinsic evaluation in the form of a cross-lingual word analogy task with results presented
in Section 7.7.1.1. The optimal dictionary size for linear transformations was determined
experimentally with the underlying experiments described in Section 7.7.1.2.

7.7.1.1 Word Analogy Evaluation

As stated in previous works (Artetxe et al., 2016; Brychcín et al., 2019), the normalization
approach described in Section 7.2.2.1 can enhance results on the intrinsic evaluation tasks.
Our experiments on cross-lingual analogies, as shown in Table 7.16, confirm this finding.
When any normalization is used, regardless of the linear transformation or embeddings (in-
domain vs fastText), the results are constantly better in almost all cases compared to cases
without any normalization.

A second noteworthy finding is that the original fastText word embeddings consistently
outperform the in-domain word embeddings on the word analogy task. This is caused by the
fact that the word analogies evaluate the cross-lingual embeddings on a range of semantic
analogies (e.g., relations between currencies or capital cities) and syntactic analogies (e.g.,
adjective word pairs or verb infinitive and past tense forms pairs), see (Brychcín et al., 2019)
for further details and examples. As a result, the data from themovie domain used to pre-train
the in-domain word embeddings does not contain as many examples of such pairs, limiting
the embeddings’ syntactic and semantic information relevant to the general language needed
for success in the word analogy task. In contrast, the fastText embeddings were trained
on a larger, more general text corpus (Wikipedia), which encompasses most of the aspects
necessary for success in the word analogy task.

Further, in Section 7.8, we discuss the impact of embeddings and their normalization on
performance in both intrinsic (word analogies) and extrinsic (polarity detection) tasks. Since
the dataset used for word analogy evaluation does not include French data, we only evaluate
the Czech-English pair. However, as shown by (Brychcín et al., 2019), normalization has the
same effect across most of languages.
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Direction Norm. Embeddings
Linear Transformation

Orto MSE CCA Rank Or-Ra Average

CS-s⇒EN-t

-
fastText 58.1 51.9 60.6 63.5 63.9 59.6
in-domain 33.7 29.1 34.3 35.7 34.3 33.4

B
fastText 72.0 64.3 72.4 74.2 76.0 71.8
in-domain 37.7 31.1 37.9 39.2 39.5 37.1

B,A
fastText 72.0 71.7 72.0 74.7 75.5 73.2
in-domain 37.7 39.9 38.0 39.5 40.0 39.0

EN-s⇒CS-t

-
fastText 47.1 35.4 47.7 52.9 50.5 46.7
in-domain 22.1 20.3 23.1 25.6 24.4 23.1

B
fastText 59.0 43.0 60.7 66.0 63.0 58.3
in-domain 23.2 20.1 24.1 28.0 27.9 24.7

B,A
fastText 59.8 65.3 59.4 64.9 59.9 61.8
in-domain 23.2 28.2 24.0 26.2 25.8 25.5

Table 7.16: This table shows the accuracy results of cross-lingual word analogies. The nota-
tion EN-s⇒CS-t denotes that the transformation was performed from the English source
semantic space into the Czech target semantic space. In this case, the evaluation was per-
formed on the Czech data. Analogously, the CS-s⇒EN-t denotes the transformation from
Czech embeddings into English, with evaluation on English data. The column Norm. indi-
cates the type of normalization applied to the word embeddings. The B,A letters represent
that normalization was used before and after the linear transformation, the B letter marks
normalization before the transformation and the sign -means no normalization.

7.7.1.2 The Impact of Dictionary Size

Figure 7.5 indicates that the optimal dictionary size for all transformation methods is 20k.
Therefore, based on our experiments and previous experiences, we fixed the dictionary
size to 20k for all other cross-lingual experiments with linear transformations. We only
performed the complete experiments with the dictionary size for the IMDB–CSFD-2 dataset
pair, but our incomplete experiments for other models and dataset pairs showed a similar
trend. Interestingly, both the ranking and orthogonal ranking transformations exhibited
a similar drop in performance for dictionary sizes between 500 and 5000 most common
words. Althoughwe did not further investigate this behaviour, we suspect it is due to negative
sampling,which dependsmore on the dictionary size and requiresmore examples to function
correctly without any adverse effects. We also observed that increasing the dictionary size
beyond 20k did not lead to any performance improvements. The final observation is that
a dictionary size of 500 is sufficient to achieve decent performance for the MSE, CCA, and
orthogonal transformations.

7.7.2 The Effect of Training Data Size

Thanks to the pre-training phase, the Transformer-based models contain information that
is subsequently leveraged during fine-tuning. Here, we were interested in the helpfulness of
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(a) Results for the Czech CSFD-2 dataset.
Trained on the English IMDB dataset with the
EN-s⇒CS-t transformations.
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(b) Results for the English IMDB dataset.
Trained on the Czech CSFD-2 dataset with the
CS-s⇒EN-t transformations.

Figure 7.5: Dependence of average accuracy for different dictionary sizes for theCNNmodels
trained on the CSFD-2 and IMBD datasets. The chart is plotted for the in-domain embed-
dings for the transformation from the English source space into the Czech target space, i.e.,
Figure 7.5a (EN-s⇒CS-t) and for the transformation from Czech source space into the
English target space, i.e., Figure 7.5b (CS-s⇒EN-t). The embeddings were not normalized.

the pre-trained model’s information during experiments in the cross-lingual scenario with
a reduced number of training examples.

Figure 7.6 shows accuracy results for the experiments with reduced training dataset sizes
for multilingual Transformer-based models. As shown in the previous results, the mBERT
model performs worst and when trained on Czech data, it also has a very large confidence
interval compared to other models. This is consistent with our experiments on the full
dataset size, where mBERT was less stable than the other models during the fine-tuning.
The performance drop and lack of stability during fine-tuning are most likely caused by the
number of data and vocabulary size used for the Czech language in themBERTmodel during
the pre-training phase, as reported in Conneau et al. (2020). In contrast, the XLM-R models
use a much larger vocabulary (see Table 7.2) and more pre-training data for languages other
than English compared to the mBERT model.

As expected, the accuracy generally increases with larger training data sizes. The XLM-R
models perform exceptionally well with only 40% and 20% of the English and Czech training
datasets, respectively. These results are very close to the accuracy obtained with the full
training datasets, showing a significant capacity to transfer knowledge between languages
for the polarity detection task with a reasonable amount of training examples. On the other
hand, the performance of the other models typically grows steadily with the increasing size
of training data.

124



7.8. Discussion & Recommendations

10 20 30 40 50 60 70 80 90 100

70.0
72.5
75.0
77.5
80.0
82.5
85.0
87.5
90.0
92.5
95.0
97.5

100.0

English IMDB dataset size [%]

Ac
cu
ra
cy
[%
]

XLM-RLarge XLM-RBase
XLM-M mBERT

(a) Results for theCzechCSFD-2 dataset. Trained
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(b) Results for the English IMDB dataset. Trained
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Figure 7.6: Accuracy results for experiments with multilingual Transformer-based models.
The experiment for each dataset part was repeated ten times. The highlighted area represents
the confidence interval.

7.8 Discussion & Recommendations

In this section, we discuss our observations and compare performance, properties and other
aspects of the two types of cross-lingual models for zero-shot polarity detection: multilin-
gual Transformer-based models and approaches using linear transformations. We discuss
certain aspects of the results, including the options and limitations of the deployment of
CLSA models. Furthermore, we offer practical recommendations for the usage of linear
transformations.

7.8.1 Recommendations for Linear Transformation

We realize and understand that there is a large number of settings and combinations required
to perform cross-lingual sentiment classification with linear transformations. Selecting the
optimal settings may be tricky or even challenging. To help researchers with this task, we
provide a set of recommendations for the cross-lingual sentiment analysis that we derived
from our results and experiences. These hints and suggestions can facilitate the use of cross-
lingual transformations in real-world applications or guide future research endeavours.

Firstly, we recommend using the canonical (CCA) transformation due to its stability in
results across different datasets. The appropriate alternative method could be the orthogonal
(Orto) transformation due to its easy-to-implement analytical solution. The orthogonal rank-
ing (Or-Ra) method may also be an option. However, based on our findings, we primarily
recommend the CCA method. The reason is that in some rare cases (see Tables in Appendix
A.2), the Orto and Or-Ra methods performed significantly worse than the other methods.
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Secondly, normalization proved to be an effective way to improve results, especially for
fastText embeddings that are trained on a general (non-domain specific) text. The normal-
ization in combination with in-domain embeddings also usually brings an improvement,
albeit not as distinctive as with fastText embeddings. Therefore, we suggest using any of the
normalization techniques, as it, in most cases, improves results or at least does not harm
them.

Next, in-domain embeddings generally provide better results than general embeddings.
Our recommendation is to use or train custom in-domain embeddings if possible. If in-
domain embeddings are unavailable, using the general embeddings combined with any nor-
malization technique may be sufficient.
Lastly, as we stated, we did not observe a significant difference between the LSTM and

CNN models. In this case, we suggest using the CNN model because our configuration of
that model has fewer parameters and proved to be more stable (usually, it has a smaller
confidence interval) during training.

7.8.2 The Impact of Normalization and In-domain Word
Embeddings

Here, we discuss the effect of different configurations of word embeddings on the perfor-
mance of linear transformations, specifically examining the impact of the normalization of
word embeddings and the use of in-domain versus general word embeddings.

Firstly, our experiments, detailed in Section 7.7.1.1, confirm the findings of previous
studies (Artetxe et al., 2016; Brychcín et al., 2019), that normalization of theword embeddings
enhances the performance of linear transformations on intrinsic tasks, e.g., word analogies.
In our study, we were interested in whether this property is also valid for the extrinsic task
of cross-lingual polarity detection. Our experiments revealed that normalization usually
improves performance, particularly for the general fastText word embeddings. For the in-
domain embeddings, the improvement is not that significant. Still, generally, we can state that
normalization mostly improves the results in cross-lingual polarity detection when linear
transformations are used.

Another intriguing observation is that despite the poor results of in-domain embeddings
on the cross-lingual word analogy evaluation task (intrinsic), as seen in Table 7.16, they
perform better than the general fastText embeddings on the cross-lingual polarity detection
task, as shown in Tables 7.7, 7.8, and 7.9. However, the difference is not as significant as in
the case of cross-lingual word analogies.
Furthermore, our in-domain word embeddings, trained on a much smaller amount31

of text than the general fastText embeddings, can improve the performance of the polarity
detection task (extrinsic), despite their poor performance on the cross-lingual word analogy
evaluation task (intrinsic). We conclude that good performance on intrinsic evaluation tasks

31We used only the training data of the sentiment datasets (see Section 7.2.2), which are many times smaller
than the Wikipedia dataset used for the general fastText embeddings.
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does not necessarily imply good results on extrinsic tasks and vice versa. Therefore, intrinsic
and extrinsic evaluations should be conducted together to obtain a reliable overview of
performance when evaluating linear transformations.

7.8.3 Training Speed Versus Performance

Various requirements must be considered when evaluating a system in a research environ-
ment or deploying it in a real-world application. In academia or a research environment,
the goal is often to achieve the best results without any restrictions on computational re-
sources. Meanwhile, in a real-world application or a production environment, there can be
restrictions on the available resources and training and inference speed requirements must
be satisfied. When some cross-lingual solution is to be used, it is important to set the goal and
restrictions that define the used model. If the goal is only to achieve the best performance
without any resource limitations, the XLM-RLarge is the obvious choice. The model achieves
the best results in the cross-lingual experiments, outperforming other models (both the lin-
ear transformations and multilingual Transformer-based models) by a large gap in almost
all cases.

Unfortunately, the XLM-RLarge model is also the largest (in a number of parameters) and
slowest one in terms of training and inference speed, as indicated in Table 7.15. Thanks to its
large number of parameters, it may require significant resources, namely a GPU card with
sufficient memory. Such GPU card may not be available in a production environment for
inference. One may fine-tune the model on GPU and then run the inference on CPU, but
as shown in Table 7.15, the average inference time on CPU for the XLM-RLarge model is
60.26 times slower than the inference time of the BERT model on GPU. Of course, it always
depends on a specific use case, but in situations where resources are limited, it may be more
practical to consider linear transformation-based approaches for deployment.
The cross-lingual models (CNN and LSTM) that use linear transformations usually

achieve comparable or even better results than the smaller multilingual Transformer-based
models (XLM-RBase andmBERT), as shown in Tables 7.12, 7.13, and 7.14. For example, the ac-
curacy of the XLM-RBasemodel trained on French (Allocine) and evaluated on Czech (CSFD),
see Table 7.12, is 89.4%, while the accuracy of the cross-lingual LSTM model with the same
configuration is 88.9%. The main difference lies in their training and inference times, as the
LSTMmodel can be trained in only a fraction (0.01)32 of the training time of the XLM-RBase
model. So, in the cases where the Transformer-based models do not meet the required lim-
its, the linear transformation approaches can be an option because they are much faster in
training and inference than the Transformer-based models. Another secondary advantage
is that the smaller models that do not require the GPU will have much smaller electricity
consumption.

32The runtimes are relative to the BERT model, but the training and inference runtimes for XLM-RBase
are roughly 1 (the runtime is almost the same). Thus, we can consider the runtimes of other models to be also
relative to the XLM-RBase model.
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The disadvantage of models that use linear transformations is that they require the rela-
tively difficult configuration of hyper-parameters, which we attempted to mitigate by pro-
viding tips and recommendations in Section 7.8.1. On the other hand, the application of
multilingual Transformer-based models for cross-lingual usage is more straightforward and
it does not differ from the monolingual application.

7.8.4 Three-class Classification
As wementioned, the results for the cross-lingual three-class classification on the SST-CSFD
dataset pair are notably worse for both Transformer-basedmodels and linear transformation
compared to the monolingual results. The models were not able to successfully learn the
neutral class in a cross-lingual setting. For example, when the model was trained on Czech
data, it could not correctly classify the neutral class in English. Since we observed this be-
haviour for both types of models (linear transformations and Transformers-based models),
we suspected that it was rather caused by the annotations of the datasets than by the inability
of the models to learn to classify the neutral class. We investigated several examples with the
neutral label in both datasets to confirm our suggestion.

Upon further investigation, we discovered that some examples labeled as neutral in the
CSFD dataset were actually negative. For example, the review "Špatně zpracované. Špatné."
("Badly filmed. Bad.") is clearly negative but labeled as neutral. These mismatched annota-
tions are caused by the distant supervised annotation used for CSFD dataset, as described in
Section 7.2.1. Consequently, the models were confused and in a cross-lingual setting, some
neutral examples in a different language could not be classified correctly, such as being classi-
fied as negative instead of neutral. We can conclude that the CSFD dataset’s neutral examples
are not entirely suitable for use in conjunction with the SST dataset. A manual correction or
using a different dataset would be more appropriate for cross-lingual classification in pairs
with the SST dataset. However, given the size of our study and the enormous number of
experiments, such activities and experiments are beyond the scope of this thesis part. The
"incorrect" neutral labels in the monolingual experiments with the CSFD dataset do not have
a significant effect because the models are evaluated on test data labeled in the same way as
the train data. The "incorrect" neutral labels also do not impact the binary classification since
the positive and negative examples are correctly annotated.

7.8.5 LLMs Consideration and Discussion
While the results obtained from ChatGPT and Llama 2 in our experiments are undoubtedly
impressive, it is important to acknowledge that their implementation comes with certain
drawbacks and considerations. Despite their remarkable performance, LLMsmay not always
be the universal choice due to specific constraints. For example, employing these models in
a secure banking environment, where sensitive data cannot be sent over the Internet to the
APIs, might prove challenging or even impossible. The practical use of LLMs in real-world
scenarios will depend on the specific conditions and trade-offs. As we have shown, the LLMs
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Review: The story... is moldy and obvious.
Label: negative

Model output:

Step 1: The text expresses a negative
sentiment towards the movie or TV show.
Step 2: The keywords used in the text, such
as "moldy" and "obvious," suggest criticism
and dissatisfaction.
Step 3: Based on the negative sentiment
expressed in the text and the use of negative
keywords, the final category is "Negative".

User’s answer: Negative

(a) ChatGPT output.

Review: The story... is moldy and obvious.
Label: negative

Model output:

Step 1:#### The overall mood of the text is
negative.
Step 2:#### The reviewer uses words
such as "moldy" and "obvious," indicating
disappointment and unoriginality.
Step 3:#### Based on the negative language
used, it is highly probable that this review
falls under the Negative category.

User’s answer:#### Negative

(b) Llama 2 output.

Figure 7.7: Example of LLMs outputs for the advanced prompt for English review annotated
as negative.

achieve results similar to the older approaches for certain datasets and configurations. How-
ever, LLMs are associated with additional expenses, either in terms of financial investment
(paid API) or hardware that is significantly more expensive than hardware required by the
older neural networks and smaller Transformer-based models. Furthermore, in cases where
the performance improvement is marginal, such as amere 1%, thoughtful considerationmust
be given to whether the investment in the required hardware is justified. In contrast, unlike
LLMs, the older supervised approaches require annotated data and additional fine-tuning
for the specific task but operate more efficiently on less expensive hardware.

While LLMs undoubtedly offer significant advantages, they are not without minor draw-
backs. Occasionally, these models may produce output that is either undesirable or in an
incorrect format. On the other hand, LLMs have the great ability to provide valuable ex-
planations, insight or reasoning behind their decisions. For example, when our advanced
prompt based on the chain-of-thought (Wei et al., 2022) prompting technique was used for
the following review: “The story ... is moldy and obvious .” annotated as negative, the output of
LLMs contains detailed reasoning, see Figure 7.7. We provide more examples in Appendix
A.6.

In conclusion, while LLMs like ChatGPT showcase remarkable performance and of-
fer enhanced interpretability through advanced prompts, traditional methods, such as clas-
sic Transformer-based models and CNNs or LSTMs with linear transformations, still find
practical applications. The choice between these models ultimately depends on the specific
requirements, constraints, and priorities of a given task or application.
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7.9 Conclusion

In this part of the thesis, we have presented a comprehensive study on zero-shot cross-
lingual sentiment classification (polarity detection) using multilingual Transformer-based
models and neural networks such as CNN and LSTM that use linear transformation to
transfer knowledge between languages. Our experiments involved four polarity datasets in
the Czech, French and English languages. We performed cross-lingual experiments on all
pairs of the three languages. We prepared competitive monolingual baselines that are almost
on par with the current SotA models in SA. We compared our zero-shot cross-lingual results
with the monolingual ones. We showed that the large XLM-R model (without any labeled
training data in the evaluated language) can achieve results that are close to the monolingual
ones and outperform all other cross-lingual models. The smaller Transformer-based models
and linear transformation-based models provide relatively good performance proving their
ability to transfer knowledge between languages.

Our supplementary experiments with LLMs like Llama 2 and ChatGPT and the subse-
quent comparisons with the aforementioned approaches have shown the remarkable po-
tential of LLMs in zero-shot settings. Regarding performance, LLMs are on par or better
with the large XLM-R model. However, these outstanding results come at the price of addi-
tional issues. Namely, the required hardware has much higher requirements than the older
models since LLMs have many times more parameters. Furthermore, issues pertaining to
data privacy and security loom large, particularly in cases involving models like ChatGPT,
where data must traverse the internet to access the model’s private API. This approach can
be problematic, especially when handling highly sensitive data.

In addition to the models’ performance, we considered both the performance and speed
(training and inference) of the models to assess their practical usability. Considering the
large computational resources required by the Transformer-based models, we suggest that
in certain situations with restricted resources in real-world applications, using cross-lingual
methods based on linear transformations can be an appropriate alternative, as they are much
faster in training and inference while providing sufficient performance. Our study highlights
the importance of considering both accuracy and efficiency when selecting models for real-
world applications and provides valuable insights into the trade-offs between these two
factors in the context of cross-lingual sentiment analysis.

Based on our evaluation, experiments and experiences, we proposed a set of recommen-
dations and tips to enhance the usage of the linear transformations due to their challenging
hyper-parameters configuration. Overall, our findings can help facilitate the usage of cross-
lingual transformations in real-world applications and guide future research in this area. Our
work contributes to understanding how to leverage multilingual models for cross-lingual
sentiment analysis effectively.
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7.9.1 Future Work
In the potential future work, we would extend the work by verifying the effectiveness of
our cross-lingual results and approaches on different domains. This would involve creating
datasets that are specifically designed for cross-lingual sentiment analysis in various domains.
Additionally, we would explore the possibility of transferring knowledge across different
domains and languages simultaneously. Such a task is very challenging. This would require
developing methods to effectively capture and transfer sentiment-related knowledge across
multiple domains and languages. Such efforts could potentially result in significant improve-
ments in cross-lingual sentiment analysis, with practical applications in various domains.
Another extension of the work would be to fix incorrect neutral classification in the CSFD
dataset.
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Sentiment Analysis and
Related Tasks 8
In this chapter, we present the additional work related to SA that complements this thesis’s
main contribution (cross-lingual sentiment analysis), presented in Chapter 7.
In addition to the task of CLSA, our research contribution to SA lies in monolingual

Czech sentiment classification in which we achieved new SotA results at the time of publi-
cation of the paper called “Are the Multilingual Models Better? Improving Czech Sentiment
with Transformers” (Přibáň & Steinberger, 2021), see Section 8.1. In Section 8.2, we compare
multilingual systems actively deployed and used daily to perform sentiment classification in
multiple languages. The comparison is part of the “Comparative Analyses of Multilingual
Sentiment Analysis Systems for News and Social Media” (Přibáň & Balahur, 2023) publica-
tion.
In “Czech Dataset for Cross-lingual Subjectivity Classification” (Přibáň & Steinberger,

2022), we created a new Czech dataset for subjectivity classification and performed cross-
lingual experiments, which we describe in Section 8.3.

Regarding the ABSA task, in “Improving Aspect-Based Sentiment with End-to-End Se-
mantic Role LabelingModel” (Přibáň & Pražák, 2023) we proposed a newmethod to improve
the performance of ABSA and achieved new SotA for the Czech language, we describe the
results in Section 8.4.

We provide a brief reference to “Prompt-Based Approach for Czech Sentiment Analysis”
(Šmíd & Přibáň, 2023), where we applied the prompt-based learning to the ABSA and the
sentiment classification tasks. In Section 8.6, we shortly describe results for emotion analysis
tasks, sourced from two publications: “UWB at SemEval-2018 Task 1: Emotion Intensity
Detection in Tweets” (Přibáň et al., 2018) and “UWB at IEST 2018: Emotion Prediction in
Tweets with Bidirectional Long Short-Term Memory Neural Network” (Přibáň & Martínek,
2018). These three publications are described with modest detail, as the author of this thesis
is not the first author or the work does not constitute the core part of the thesis.

At last, in Section 8.7 we highlight our research contributions for other NLP tasks. Our
main research contributions in this chapter include:

1. Advancement in Czech sentiment classification: We achieved new state-of-the-art results
and conducted a comparison of available monolingual and multilingual Transformer-based
models tailored for the Czech language.
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2. Creation of a new Czech dataset for subjectivity classification: We developed a valuable
resource for cross-lingual evaluation by constructing a novel Czech dataset. With the dataset,
we carried out cross-lingual experiments between Czech and English.

3. Innovative enhancement to Czech ABSA: We proposed a novel approach to improve the
results of the Czech ABSA task by incorporating information from semantic role labeling

8.1 Czech Monolingual Sentiment Classification
This section is based on the paper titled “Are the Multilingual Models Better? Improving
Czech Sentiment with Transformers” (Přibáň & Steinberger, 2021). The paper aims to en-
hance Czech sentiment classification with Transformer-based models and their multilingual
versions. The experiments conducted involve five multilingual and three monolingual mod-
els, all assessed on three distinct Czech sentiment classification datasets. We compare the
monolingual and multilingual models’ performance, including comparison with the older
approach based on recurrent neural networks. Our experiments reveal that the large mul-
tilingual models exhibit the capability to surpass the performance of their monolingual
counterparts, resulting in the establishment of new state-of-the-art results across all three
datasets.
Furthermore, we performed limited cross-lingual experiments to test the multilingual

models and their ability to transfer knowledge from English to Czech. Since these experi-
ments were later significantly extended and evaluated in Přibáň et al. (2024) and described
in Chapter 7, we do not include them here and focus only on Czech monolingual polarity
detection.

8.1.1 Data

To the best of our knowledge, there are three Czech publicly available datasets for the polarity
detection task: (1) movie review dataset (CSFD), (2) Facebook dataset (FB) and (3) product
review dataset (Mallcz), all of them come from (Habernal et al., 2013) and each text sample
is annotated with one of three1 labels, i.e., positive, neutral and negative, see Table 8.1 for the
class distribution of the FB and Mallcz datasets. The statistics and description of the CSFD
dataset are present in Table 7.1 in Section 7.2.1.

The FB dataset contains 10k random posts from nine different Facebook pages that were
manually annotated by two annotators. The Mallcz dataset consists of 145k users’ reviews
of products from Czech e-shop2, the labels are assigned according to the review star rating
on the scale 0-5, where the reviews with 0-3 stars are labeled as negative, four stars as neutral
and five stars as positive.

1The FB dataset also contains 248 samples with a fourth class called bipolar, but we ignore this label.
2https://www.mall.cz
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FB Mallcz
train dev test total train dev test total

Positive 1,605 171 811 2,587 74,100 8,253 20,624 102,977
Negative 1,227 151 613 1,991 7,498 848 2,041 10,387
Neutral 3,311 361 1,502 5,174 23,022 2,524 6,397 31,943
Total 6,143 683 2,926 9,752 104,620 11,625 29,062 145,307

Table 8.1: Polarity detection datasets statistics.

8.1.2 Models
We performed exhaustive experiments with Transformed-based models and to compare
them with the previous works, we also implemented the older models (baseline models) that
include the logistic regression classifier and the BiLSTM neural network.
For the description of logistic regression (lrc) and LSTM baseline models, please see

Section 4.1 in the (Přibáň & Steinberger, 2021) paper.
In total, we use eight different Transformer-based models (five of them are multilingual).

The evaluated models differ in the number of parameters (see Table 8.2). Consequently, their
performance varies significantly, see Section 8.1.3.

Model #Params Vocab #Langs

Czert-B 110M 30k 1
Czert-A 12M 30k 1
RandomALBERT 12M 30k 1
mBERT 177M 120k 104
SlavicBERT 177M 120k 4
XLM 570M 200k 100
XLM-RBase 270M 250k 100
XLM-RLarge 559M 250k 100

Table 8.2: Models statistics with a number of parameters, vocabulary size and a number of
supported languages.

Czert-A is the Czech version of the ALBERTmodel (Lan et al., 2020), also with the same
modification as Czert-B, i.e., batch size was set to 2048 and the modified NSP prediction
task is used instead of the SOP task (Sido et al., 2021). RandomALBERT is a randomly initial-
ized ALBERT model without pre-training to show the importance of pre-training of such
models and its performance influence on the polarity detection task. SlavicBERT (Arkhipov
et al., 2019) is initialized from the mBERT checkpoint and further pre-trained with a modi-
fied vocabulary only for four Slavic languages (Bulgarian, Czech, Polish and Russian). The
Czert-B, mBERT, XLM, XLM-RBase and XLM-RLarge, models are already described in Section
7.3.2. We fine-tune the Transformer-based models in the same way as is described in Section
7.3.2.1.
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8.1.3 Experiments & Results
We undertake two distinct sets of experiments, namely monolingual and cross-lingual. In the
monolingual experiments, we engage in the fine-tuning and evaluation of Transformer mod-
els separately for each dataset. We fine-tune and evaluate the Transformer models for each
dataset separately on three-class (positive, negative and neutral) and two-class (positive and
negative) sentiment classification tasks. As we already mentioned, the cross-lingual experi-
ments are part of the previous Chapter 7 and we do not describe them here. Each individual
experiment3 was repeated at least five times and we reported the results using the macro 𝐹1

score.
The goal of the monolingual experiments is to reveal the current SotA performance for

the Czech polarity datasets, namely CSFD, FB andMallcz, and compare the available models
and their settings. All the previous works typically employed either 10-fold cross-validation
or split4 the datasets on their own (the † and * symbols in Table 8.3, respectively) causing
the comparison to be challenging.

Model
3 Classes 2 Classes

CSFD FB Mallcz CSFD FB Mallcz

lrc (ours) 79.6 67.9 76.7 91.4 88.1 89.0
LSTM (ours) 79.9±0.2 72.9±0.5 73.4±0.1 91.8±0.1 90.1±0.2 88.0±0.2

Czert-A 79.9±0.6 73.1±0.6 76.8±0.4 91.8±0.8 91.3±0.2 91.2±0.3

Czert-B 84.9±0.1 76.9±0.4 79.4±0.2 94.4±0.1 94.0±0.3 92.9±0.2

mBERT 82.9±0.1 71.6±0.1 70.8±5.7 93.1±0.3 88.8±0.4 72.8±3.1

SlavicBERT 82.6±0.1 73.9±0.5 75.3±2.5 93.5±0.3 89.8±0.4 91.0±0.2

RandomALBERT 75.8±0.2 62.5±0.5 64.8±0.3 90.0±0.2 81.7±0.6 85.4±0.1

XLM-RBase 85.0±0.1 77.8±0.5 75.4±0.1 94.3±0.3 93.3±0.7 92.6±0.1

XLM-RLarge 87.2±0.1 81.7±0.6 79.8±0.2 96.0±0.0 96.1±0.0 94.4±0.0

XLM 83.8±0.1 71.5±1.6 77.6±0.1 93.9±0.2 89.9±0.3 92.0±0.2

(Habernal et al., 2013)† 79.0±0.3 69.0±0.1 75.0±0.2 - 90.0±0.1 -
(Brychcín & Habernal, 2013)† 81.5±0.3 - - - - -
(Libovický et al., 2018)* 80.8±0.1 - - - - -
(Lehečka et al., 2020)* - - - 93.8 - -

Table 8.3: The finalmonolingual results asmacro 𝐹1 score for all three Czech polarity datasets
on two and three classes. For experiments with neural networks performed by us, we present
the results with a 95% confidence interval. The models from papers marked with †were eval-
uated with 10-fold cross-validation and the ones marked with * were evaluated on custom
data split.

We fine-tune all models on training data and we select the model with the best perfor-
mance on the development data. We report the results in Table 8.3 on the testing data with
95% confidence intervals.
Firstly, we re-implemented the logistic regression classifier (lrc) with the best feature

combination from (Habernal et al., 2013) and we report the results on our data split. We
3Except for the experiments with the lrcmodel.
4The authors do not provide any recipe to reproduce the results.
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can see that we obtained very similar results to the ones stated in (Habernal et al., 2013). We
also tried to improve this baseline with tf-idf weighting, but it did not lead to any significant
improvements, so we decided to keep the settings the same as in (Habernal et al., 2013).

For the LSTMmodel, we tried different combinations of hyper-parameters (learning rate,
optimizer, dropout, etc.). We report the used hyper-parameters for the results from Table 8.3
in Appendix A.3 in Table A.17. Our implementation is only about 1% worse for the CSFD
dataset than LSTMwith the self-attention model from (Libovický et al., 2018), but they used
a different data split. For the Mallcz dataset, we could not outperform the lrc baseline with
the LSTMmodel.
We fine-tune all parameters of the seven pre-trained BERT-based models and one ran-

domly initialized ALBERT model. In our experiments, we use constant learning rate and
also linear learning rate decay with the following initial learning rates: 2e-6, 2e-5 and 2.5e-5.
We got inspired by the ones used in (Sun, Qiu, et al., 2019). Based on the average number of
tokens for each dataset and models’ tokenizer (see Table 8.4 and Figures A.1, A.2, A.3)5, we
use a max sequence length of 64 and a batch size of 32 for the FB dataset. We restrict the
max sequence length for the CSFD and Mallcz datasets to 512 and use a batch size of 32. All
other hyper-parameters of the models are set to the pre-trained models’ defaults. See Table
A.17 in Appendix A.3 for the reported results’ hyper-parameters.

Model
CSFD FB Mallcz

Avg. Max. Avg. Max. Avg. Max.

Czert-B 84.5 1000 20.3 64 34.3 1471
mBERT 111.6 1206 25.6 66 46.6 2038
SlavicBERT 83.6 983 20.7 62 34.3 1412
XLM 100.5 1058 22.6 64 41.0 1812
Czert-A

81.7 993 19.7 62 32.6 1435
RandomALBERT
XLM-RBase 93.9 952 20.4 53 37.5 1670
XLM-RLase

Table 8.4: The average andmaximum number of sub-word tokens for each model’s tokenizer
and dataset.

If we compare the BERT model from (Lehečka et al., 2020) with the Czert-B, mBERT
and SlavicBERTmodels6, we can see that on the binary task, they also perform very sim-
ilarly, i.e., around 93 %, but they used different test data (the entire CSFD dataset7). The
obvious observation is that the XLM-RLarge model is superior to all others by a significant
margin for any dataset. Only for the three-class Mallcz dataset the Czert-Bmodel is com-
petitive (the confidence intervals almost overlap). From the results for the RandomALBERT

5The distributions of the other models were similar to those shown in the mentioned Figures.
6All of them should have the same or almost the same architecture and a similar number of parameters.
7The examples with positive and negative classes.

137



8. Sentiment Analysis and Related Tasks

model, we can see how important is the pre-training phase for Transformers since the model
is even worse than the logistic regression classifier8.

8.1.4 Discussion & Remarks

We can see from the results that the recent pre-trained Transformer-based models beat the
older approaches (lrc and LSTM) by a large margin. The monolingual Czert-B model is,
in general, outperformed only by the XLM-RLarge and XLM-RBase models, but these models
have five times/three times more parameters, and eight times larger vocabulary. Considering
these facts, the Czert-Bmodel is still very competitive.

During the fine-tuning, we observed that in most cases, the lower learning rate 2e-6 (see
Table A.17 in Appendix A.3) leads to better results. Thus, we recommend using the same one
or a similar order. The higher learning rates tend to provide worse results and the model
does not converge.

According to the generally higher confidence interval, the fine-tuning of a smaller dataset
like FB that has only about 6k training examples is generally less stable and more prone
to overfitting than training a model on datasets with tens of thousands of examples. We
also noticed that fine-tuning of the mBERT and SlavicBERT on the Mallcz dataset is very
unstable (see the confidence interval in Table 8.3). Unfortunately, we did not find out the
reason. A more detailed error analysis could reveal the reason.

8.1.5 Conclusion

Weevaluated the performance of available Transformer-basedmodels for theCzech language
on the task of polarity detection. We compared the performance of the monolingual and
multilingual models and we showed that the large XLM-RLarge model can outperform the
monolingual Czert-B model. The older approach based on recurrent neural networks is
surpassed by the Transformers by a very large margin. Moreover, we achieved new SotA
results for all three Czech polarity detection datasets.

8.2 Comparison of Multilingual Systems for SA
This section presents the outcomes of a comparative analysis conducted on three operational
real-world systems9 employed in the Joint Research Center10.

The evaluation was published in Přibáň and Balahur (2023). We evaluated three in-house
SA systems originally designed for three distinct SA tasks, operating within a highly multi-
lingual context. At the time of the evaluation, these systems processed a tremendous volume

8The model was trained for a maximum of 15 epochs and it would probably get better with a higher
number of epochs, but the other models were trained for the same or lower number of epochs.

9At the time of writing the corresponding paper, i.e. in 2018.
10Particulary in unit I.3. It is the research centre of the European Commission https://joint-research-centre.

ec.europa.eu/jrc-sites-across-europe/jrc-ispra-italy en
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8.2.1. Tasks Description

of text on a daily basis. Therefore, it was essential to know their quality and also be able to
evaluate these applications correctly. Due to the lack of correct evaluation, we prepared ap-
propriate resources and tools for the evaluation, assessed these applications and summarised
the results.

For the evaluation, we collected a large number of available gold standard datasets in
different languages and varied text types. The aim of using different domain datasets was to
achieve a clear snapshot of the overall performance of the systems and thus obtain a better
evaluation quality. We compared the results obtained with the best-performing systems
evaluated on their basis and performed an in-depth error analysis to gain deeper insights.

Our findings reveal interesting observations, including instances where certain systems
demonstrate superior performance for datasets and tasks beyond their original design spec-
ifications. This suggests the potential for substituting one system with another to achieve
performance enhancements. Our results are hardly comparable with the original dataset
results because the datasets often contain a different number of polarity classes than we
used, and for some datasets, there are even no basic results. In cases where comparisons are
feasible, our results show that our systems perform very well in view of multilingualism.

It is important to note that the systems under evaluation utilized older approaches and
machine learning methods such as SVM or logistic regression. This historical choice can
be attributed to the legacy and established practices of these systems, reflecting the state-
of-the-art at the time of their inception. The decision to maintain these approaches may
be influenced by factors such as system stability or the operational demands of processing
large volumes of text on a daily basis. While these systems may deploy older methods, our
evaluation demonstrates their continued effectiveness, showcasing their usability for their
purpose in multilingual contexts.

8.2.1 Tasks Description

The evaluated systems are intended for solving three sentiment-related tasks – Twitter Sen-
timent Analysis (TSA) task, Tonality in News (TON) task and the Targeted Sentiment Analysis
(ESA) task that can also be called Entity-Centered Sentiment Analysis.

In the Twitter Sentiment Analysis and Tonality tasks, the systems have to assign a polarity
which determines the overall sentiment of a given tweet or a news article. Targeted Sentiment
Analysis (ESA) task is a task of a sentiment polarity classification towards an entitymentioned
in a given text. For all mentioned tasks, the sentiment polarity can be one of the positive,
negative or neutral labels or a number from −100 to 100, where a negative value indicates
negative sentiment, a positive value indicates positive sentiment and zero (or values close
to zero) means neutral sentiment. In our evaluation experiments, we used the 3-point scale
(positive, negative, neutral).
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8.2.2 Systems Overview

TwitOMedia system (Balahur et al., 2014) for theTSA task uses a hybrid approach, which em-
ploys supervised learningwith a Support VectorMachines SequentialMinimal Optimization
(Platt, 1999), on unigram and bigram features.

EMMTonality system for the TON task counts occurrences of language-specific sen-
timent terms from our in-house language-specific dictionaries. Each sentiment term has
a sentiment value assigned. The system sums up values for all words (which are present in
the mentioned dictionary) in a given text. The resulting number is normalized and scaled to
a range from −100 to 100 where the negative value indicates negative tonality, the positive
value indicates positive tonality and the neutral tonality is expressed with zero.

EMMTonality system also contains a module for the ESA task, which computes senti-
ment towards an entity in a given text. This approach is the same as for the tonality in news
articles, with the difference that only a certain number of words surrounding the entity are
used to compute the sentiment value towards the entity.

EMMSenti system is intended to solve only the ESA task. This system uses a similar ap-
proach to the EMMTonality system, see (Steinberger et al., 2011) for the detailed description.

The evaluated systems require different types of datasets or at least different domains to
carry out a proper evaluation. We collected mostly publicly available datasets, but we also
used our in-house non-public datasets. The polarity labels for all collected Twitter and news
datasets are positive, neutral or negative. If the original dataset contained other polarity labels
than the three mentioned, we either discarded them or mapped them to positive, neutral or
negative polarity labels.

8.2.3 Twitter Datasets

In this section, we introduce the sentiment datasets specific to the Twitter domain. Our
collection comprises a total of 2.8 million labeled tweets obtained from multiple datasets,
with detailed statistics provided in Table 8.5. We refer to the corresponding paper (Přibáň &
Balahur, 2023) for detailed information about the datasets, including their descriptions.

8.2.4 Targeted Entity Sentiment Datasets

For the ESA task, we were able to collect three labeled datasets. Datasets from L. Dong et al.
(2014) and Mitchell et al. (2013) are created from tweets, and our InHouse Entity dataset
(Steinberger et al., 2011) contains sentences from news articles, see Table 8.6 for the statistics
and Přibáň and Balahur (2023) for their description.
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8.2.5. News Tonality Datasets

Dataset Total Positive Negative Neutral

Sentiment140 Test 498 182 177 139
Sentiment140 Train 1,600,000 800,000 800,000 -
Health Care Reform 2,394 543 1,381 470
Obama-McCain Debate 1,904 709 1,195 -
Sanders 3,424 519 572 2,333
T4SA 1,179,957 371,341 179,050 629,566
SemEval 2017 Train 52,806 20,555 8,430 23,821
SemEval 2017 Test 12,284 2,375 3,972 5,937
InHouse Tweets Test 3,813 1,572 601 1,640
InHouse Tweets Train 4,569 2,446 955 1,168
Total 2,861,649 1,200,242 996,333 665,074

Table 8.5: Twitter datasets statistics.

Dataset Total Positive Negative Neutral

Dong 6,940 1,734 1,733 3,473
Mitchel 3,288 707 275 2,306
InHouse Entity 1,281 169 189 923
Total 11,509 2,610 2,197 6,702

Table 8.6: Targeted Entity Sentiment Analysis datasets statistics.

8.2.5 News Tonality Datasets

For the TON11 task, we used our two non-public multilingual datasets. Firstly, our InHouse
News dataset consists of 1,830 manually labeled texts from news articles about the Mace-
donian Referendum in 23 languages, but the majority is formed by Macedonian, Bulgarian,
English, Italian and Russian, see Table 8.7. For the evaluation of our systems, we used only
Bulgarian, English, Italian and Russian because other languages are either not supported by
the evaluated systems or the number of examples is less than 60 samples.

InHouse News Total Positive Negative Neutral

Macedonian 974 516 234 224
Bulgarian 215 118 26 71
English 339 198 35 106
Italian 62 41 3 18
Russian 65 17 34 14
Other Languages 175 60 44 71
Total 1,830 950 376 504

Table 8.7: InHouse News dataset statistics.

EP News Total Positive Negative Neutral

English 2,193 263 172 1,758
German 5,122 389 179 4,554
French 2,964 574 308 2,082
Italian 1,544 291 152 1,101
Spanish 3,594 324 135 3,135
Total 15,417 1,841 946 12,630

Table 8.8: EP Tonality News dataset statis-
tics.

11For this task, we also used tweets described in subsection 8.2.3
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EP News dataset contains more than 50K manually labeled news articles with tonality
about the European Parliament and European Union in 25 European languages. We selected
five main European languages (English, German, French, Italian and Spanish) for the evalua-
tion, see Table 8.8 for details.

8.2.6 Evaluation & Results

In this section, we present a summary of all the evaluation results for all three systems. Each
system undergoes evaluation with a carefully chosen collection of datasets, where examples
from each selected dataset are classified individually. Subsequently, we merge all selected
datasets and conduct a unified classification.

We carry out experiments on the EMMTonality systemwith the InHouse News dataset on
Bulgarian, English, Italian and Russian. Experiments with the EP News dataset are performed
on the TwitOMedia and EMMTonality system with English, German, French, Italian and
Spanish12.
Each sample is classified as positive, negative or neutral and for all named sys-

tems, we did not apply any additional preprocessing steps. We used Accuracy and Macro
𝐹1 as evaluation metrics.

8.2.6.1 Baseline Results

We created baseline models for the TSA and TON tasks for basic comparison. These baseline
models are based on unigram-bigram features. Results are shown in tables 8.9, 8.10, and 8.11.
For the baseline models, we apply minimal preprocessing steps like lowercasing and word
normalization, which include the conversion of URLs, emails, money, phone numbers, user-
names, dates and number expressions to one common token These steps lead to a reduction
of feature space.

Model F1 Acc.

Log. regression 55.3 58.4
SVM 53.1 56.4
Naive Bayes 42.3 49.9

Table 8.9: Baseline results for the InHouse Tweets Test dataset with (trained on InHouse
Tweets Train dataset).

To train the baseline models, we use an implementation of Support Vector Machines
(SVM) – concretely Support Vector Classification (SVC) with linear kernel, Logistic Regres-
sion with lbfgs solver and Naive Bayes algorithms from the scikit-learn library (Pedregosa
et al., 2011), default values are used for other parameters of the mentioned classifiers. Our

12While experiments with the EMMTonality system covered all available languages, results are reported
solely for English, German, French, Italian, and Spanish.
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Model
All langs English

InHouse News EP News InHouse News EP News
F1 Acc. F1 Acc. F1 Acc. F1 Acc.

Log. regression 70.4 73.8 57.8 87.0 68.5 76.9 53.4 82.6
SVM 71.7 74.7 59.1 86.6 67.4 76.0 54.6 82.7
Naive Bayes 64.6 70.2 55.2 85.2 54.7 71.3 44.6 81.9

Table 8.10: Baseline results for the InHouse News and the EP News datasets for examples
in all languages (all langs) and only for English examples. We used 10-fold cross-validation
(results in table are averages of individual folds). Bold values denote the best results.

InHouse News dataset does not contain a large number of examples. Therefore, we perform
experiments with 10-fold cross-validation; the same approach is applied for the EP News
dataset.

For theNews datasets (InHouse News and EPNews) we train baselinemodels with various
combinations of data. Table 8.10 shows results for models which are trained on a concate-
nation of examples in different languages, along with results achieved solely on the English
examples. In experiments involving all languages, we include all untranslated examples (texts
in their original languages) and we train the model regardless of the language. The model
gains the capability to classify texts in all these languages. This approach should lead to
performance improvement, as is shown in Balahur et al. (2014).

If we compare baseline results from Table 8.10 with results from Table 8.12 (specifically,
the last three lines of the table), a noticeable trend emerges – the baselines consistently
outperform our current system, as indicated by the 𝐹1 scores in the tables. The TwitOMedia
system was initially trained on tweet messages, so it is evident that its performance on news
articles will be lower.

We collected a largemanually labeled dataset of tweets andwanted to study the possibility
of using this dataset to train a model. The envisioned outcome was the development of
a model capable of classifying news articles, a domain distinct from the training data. After
comparing results from Table 8.11 with results from Table 8.12 (specifically, the last three
lines of the table), we can see that our simple baseline is not outperformed on the InHouse
News dataset by the other two systems. These findings underscore the viability of utilizing
data from disparate domains for training, demonstrating the potential for performance
improvement.

Additionally, we observed that incorporating the title (concatenating the title and the
text) of a news article contributes to a consistent performance boost across all datasets and
various combinations of training data. These results show that the title is an essential part
of the news and contains significant sentiment and semantic information despite its short
length.
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Model
InHouse News EP News
F1 Acc. F1 Acc.

Log. regression 40.8 46.2 31.0 49.5
SVM 38.9 45.6 28.7 39.7
Naive Bayes 23.9 29.3 31.4 62.0

Table 8.11: Baseline results for models trained on SemEval 2017 Train and Test datasets with.
Evaluation was performed on original English examples from our InHouse News and EP
News datasets. Bold values denote best results for each dataset.

8.2.7 Twitter Sentiment Analysis

We used a domain-rich collection of tweets datasets to evaluate a system for the TSA task.
We collected datasets with almost 3M labeled tweets. Detailed statistics of used datasets can
be seen in Table 8.5. Table 8.12 shows obtained results for Accuracy andMacro 𝐹1 measures.

From Table 8.12 is evident that the TwitOMedia system (Balahur et al., 2014) performs
best for the InHouse Tweets Test dataset (bold values in the table). This dataset is based on
data from Nakov et al. (2013) and was used to develop (train and test) this system.

The superior performance of the TwitOMedia system on the InHouse Tweets Test dataset
compared to the InHouse Tweets Train dataset (HTTr) can be attributed to the system being
trained on translations of the HTTr dataset. The original training dataset (HTTr) was trans-
lated into several languages, and then the translations were merged into one training dataset
used to train the model. This approach improves performance, as shown in Balahur et al.
(2014).

For the other datasets, the performance is lower, especially for the domain-specific ones
and datasets which does not contain instances with neutral classes, for example, Health Care
Reform dataset or Sentiment 140 Train dataset.

8.2.8 Tonality in News

EMMTonality system for the TON task was evaluated on the same set of datasets as the one
for the TwitOMedia system. Obtained results are shown in Table 8.12.
If we compare results of the TwitOMedia system and results of the EMMTonality sys-

tem, we can see that the EMMTonality system achieves better results for these datasets:
Sentiment140 Test, Health Care Reform, Obama-McCain Debate, Sanders, SemEval 2017 Train,
and SemEval 2017 Test. The overall results are better for the TwitOMedia system. Both
evaluated systems have comparable results for the InHouse News and EP News datasets.

The EMMTonality system slightly outperformed the TwitOMedia system in Macro 𝐹1

score, see Table 8.13. Table 8.13 contains results for the EP News dataset for five languages.
The Config column denotes whether only the text of an example is used or if a title of the
example is concatenated with the text and is used as well.
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Dataset
TwitOMedia EMMTonality

F1 Acc. F1 Acc.

Sentiment140 Test 56.6 53.0 66.6 63.9
Health Care Reform 41.0 32.6 45.6 40.3
Obama-McCain Debate (OMD) 27.0 29.0 33.1 35.7
Sanders 46.8 59.1 52.6 61.8
Sentiment140 Train (S140T) 31.2 35.8 25.0 37.5
SemEval 2017 Train 50.1 52.9 53.8 56.1
SemEval 2017 Test 46.0 50.0 55.2 56.4
T4SA 60.3 66.9 41.0 39.2
InHouse Tweets Test (HTT) 71.0 70.8 58.3 61.0
InHouse Tweets Train (HTTr) 62.9 59.9 58.0 57.4
All Tweets w/o S140T, OMD, T4SA 59.7 66.0 54.5 56.3
All Tweets w/o S140T, T4SA 50.7 52.8 54.2 55.8
InHouse News en 39.7 42.5 39.8 42.5
EP News en, text 36.8 69.8 42.2 67.8
EP News en, title + text 37.2 69.0 42.5 67.5

Table 8.12: Macro 𝐹1 score and Accuracy results of the evaluated TwitOMedia and
EMMTonality systems. Bold values denote the best results in specific dataset category (In-
dividual Twitter datasets, joined Twitter datasets and News datasets), and underlined values
denote best results for specific dataset category and for each system separetely.

8.2.9 Targeted Sentiment Analysis

Weevaluated theEMMSenti andEMMTonality systems for theESA task on theDong,Mitchel
and InHouse Entity datasets with results shown in Table 8.14.

We obtained the best results for the InHouse Entity dataset in terms of Accuracymeasure
and also for theMacro 𝐹1 score. The best results across all datasets and systems are obtained
for the neutral class (not reported in the table) and for other classes, our systems work more
poorly. The classification algorithm (for both systems) is based on counting subjective terms
(words) around entity mentions (no machine learning algorithm or approach is involved). It
is obvious that the quality of dictionaries used, as well as their adaptation to the domain, is
crucial. If no subjective term from the text is found in the dictionary, the example is assigned
the neutral label.
The best performance of our systems for the neutral class can be explained by the fact

that most of the neutral instances do not contain any subjective term.

8.2.10 Error Analysis

To understand the causes of erroneous classification, we analyze the misclassified examples
from Twitter and the News datasets for the EMMTonality and TwitOMedia systems. We
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Lang. Config
TwitOMedia EMMTonality
F1 Acc. F1 Acc.

EN
Text 36.8 69.8 42.2 67.8
Text+Title 37.2 69.0 42.5 67.5

DE
Text 33.3 71.1 34.8 84.6
Text+Title 34.4 68.7 36.0 73.0

FR
Text 35.4 61.4 38.9 54.9
Text+Title 35.6 60.2 38.3 47.2

IT
Text 31.4 69.2 39.7 34.7
Text+Title 35.1 69.0 40.5 33.0

ES
Text 33.7 82.8 39.2 38.6
Text+Title 33.2 82.3 39.2 33.3

Table 8.13: Macro 𝐹1 score and Accuracy re-
sults for the EP News dataset for English,
German, French, Italian and Spanish exam-
ples.

Dataset
EMMSenti EMMTonality
F1 Acc. F1 Acc.

Dong 49.1 51.2 49.6 50.1
Mitchel 48.3 66.0 49.0 64.0
InHouse Entity 51.7 66.3 50.7 65.9
All 50.5 57.1 51.2 55.7

Table 8.14: Macro 𝐹1 score and Accuracy re-
sults for the EMMSenti and EMMTonality
systems evaluation. Bold values denote best
results for each dataset.

categorize the errors into four groups13. We randomly selected 40 incorrectly classified
examples for each class and each system across all datasets used for evaluating these systems,
resulting in 240 manually evaluated examples. We found the four major groups of errors:

1. Implicit sentiment/external knowledge: Sentiment is often expressed implicitly,
or external knowledge is needed for a correct classification. The evaluated text does not
contain any explicit attributes (words, phrases, emoji/emoticons) that would clearly indicate
the sentiment. Because our systems are based on surface-level features (unigrams/bigrams
or counting occurrences of sentiment words), they will fail in these examples. For example,
text like "We went to Stanford University today. Got a tour. Made me want to go back to college."
indicates positive sentiment, but for this decision, we have to know that Stanford University
is a prestigious university (which is positive) and according to the sentence "Made me want
to go back to college." author probably has a positive relation to universities or his previous
studies. This group of errors is the most common in our set of error analysis examples. We
observed it in 94 cases and only for examples labeled as positive or negative.

2. Slang expression: Misclassified examples in this group contain domain-specific
words, slang expressions, emojis, unconventional linguistic means, misspelt or uppercased
words like "4life", "YEAH BOII", "yessss", "grrrl", "yummmmmy". We observe this type of error
in 29 examples and most of themwere caused by the EMMTonality system, which is reason-
able because this system is intended for news with correct grammar and formal language.

3. Negation: Negation of terms is an essential aspect of sentiment classification (Reitan
et al., 2015). Negations can easily change or reverse the sentimental orientation. This error
appeared in 35 cases in our set of error analysis examples.

4. Opposite sentiment words: The last type of error is caused by sentiment words
13Each incorrectly classified example may be contained in more than one error group. Some examples were

also (in our view) annotated incorrectly. For some cases, we could not discover the reason for misclassification.
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which express the opposite or different sentiment than the entire text. This type of error was
typical for examples annotated with a neutral label. For example, tweet "#Yezidi #Peshmerga
forces playing volleyball and crushing #ISIS in the frontline." is annotated as neutral, but contains
words like "crushing, #ISIS" or "frontline"which can indicate negative sentiment.We observed
this type of error in 20 examples.
The first group of errors (Implicit sentiment/external knowledge) was the most common

among the evaluated examples and is also the hardest one to solve because the system would
have to have access to world knowledge or be able to detect implicit sentiment in order to
be able of correct classification. This error was observed only for examples annotated with
positive or negative labels; there, the explicit sentiment markers are missing. The majority
of these examples were misclassified as a neutral class.
Lastly, we have to note that we could not decide the reason for misclassification in 35

cases. According to us, in seven cases was the annotated label incorrect. Figure 8.1 shows
confusion matrices for the EMMTonality and TwitOMedia systems. We can see that a no-
ticeable amount of misclassified examples was predicted as a neutral class.
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Figure 8.1: Confusionmatrices for theTwitOMedia andEMMTonality systems on all tweets
without S140T and T4SA datasets.

8.2.11 Conclusion

We conducted a comprehensive performance assessment of three sentiment classification sys-
tems commonly employed in practical, real-world applications. We collected and described
a rich collection of publicly available datasets. Our evaluation unveiled the limitations of the
systems through an error analysis. Furthermore, in supplementary experiments, we under-
scored the significance of document titles in system performance, underscoring their role
in providing critical and valuable information for effective classification.

During our experimentation, contemporary Transformer-based models, such as BERT,
were either in their nascent stages or had yet to be introduced, rendering their integration
into the real-world application under evaluation impractical. The main goal and important
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aspect of these experiments was to obtain a clear performance snapshot of the employed
multilingual sentiment classification systems. The findings from this study, serving as a foun-
dational reference, could subsequently guide enhancements to the systems.

8.3 Cross-lingual Subjectivity Classification
This part of the thesis is built on a paper called “Czech Dataset for Cross-lingual Subjectivity
Classification” (Přibáň & Steinberger, 2022), where we introduce a new Czech subjectivity
dataset of 10k manually annotated subjective and objective sentences from movie reviews
and descriptions. Our prime motivation is to provide a reliable dataset that can be used with
the existing English dataset as a benchmark to test the ability of pre-trained multilingual
models to transfer knowledge between Czech and English and vice versa.

8.3.1 Introduction

Subjectivity classification (J. M. Wiebe et al., 1999) is one of the integral parts of SA. Its
basic purpose is to determine if a sentence or phrase is subjective or objective. Subjective
text expresses personal feelings, views, beliefs or opinions and objective sentences hold or
describe some factual information (B. Liu, 2012). It can be further used to improve other tasks
such as polarity detection or information extraction (Pang & Lee, 2004; J. M. Wiebe et al.,
1999). Nowadays, the subjectivity classification is often used as a benchmark test (Bragg et al.,
2021; Reimers & Gurevych, 2019; S. Wang et al., 2021; Zhao et al., 2015) in transfer learning
to test abilities and language understanding of pre-trained BERT-like language models based
on the Transformer architecture (Vaswani et al., 2017).

Evaluation of the pre-trained models for transfer learning is a crucial part of their devel-
opment. The well-known GLUE (A. Wang et al., 2018) and SuperGLUE (A. Wang et al., 2019)
benchmarks are available for English. These benchmarks contain a set of diverse tasks that
allow a thorough evaluation of English pre-trained models.

Ourmainmotivation is to partly fill this gap and contribute a bit by introducing a reliable
Czech dataset that can be used for cross-lingual evaluation. We intend to use the dataset to
test the cross-lingual abilities of pre-trained multilingual models in pair with the existing
English dataset (Pang & Lee, 2004) as a benchmark for zero-shot cross-lingual subjectivity
classification. Thus, it partly tests the ability of pre-trained multilingual models to transfer
knowledge between Czech and English. We are aware that to properly evaluate any pre-
trainedmodel, a diverse set of tasks is needed, but we believe that even one task can be helpful
in the evaluation process. To the best of our knowledge, there is no subjectivity dataset for
the Czech language, therefore, our secondary goal is to extend the available dataset resources
for Czech.

In summary, we present the first Czech dataset for the subjectivity classification task that
consists of 10k manually annotated sentences from movie reviews and movie descriptions.
Secondly, we provide an additional dataset of 200k sentences labeled in a distant super-
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8.3.2. Subjectivity Dataset

vised way (automatically). The automatic labeling is based on the idea from Pang and Lee
(2004) that movie reviews contain mostly subjective sentences and the movie descriptions
usually consist of objective sentences. We describe the process of building and annotating
the dataset. The dataset is annotated by two annotators and the Cohen’s 𝜅 (Cohen, 1960)
inter-annotator agreement between them reaches 0.83. We perform experiments with two
multilingual mBERT (Devlin et al., 2019) and XLM-RLarge (Conneau et al., 2020) and three
monolingual Transformer-basedmodels on the newCzech dataset and provide a competitive
baseline of 93.56% of accuracy. Next, we conduct experiments with the same two multilin-
gual models on the English dataset to be able to compare our cross-lingual experiments.
Our results for the monolingual experiments with English are on par with the current state-
of-the-art results. Finally, we evaluate the multilingual models and their ability to transfer
knowledge between English and Czech on the zero-shot cross-lingual classification task.
The cross-lingual experiments show that using only English data for fine-tuning the XLM-
RLarge, the model can achieve worse results only by 2.8% on the Czech dataset compared to
the model trained on Czech data. When the model is trained using only the Czech data, the
result on the English dataset is roughly 4.4% worse than the current state-of-the-art results.
Our main contributions of this thesis part are the following: 1) we introduce the first

Czech subjectivity dataset that allows cross-lingual evaluation in pair with the existing En-
glish dataset. 2) We perform a series of monolingual and cross-lingual experiments. We set a
competitive baseline for the new Czech dataset. We compare the abilities of twomultilingual
models to transfer knowledge between Czech and English in the subjectivity classification
task. 3) We release14 the dataset and code freely for research purposes, including the dataset
splits for easier comparison and reproducibility of our results. Please see our paper (Přibáň
& Steinberger, 2022) for related work.

8.3.2 Subjectivity Dataset

We provide two datasets14 of subjective and objective Czech sentences from movie reviews
andmovie descriptions (plot summaries), respectively. We use the mentioned idea from Pang
and Lee (2004), in which the authors automatically created an English dataset (Subj-EN)
of 10k subjective and objective sentences. They assume that the descriptions are mostly
objective and the reviews are subjective. This assumption is valid in most cases, but there can
also be objective sentences in reviews and subjective sentences in descriptions. The number
of these noisy samples differs in both cases, as you can see in Table 8.15.
For this reason, we decided to create a manually annotated dataset (Subj-CS) of 10k

examples that should eliminate the incorrect occurrences as much as possible. Secondly, we
automatically built an additional dataset (Subj-CS-L) of 200k sentences using almost the
same approach15 as in Pang and Lee (2004).

14The datasets and code are freely available for research purposes at https://github.com/pauli31/
czech-subjectivity-dataset

15Based on our observations in the dataset, we decided to use sentences or phrases with at least six tokens,

149

https://github.com/pauli31/czech-subjectivity-dataset
https://github.com/pauli31/czech-subjectivity-dataset


8. Sentiment Analysis and Related Tasks

Reviews/
Descriptions

Sentiment dataset 
deduplication

Sentences

Segmentation

Language 
detection filtering

Sentence 
length filtering

Random sentence 
selection

Sentences for 
datasets

Figure 8.2: Data cleaning pipeline visualization.

8.3.2.1 Cleaning and Obtaining Data

We acquired roughly 4M reviews and 735k descriptions from Czech Movie Database16

(CSFD) during October 2021. The Czech sentiment movie review dataset (Habernal et al.,
2013) also consists of reviews from CSFD. We assume that in the future, our dataset can
be used in combination with the sentiment dataset; therefore, we decided to remove the
sentiment reviews from the data we downloaded. We matched and removed about 74k
reviews out of a total of 91k from the sentiment dataset. The remaining 17k reviews were
most likely changed or removed from the CSFD website since the authors of the sentiment
dataset originally downloaded the data in 2013. Next, we split the reviews and descriptions
into sentences by UDPipe 2 (Straka, 2018)17.
Some of the texts (mostly reviews) were written in other languages (most often Slovak

and English). We filter out these out18 and we keep only Czech sentences. Finally, we filter
out sentences with less than six tokens. See Figure 8.2 for the cleaning pipeline visualization.

The entire cleaning process resulted in 884k and 19M sentences (phrases) from descrip-
tions and reviews, respectively. We randomly selected 40k sentences from the obtained
reviews and descriptions for manual annotation and 200k sentences (100k from reviews and
100k from descriptions) for the automatically created dataset. The remaining sentences are
not utilized.

8.3.3 Annotation Procedure
Two native Czech speakers performed the annotation. Even though the subjectivity classi-
fication may seem like an easy task, it proved to be rather difficult for some sentences to
assign a subjectivity label.

Firstly, the task of subjectivity classification was explained to the annotators along with
the meaning of the subjective and objective sentences according to the definition in B. Liu
(2012). We summarize the annotation guidelines in Section 8.3.4.

but they used sentences longer than nine tokens.
16https://www.csfd.cz
17We use the czech-pdt-ud-2.5-191206.udpipemodel.
18We use the Python package langdetect available at https://pypi.org/project/langdetect/ to detect the

language.
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8.3.3. Annotation Procedure

During the first annotation stage, each of the annotators were asked to label a common
set of 100 sentences with one of three labels: subjective, objective and trash, see
Section 8.3.4 for their description. We use the trash label because, despite our best data
cleaning efforts, there were still undesirable texts: e.g., short sequences of words that do
not make any sense (random words), only numbers and other characters, sentences in other
languages, texts that were obviously incorrectly segmented and made no sense etc.

After the first 100 annotated sentences, the annotators discussed the conflicts to clarify
and improve the annotation guidelines. Based on the discussion, we decided to extend the
annotation labels by two more unsure and question.
The questions appeared to be rather problematic. The subjectivity was not clear very

often and thus, we decided to exclude them. In addition, the questions are only in a tiny part
of the data, i.e., 1.73% and 2.41% for review and description sentences, respectively, see Table
8.15.
The unsure label was added because, for some sentences, the annotators were not able

to assign the subjectivity. For example, sentences for which a context (previous sentence) is
needed to decide, sentences that describe a movie or event but contain some clearly subjec-
tive adjective(s) can be perceived or interpreted as subjective or objective depending on an
individual person. Other problematic sentences are commands, wishes or parts of poems
and rhymes. We list some of the problematic sentences labeled by both annotators as unsure:

(1) “Všechno ovšem tak snadné řešení nemá.” – “Not everything has such an easy solution.”

(2) “To je dobrý důvod pro to, aby byla Japonsku vyhlášena válka.” – “That’s a good reason to declare
war on Japan.”

(3) “Dnes večer je to však díky napjaté atmosféře velmi obtížné.” – “Tonight, the tense atmosphere
makes it very difficult.”

(4) “Drastický horor, při kterém tuhne krev v žilách” – “Drastic horror that makes your blood run
cold”

(5) “Tak se o to postará příroda sama!” – “Nature will take care of it!”

We decided to add these additional labels because we wanted to assign labels only in
cases where the annotators are very confident with their annotations and thus obtain more
reliable annotations without controversial examples and dataset of high quality.
After the update of the annotation guideline, both of the annotators assigned labels to

the same 2,034 sentences. The Cohen’s 𝜅 (Cohen, 1960) inter-annotator agreement for this
2k sentences reaches 0.68 for all five labels. Because we provide the dataset only with the
objective and subjective labels, we exclude any sentence with at least one19 of the trash,
unsure or question labels. Thanks to this filtration, we obtained 1,668 sentences only with
the subjective and objective labels. Cohen’s 𝜅 for this subset is 0.83, representing a fairly

19Each sentence has two labels – one from each annotator.
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good agreement level. The remaining 141 conflict sentences are then resolved with the help
of a third person.

Finally, almost 5,000 sentences were annotated by each of the two annotators, resulting
in a total of 11,907 annotated sentences, see Table 8.15. We can see that the subjective and
objective sentences are relatively balanced in the annotated samples and we believe that this
reflects the real data distribution. Even though we obtained more than 5,000 sentences with
the subjective and objective labels, we cut the annotations to have exactly 5,000 examples for
each of the two labels.We decided to provide a perfectly balanced dataset since it allows easier
comparison and evaluation of experiments. We use only the sentences with the subjective
and objective labels, i.e., 10,000 sentences. We refer to this dataset as Subj-CS.

The entire procedure of annotation can be summarized into the following steps:

1. Each annotator annotated 100 sentences as subjective, objective or trash.

2. Every conflict in the first 100 sentences was discussed separately between the anno-
tators to clarify and improve the annotation guideline. We extended the annotation
guideline by two more labels: unsure and question.

3. 2,034 sentences are annotated by each annotator (1,668 as subjective or objective
with 141 conflicts). Cohen’s 𝜅 reaches 0.83 for subjective and objective sentences. The
conflicts are resolved by a third person.

4. Almost 10k other sentences are annotated in total by both annotators. The annotations
are cut down to contain exactly 5,000 subjective and objective sentences.

8.3.3.1 Annotation Statistics

The manual annotation resulted in a total of 11,907 annotated sentences with one of five
labels, see Table 8.15. During the annotation procedure, we set the limit of at most 15 review
sentences for the same movie and at most three description sentences in the 40k sentences
selected for the manual annotation. However, the average number of sentences for the same
movie is only 1.43 and 1.02 for review and description sentences, respectively.

Label Reviews Descriptions Total

unsure 866 / 13.11% 457 / 8.62% 1,323
object. 726 / 10.99% 4,464 / 84.22% 5,190
subj. 4,794 / 72.57% 208 / 3.92% 5 002
quest. 114 / 1.73% 128 / 2.41% 242
trash 106 / 1.60% 44 / 0.83% 150
Total 6,606 / 100% 5,301 / 100% 11,907

Table 8.15: Annotation statistics for subjective and objective
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As we assumed, a considerable percentage of sentences in reviews are not subjective
(only 72.57% of sentences are subjective). Similarly, a relatively large part of sentences in the
movie descriptions are not objective (84.22% of the sentences are objective).

8.3.4 Annotation Guideline

The annotators were instructed to annotate a given sentence with one of five labels. Based
on the subjectivity description from B. Liu (2012), Pang and Lee (2004), and J. M. Wiebe
et al. (1999), the sentence should be annotated as subjective if it expresses or evokes some
personal feelings, views, beliefs or the sentence holds an opinion about entities, events or their
properties (mostly movies in our case) from the non-objective point of view. For example:

“Samotný film se mi líbil, ale nepřekvapil.” – “I liked the movie itself, but it didn’t surprise me.”

The sentence should be annotated as objective if it contains some factual information
about an entity, event or their properties but does not hold a personal or subjective opinion
about it and it does not try to convince or impose some opinion to the reader, for example:

“Maurice žije a pracuje v jižní Francii.” – “Maurice lives and works in the south of France.”

The disputed and controversial sentences, sentences where the annotator is not sure
about its subjectivity or sentences for which context from previous text is needed to decide,
should be annotated with the unsure label, see Section 8.3.3 for examples. The trash label
is used for sentences or phrases that do not make any sense or contain random words,
characters or numbers. The question label is used for sentences that are questions.

8.3.5 Automatic Dataset

Besides the manually annotated dataset, we also built a large dataset (named Subj-CS-L)
in a distant supervised way using the same approach as in Pang and Lee (2004). We labeled
100k review sentences as subjective and 100k movie description sentences as objective ones.
All sentences have to have at least six tokens. We believe that even if the dataset contains
some incorrect labels, it could be useful in combination with the manually created dataset,
for example, in an unsupervised pre-training.

8.3.6 Experimental Setup

For the experiments, we split the Subj-CS dataset into three parts with the following ratio:
75% for training, 5% for the development evaluation and 20% for testing. For the cross-
lingual experiment with the Subj-CS-L dataset from Czech to English, we use 5% as the
development evaluation data and the rest is used for training.

Because there is no official split for the English dataset (Pang & Lee, 2004), we use 10-fold
cross-validation for the English monolingual experiments to be able to compare our results
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with other papers. We also split the English dataset into training, development and testing
parts with the same test size (see Table 8.16) that was used in S. Wang et al. (2021)20.

Dataset Name Subjective Objective Total

Subj-CS

cs-train 3,750 3 750 7 500
cs-dev 250 250 500
cs-test 1,000 1,000 2 000

5,000 5,000 10 000

Subj-CS-L
cs-L-train 95,000 95,000 190,000
cs-L-dev 5,000 5,000 10,000

100,000 100,000 200,000

Subj-EN

en-train 3,764 3,736 7,500
en-dev 231 269 500
en-test 1,005 995 2,000

5,000 5,000 10,000

Table 8.16: Datasets statistics.

In our experiments, we use solely the pre-trained BERT-likemodels based on the encoder
part of the original Transformer architecture (Vaswani et al., 2017). The modified language
modeling task is used to pre-train all the models. More concretly, we employ three Czech
monolingual models Czert-B (Sido et al., 2021), RobeCzech (Straka et al., 2021), Czech Electra
model (Kocián et al., 2022), two multilingual models mBERT (Devlin et al., 2019), XLM-
R (Conneau et al., 2020) and the original monolingual English BERT model (Devlin et al.,
2019). We fine-tune the Transformer-basedmodels in the sameway as is described in Section
7.3.2.1.

8.3.7 Experiments

We performed a series of experiments with Transformer-based models to set baseline results
for the new Czech dataset and verify its usability as a cross-lingual benchmark dataset be-
tweenCzech and English. The experiments can be categorized into two groups –monolingual
and cross-lingual.

In monolingual experiments for Czech, we fine-tune the three Czechmonolingual BERT-
like models, i.e., Czert-B, RobeCzech and Czech Electra model and two multilingual models
mBERT and XLM-R. We use the same two multilingual models and the original BERT model
for English. In cross-lingual experiments, we test the ability to transfer knowledge between
Czech and English using the zero-shot cross-lingual classification. We fine-tune the multilin-
gual models only on the dataset in one language (Czech or English) and then evaluate the
fine-tuned model on the dataset in the other language.

20Unfortunately, they do not provide any script or details to obtain the identical split. In other words, we
do not know which sentences belong to the training part and which to the testing part.
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We always fine-tune21 on training data and measure the results on the development and
testing data parts. We select the model that performs best on the development data and
report the results using average accuracy with 95% confidence intervals (we repeat each
experiment at least 12 times). See Appendix A.4 for the hyper-parameters details for the
reported experiment results.

8.3.7.1 Czech Monolingual Experiments

For Czech monolingual experiments, we use two types of training data. The training part
(cs-train) of the manually labeled dataset Subj-CS and the entire automatically created
dataset Subj-CS-L (marked as cs-L-train). In both cases, we evaluate models on the
development (cs-dev) and testing (cs-test) parts of the Subj-CS dataset. We report the
results in Table 8.17.

Model
Subj-CS (cs-train) Subj-CS-L (cs-L-train)

cs-test cs-test

Czech Electra 91.9 ± 0.3 91.2 ± 0.1
Czert-B 92.9 ± 0.2 91.8 ± 0.1*
RobeCzech 93.3 ± 0.2* 91.6 ± 0.1
mBERT 91.2 ± 0.2 91.1 ± 0.1
XLM-RLarge 93.6 ± 0.1 92.0 ± 0.1

Table 8.17: Results for Czech monolingual experiments reported as average accuracy for
the testing cs-test data part. The * symbol denotes results containing intersection in
confidence interval with the best model.

As we expected, the XLM-RLarge model achieves the highest average accuracy of 93.56%
for both types of training data. Despite the highest achieved accuracy, there is an intersection
in its confidence interval with RobeCzech model for the cs-train data (the * symbol in
Table 8.17). Thus, we can conclude that RobeCzech and XLM-RLarge perform very similarly
for Czech monolingual experiments. Thanks to the XLM-RLarge size (and its relatively large
hardware training requirements), one could prefer the smaller RobeCzech model. The last
observation is that all the models achieve better results with the cs-train data part. We
expected XLM-RLarge to perform very well because it is the largest model and as shown in
Přibáň and Steinberger (2021) it usually outperforms smaller monolingual models.

8.3.7.2 English Monolingual Experiments

In Englishmonolingual experiments, we evaluate the English dataset on training (en-train),
development (en-dev) and testing (en-test) data split. Because models from other works

21The composition of data used for training and evaluation depends on the corresponding experiment. In
the case of English monolingual experiments for the 10-fold split, we did not use any development data.
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(Amplayo et al., 2018; Khodak et al., 2018; Nandi et al., 2021a; Reimers & Gurevych, 2019;
Zhao et al., 2015) are evaluated on the 10-fold split, we evaluate the models also on the
10-fold split (en-10-fold) to be able to compare their and ours results.

Model en-test en-10-fold

BERT 96.6 ± 0.2 96.9 ± 0.3
mBERT 95.9 ± 0.1 96.0 ± 0.2
XLM-RLarge 97.3 ± 0.1 97.3 ± 0.2
(S. Wang et al., 2021)† 97.4 ± 0.1 -
(Nandi et al., 2021a) - 97.3
(Zhao et al., 2015) - 95.5
(Amplayo et al., 2018) - 94.8
(Khodak et al., 2018) - 94.7
(Reimers & Gurevych, 2019) - 94.5

Table 8.18: Results for English monolingual experiments reported as average accuracy for
the testing en-test and en-10-fold data parts. The model in paper marked with the †
symbol uses the same test size, but the distribution of sentences is different in each split part
and they also use the standard deviation instead of the confidence interval.

As shown in Table 8.18, the XLM-RLarge performs best among the other two Transformer
models without any intersection of confidence intervals between the different models. We
can also see that the results for en-test and en-10-fold are very similar and their confi-
dence intervals overlap for the same model pairs (but different training data). Based on this
observation, we assume that the results for en-test and en-10-fold are comparable to
each other; thus, in the cross-lingual experiments, English is evaluated only on the en-test
part. We compare our results with the current state-of-the-art results (rows below the dashed
line in Table 8.18). Most of the other works use the 10-fold cross-validation and our results
also achieve the SotA results and are on par with them.

8.3.7.3 Cross-lingual Experiments

We perform three types of cross-lingual experiments: from English to Czech, from Czech to
English and joint training and evaluation of both languages. The first two are also known as
a zero-shot cross-lingual classification because themodel is fine-tuned only on data from one
language (source language) and evaluated on data from the second language (target language).
The model has never seen the labeled data from the target language.

For the experiments from English to Czech (EN→CS), we fine-tune the multilingual
models on English en-train data and we evaluate them on the en-dev and cs-test. We
select themodel that performs best on the en-dev (i.e., the same bestmodel as for the English
monolingual data) and we report results for the cs-test data in Table 8.1922.

22We also include the monolingual results for an easier comparison of the results.
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Model
EN→ CS Monoling. (cs-train)

en-dev cs-test cs-test

mBERT 95.4 ± 0.2 86.2 ± 0.3 91.2 ± 0.2
XLM-RLarge 97.6 ± 0.2 90.8 ± 0.3 93.6 ± 0.1

Table 8.19: Accuracy results for cross-lingual experiments from English to Czech along with
the results for models trained on monolingual data.

The XLM-RLargemodel clearly outperforms the mBERTmodel by 4.5% but is worse than
the samemodel that was trained onmonolingual data roughly by 2.8%. In the case of mBERT,
the results are much worse (5% difference) than the model trained only on monolingual data.

For experiments fromCzech to English (CS→EN), we fine-tune themodels on cs-train
and evaluate on cs-dev and en-test. We select the model that performs best on cs-dev.
We also train the model on the cs-L-train data, but in this case, we select the model

that performs best on the en-dev data from the target language (English).We use the en-dev
for selecting the best model because we found out that if we use cs-L-dev, we get much
worse results (up to 20% worse) for the en-test. We are aware of this simplification of the
zero-shot cross-lingual classification task, but otherwise, we would not be able to obtain
a model with reasonable results. The results are stated in Table 8.20.

Model
CS→ EN (cs-train) CS→ EN (cs-L-train) Monolingual (en-train)
cs-dev en-test en-dev en-test en-test

mBERT 92.1 ± 0.4 89.0 ± 0.9 85.8 ± 0.9 85.5 ± 0.9 95.9 ± 0.1
XLM-RLarge 94.4 ± 0.4 92.9 ± 0.4 93.4 ± 0.2 91.0 ± 0.3 97.3 ± 0.1

Table 8.20: Accuracy results for cross-lingual experiments from Czech to English along with
the results for models trained on monolingual data.

For both models trained on Czech data (cs-train and cs-L-train), the results are
even worse in comparison to the previous experiment from English to Czech. For exam-
ple, the difference between XLM-RLarge trained on cs-train and XLM-RLarge trained on
English en-train data is 4.4%, whereas in the case of the previous experiment from En-
glish to Czech, it was only 2.8%. The results of the models trained on the cs-L-train are
significantly worse (10% for mBERT).

Joint (cs-train + en-train) Monolingual (cs-train) Monolingual (en-train)
Model cs-test en-test cs-test en-test

mBERT 91.1 ± 0.2 95.7 ± 0.2 91.2 ± 0.2 95.9 ± 0.1
XLM-RLarge 93.9 ± 0.2 96.9 ± 0.1 93.6 ± 0.1 97.3 ± 0.1

Table 8.21: Accuracy results for models jointly trained on English and Czech data along with
the results for models trained on monolingual data.
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Finally, we fine-tune the models jointly on cs-train and en-train, i.e., on both lan-
guages at once. We average the results obtained on cs-dev and en-dev and we select the
model that achieves the highest average value. We report the results for the cs-test and
en-test in Table 8.21. We can see that the obtained results are almost identical or slightly
different compared to the models trained only on monolingual data. Thus, we can conclude
that joint fine-tuning has no beneficial contribution in these cases.

8.3.7.4 Discussion

We summarize and mention some of our main findings and conclusions from the experi-
ments. Even though the Czech Electramodel is significantly smaller than all the othermodels,
it achieves very competitive results compared to the other models. Thanks to its smaller size,
fine-tuning is much easier and faster.
The XLM-RLarge model dominates the results, but it is also several times larger than

the other models, see Table 8.2. Despite the worse results in the cross-lingual experiments,
we can state that generally, the XLM-RLarge (and in some cases even mBERT) is relatively
capable of transferring knowledge between Czech and English and vice versa, at least for the
subjectivity classification task. The confidence intervals for results obtained in cross-lingual
experiments are usually larger than the ones for the monolingual results. Thus, we consider
the cross-lingual results less stable.
During the cross-lingual experiments, we select the best model based on development

results for the source language. We suppose that such a setting should be more difficult and
challenging than choosing the model according to the target language results. This setting is
much closer to the potential usage of the multilingual models in the industry or to solving
practical, real-world tasks that are often more complicated. We do not use this approach for
models trained on the large data that were obtained automatically because of its poor results.
Based on the cross-lingual results, we believe that for knowledge transfer between lan-

guages, a smaller but high-quality (manually annotated) dataset is better and more important
than a large automatically created dataset to obtain more reliable results for downstream
tasks.

8.3.8 Subjectivity Classification Conclusion
As part of the described work, we introduced the first Czech subjectivity dataset Subj-CS
that consists of 10k manually annotated subjective and objective sentences from movie re-
views and descriptions. In addition, we automatically compiled a second, much larger dataset
of 200k sentences. Both datasets are freely available for research purposes. We describe the
process of building and annotating the dataset. Two annotators annotated the dataset with
Cohen’s 𝜅 inter-annotator agreement equal to 0.83. We provide a summary of the annotation
guidelines used by the annotators.

We perform a series of monolingual experiments with five pre-trained BERT-like models
to obtain the baseline results for the newly created Czech dataset and we are able to achieve
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93.6% of accuracy with the XLM-RLarge model. We also perform monolingual experiments
for the existing English subjectivity dataset with three models obtaining 97.3% of accuracy,
which is on par with the current state-of-the-art results for this dataset. Finally, we conduct
zero-shot cross-lingual subjectivity classification to verify the usability of our dataset as the
cross-lingual benchmark for pre-trained multilingual models that allow transfer learning.

Our experiments confirm that we provide a dataset of high quality and it can be used as
an evaluation benchmark to test the ability of models to transfer knowledge between Czech
and English.

8.4 Improving Aspect-based Sentiment Analysis
with Semantic Role Labeling

This section presents results from the paper called “Improving Aspect-Based Sentiment with
End-to-End Semantic Role Labeling Model” (Přibáň & Pražák, 2023). The paper focuses on
the task of ABSA for the Czech and English languages.

We introduce a novel approach aiming at enhancing the performance of ABSA task. Our
approach utilizes information from a Semantic Role Labeling (SRL) model to improve the
results of the ABSA task. Firstly, We propose a novel end-to-end SRL model that effectively
captures the structured semantic information within the Transformer’s hidden state. This
end-to-end SRL model is used to extract the information needed to improve the ABSA task.
Next, we incorporate this information into the ABSA model and improve its performance.
The approach is evaluated on English and Czech ABSA datasets, showing its effectiveness by
employing ELECTRA-small models for both languages. Our combined models improve the
performance of the aspect category polarity task by more than 4% for Czech. Moreover, we
achieved new state-of-the-art results for the Czech dataset.

8.4.1 Tasks Definition for ABSA

Aspect-based Sentiment Analysis (B. Liu, 2012; Pontiki et al., 2014) focuses on detecting
aspects (e.g., food or service in the restaurant reviews domain) and determining their polar-
ity, enabling a more detailed analysis and understating of the expressed sentiment. In this
work, we rely on the definition of ABSA tasks provided by Pontiki et al. (2014). The task
is divided into four subtasks: Aspect term extraction (TE), Aspect term polarity (TP), Aspect
category extraction (CE), and Aspect category polarity (CP).

We aim at the CE and CP subtasks,23 and we treat them as classification tasks, see Section
8.4.4.2. As depicted in Figure 8.3, the goal of the CE subtask is to detect a set of aspect
categories within a given sentence, i.e., for a given text 𝑆 = {𝑤1, 𝑤2, . . . 𝑤𝑛} assign set 𝑀 =

{𝑎1, 𝑎2, . . . , 𝑎𝑚} of𝑚 aspect categories, where𝑚 ∈ [0, 𝑘] ,𝑀 ⊂ 𝐴 and 𝐴 is a set of 𝑘 predefined
aspect categories 𝐴 = {𝑎1, 𝑎2, . . . , 𝑎𝑘}. The goal of CP is to assign one of the predefined

23See Pontiki et al. (2014) for a detailed description of all the subtasks.
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polarity labels 𝑝 for each of the given (or predicted) aspect categories of the set 𝑀 for the
given text 𝑆, where 𝑝 ∈ 𝑃 = {𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝑛𝑒𝑢𝑡𝑟𝑎𝑙}.

“The burger was excellent but the waitress was unpleasant”
CE⇒ food, service
CP⇒ food:positive, service:negative

Figure 8.3: Example of CE and CP subtasks of ABSA.

8.4.2 Semantic Role Labeling
The Semantic Role Labeling task (Gildea & Jurafsky, 2002) belongs among shallow semantic
parsing techniques. The SRL aims to identify and categorize semantic relationships or se-
mantic roles of given predicates. Verbs, such as “believe” or “cook”, are natural predicates, but
certain nouns are also accepted as predicates. The simplified definition of semantic roles is
that semantic roles are abstractions of predicate arguments. For example, the semantic roles
for “believe” can be Agent (a believer) and Theme (a statement) and for “cook” Agent (a chef),
Patient (a food), Instrument (a device for cooking) – see examples in Figure 8.4. The theory
of predicates and their roles is very well established in several linguistic resources such as
PropBank (Palmer et al., 2005) or FrameNet (Baker et al., 1998).

(1) [He]AGENT |A0 believes [in what he plays] THEME|A1 .

(2) Can [you] AGENT |A0 cook [the dinner] PATIENT|A1 ?

Figure 8.4: Examples of SRL annotations.

8.4.3 Approach Motivation Details
For our experiments, we need an end-to-end SRL model which encodes most of the infor-
mation in the Transformer’s hidden state. However, to the best of our knowledge, there is no
such model. As a result, we propose a new end-to-end model to fulfil this need. The model
effectively captures the structured semantic information and offers enhanced compatibility
with other NLP tasks. Unlike other SRL BERT-based models (Papay et al., 2022; Shi & Lin,
2019), our proposed model integrates the complete semantic information into the hidden
state of the Transformer. This end-to-end SRL model is particularly well-suited for com-
bination with the ABSA task, as it encapsulates the entire predicate-argument structure of
the sentence within a single hidden state, in contrast to the approach of Shi and Lin (2019),
which encodes each predicate separately and requires gold predicates on input. Our model,
on the other hand, only requires the input text.
We assume that leveraging the syntax and semantic information extracted from SRL

can enhance the performance of the aspect category polarity subtask. This assumption is
grounded in the notion that the SRL information has the potential to unveil valuable and
pertinent relations between entities within a given sentence, which play a crucial role in
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Figure 8.5: Example of syntactic and semantic parse tree of the following sentence “This place
is really trendy but they have forgotten about the most important part of a restaurant, the food”.

accurate aspect category polarity predictions. This holds particularly true for longer and
more complex sentences, where a broader contextual understanding becomes essential. To
illustrate this point, consider the annotation depicted in Figure 8.6, where we can observe the
SRL relation extracted (see Figure 8.5) between thewords forgotten and food. The information
about this relation can help to understand the model that these words are related and help
the model to predict the negative polarity of the food aspect category.

“This place is really trendy but they have forgotten about the most important part of a restaurant, the
food.”
CE⇒ food, ambience
CP⇒ food:negative, ambience:positive

Figure 8.6: Example of CE and CP annotations.

8.4.4 Models
To find an effective way to combine the models, we first fine-tune the individual models
separately to find the optimal set of hyper-parameters for individual tasks. Moreover, we
need an SRL fine-tunedmodel as the input for the combinedmodels. For ABSA, we adopt the
model proposed by Sun, Huang, and Qiu (2019). We propose a new SRL end-to-end model
specifically designed for seamless integration with other tasks.

8.4.4.1 Semantic Role Labeling

Our goal is to train a universal encoder that effectively captures SRL information froma plain-
text input. To accomplish this, we propose an end-to-end model with a single projection
layer on the top of the ELECTRA encoder (or any other pre-trained language model). This
way, all the information useful to predict role labels is encoded in the last hidden state of the
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Transformer Encoder Model Coming up is the Focus Today
program hosted by Wang Shilin.
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Figure 8.7: End-to-end SRL model architecture.

encoder. Consequently, we can use this representation in other tasks. Although our end-to-
end model exhibits lower performance than the commonly used BERT SRL model (Shi &
Lin, 2019; Sido et al., 2021), we believe it is more suitable for this task.
In our end-to-end model, we first encode the whole sentence and then iterate over all

possible word pairs (the first word is a potential predicate and the second is a potential argu-
ment). For each potential predicate-argument pair, we first concatenate the representations
of predicate and argument and then classify the argument role. If the potential predicate is
not a real predicate word or the potential argument is not an argument of the predicate, the
role of the pair is set to Other. If a word is represented by multiple subword tokens, only
the first token is classified. This is common practice in tagging tasks where the model learns
to encode the semantics of a multi-token word into the first subword, then each word has
a single token on the output for its classification.
Our approach differs from that of Shi and Lin (2019) in terms of how the predicate-

argument structure of the sentence is encoded within the Transformer model. While Shi
and Lin (2019) encodes each predicate separately and requires gold predicates on input, our
model only requires plain text as input. In other words, our model requires only text as input,
but the model proposed by Shi and Lin (2019) operates on pairs of text-predicate, producing
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representations solely for the input pair rather than the entire SRL output encompassing all
predicates within the sentence. Figure 8.7 shows the schema of our end-to-end SRL model.
To implement our multitask approach, it is necessary to have the same format of input

(i.e., plain text) for both tasks that are combined. This is the reason why we need our end-
to-end SRL model. For multitask learning, we need a general-purpose model, the same for
both tasks. The task-specific models may yield better results on the SRL task, but they are
specifically oriented only on the SRL task andmake their integrationwithABSAor utilization
in multitask learning challenging, if not impossible.

8.4.4.2 Aspect-based Sentiment

As we mentioned, we tackle the CE and CP subtasks of ABSA, as one classification task.
We adopt the same approach as Sun, Huang, and Qiu (2019), and we construct auxiliary
sentences and convert the subtasks to a binary classification task.
We use the NLI-B approach from Sun, Huang, and Qiu (2019) to build the auxiliary

sentences. For each sentence, we buildmultiple auxiliary pseudo sentences that are generated
for every combination of all polarity labels and aspect categories24. Each example has a binary
label 𝑙 ∈ {0, 1}; 𝑙 = 1 if the auxiliary sentence corresponds to the original labels, 𝑙 =

0 otherwise. We also add the artificial polarity class none that has assigned binary label
𝑙 = 1 if there is no aspect category for a given sentence. The pseudo auxiliary sentence
consists only of a polarity label and aspect category in a given language. For example, the
auxiliary sentences for all aspects of the sentence “The burger was excellent but the waitress
was unpleasant” are shown in Figure 8.8.

label sentence label sentence label sentence label sentence label sentence

food service price ambience general
1 ⇒ positive – food 0 ⇒ positive – service 0 ⇒ positive – price 0 ⇒ positive – ambience 0 ⇒ positive – general
0 ⇒ negative – food 1 ⇒ negative – service 0 ⇒ negative – price 0 ⇒ negative – ambience 0 ⇒ negative – general
0 ⇒ neutral – food 0 ⇒ neutral – service 0 ⇒ neutral – price 0 ⇒ neutral – ambience 0 ⇒ neutral – general
0 ⇒ conflict – food 0 ⇒ conflict – service 0 ⇒ conflict – price 0 ⇒ conflict – ambience 0 ⇒ conflict – general
0 ⇒ none – food 0 ⇒ none – service 1 ⇒ none – price 1 ⇒ none – ambience 1 ⇒ none – general

Figure 8.8: Example of auxiliary sentences.

Each auxiliary sentence is combinedwith the original sentence and separatedwith[SEP]
token and forms one training example, e.g., [CLS] positive - food [SEP] the burger was
excellent but the waitress was unpleasant [SEP]. We fine-tune the pre-trained Transformer
model for the binary classification task on all generated training examples as Sun, Huang,
and Qiu (2019).

8.4.4.3 Combined Models

We propose multiple models designed to utilize SRL representation to enhance ABSA perfor-
mance. The first model type predicts aspect and sentiment using concatenated representa-

24For English we have four polarity labels plus artificial label none and five aspect categories, i.e. 25 possible
auxiliary sentences. For Czech, there are 20 possible sentences (3 + 1 polarity labels and five aspect categories).
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tions from the SRL and ABSA encoders. The SRL encoder is pre-trained (pre-fine-tuned) on
the SRL data, and its weights remain fixed during sentiment training. Since SRL is a token-
level task, we need to reduce the sequential dimension before performing the concatenation
step. To address this, we employ two approaches: simple average-over-time pooling (named
concat-avg) and a convolution layer followed by max-over-time pooling (named concat-conv).
Figure 8.9a shows the model architecture.

SRL Encoder (frozen)ABSA Encoder

seq. len.

(Convolution),
Pooling

ABSA head

loss

The burger was excellent but the
waitress was unpleasant.

(a) Concat model architecture.

Transformer Encoder Model

Coming up is the Focus Today
program hosted by Wang Shilin.

ABSA head SRL head

SRL input

loss loss

The burger was excellent but the
waitress was unpleasant.

ABSA input

The burger was excellent but

the waitress was unpleasant.

Coming up is

the Focus Today program

hosted Wang Shilin.by

(b) Multi-task model architecture.

Figure 8.9: Illustration of combined models’ architectures.

The lastmodel uses standardmulti-task learning.We utilize a single Transformer encoder
with two classification heads: one for the sentiment (standard head for sequence classification)
and the other for SRL (the head architecture is presented in Section 8.4.4.1). The model is
trained using alternating batches, which means that we use different training data for both
tasks and do not mix them in a batch. In a single batch, we provide only ABSA or SRL data.
See Figure 8.9b model’s architecture.

8.4.5 Datasets
For Semantic Role Labeling, we use OntoNotes 5.0 dataset (Weischedel et al., 2013) for
English and CoNLL 2009 (Hajic et al., 2009) for Czech. As metrics, we report the whole role
F1 score for both datasets. Additionally, for English, we report CoNLL 2003 official score as
a comparative metric as it is the standard metric used with OntoNotes.
For English ABSA tasks, we utilize the widely-used English dataset from Pontiki et al.

(2014) that consists of 3,044 train and 800 test sentences from the restaurant domain. The
English dataset contains four sentiment labels: positive, negative, neutral, and conflict. Further,
we split25 the original training part of 3,044 sentences into development (10%) and training
parts (90%).

25For both English and Czech we provide a script to obtain the same split distribution.
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For Czech experiments, we employ the dataset from Hercig, Brychcín, Svoboda, Konkol,
and Steinberger (2016) with 2,149 sentences from the restaurant domain. Unlike in the
English dataset, there are only three polarity labels: positive, negative, and neutral. Because
the dataset has no official split, we divided25 the data into training, development, and testing
parts with the following ratio: 72% for training, 8% for the development evaluation, and 20%
for testing. Both Czech and English datasets contain five aspect categories: food, service, price,
ambience, and general.

8.4.6 Models Fine-Tuning
For our experiments on English, we use the pre-trained ELECTRA-smallmodel introduced
by Clark et al. (2020), which has 14M parameters. For Czech, we employ the pre-trained
monolingual model Small-E-Czech (Kocián et al., 2022) with the same size and architecture.
Firstly, we train separate models for both tasks (ABSA and SRL) and select the optimal set
of hyper-parameters on the development data. We then use the same hyper-parameters in
combined models. For the details of hyper-parameters, see our publication (Přibáň & Pražák,
2023).

8.4.7 Results & Discussion
In our experiments, we aim to verify our idea that injected SRL information can improve
the results of the ABSA task, particularly the CP subtask. We report the results of our end-
to-end SRL model in Table 8.22. As we expected, our model performs worse than the model
proposed by Shi and Lin (2019), but the results are reasonably high (considering that it does
not have gold predicates on input).

Model EN EN-conll05 CS

(Shi & Lin, 2019) 88.89 85.20 83.09
end-to-end (ours) 84.54 81.51 79.74

Table 8.22: Comparison of results of the standard model and our end-to-end SRL model
(reported in F1 scores, the official metrics, for the datasets used).

Results for ourABSA experiments inCzech andEnglish are shown inTables 8.23 and 8.24,
respectively. The baseline refers to themodel described in Section 8.4.4.2without any injected
SRL information. The SotA results are underlined and the best results for our experiments
are bold. We include the results with the 95% confidence interval (experiments repeated 12
times). We use the F1 Micro and accuracy for the CE and CP subtasks, respectively.

Based on the results presented in Tables 8.23 and 8.24, we can observe that our proposed
models (concat-conv and concat-avg) with injected SRL information consistently enhance
results for the CP subtask in both languages. The performance of the concat-conv and concat-
avg models does not exhibit a significant difference. In the CE subtask, we achieve the same
results as the baseline model. We think that the CE subtask is more distant from the SRL

165



8. Sentiment Analysis and Related Tasks

Model
Category Extraction Category Polarity

F1 Micro Precision Recall Acc #3 Acc #2

baseline 86.04±0.36 86.48±0.97 85.62±0.65 75.58±0.55 88.69±0.26

concat-conv 86.58±0.54 86.90±0.51 86.28±0.94 79.20±0.48 90.26±0.58

concat-avg 86.34±0.57 86.57±0.84 86.12±1.08 78.33±0.64 90.06±0.79

multi-task 85.62±0.63 86.24±0.66 85.01±0.66 77.27±0.69 89.00±0.63

baseline (Hercig, Brychcín, Svoboda, Konkol, & Steinberger, 2016)* 71.70 - - 69.70 -
best (Hercig, Brychcín, Svoboda, Konkol, & Steinberger, 2016)* 80.00 - - 75.20 -
CNN2 (Lenc & Hercig, 2016) - - - 69.00±2.00 -

Table 8.23: Czech results for the category extraction (CE) subtask as F1Micro score, Precision
and Recall. Results for the category polarity (CP) subtask as accuracy for three polarity labels
(Acc #3) and binary polarity labels (Acc #2). Results marked with * symbol were obtained by
10-fold cross-validation.

Model
Category Extraction Category Polarity

F1 Micro Precision Recall Acc #4 Acc #3 Acc #2

baseline 89.50±0.45 90.95±0.70 88.09±0.48 83.03±0.43 86.91±0.55 92.74±0.53

concat-conv 89.74±0.55 91.24±0.54 88.28±0.77 84.19±0.49 88.08±0.41 93.76±0.46

concat-avg 89.58±0.43 91.15±0.60 88.08±0.66 84.13±0.51 87.95±0.46 93.49±0.44

multi-task 89.36±0.15 90.72±0.52 88.05±0.44 82.83±1.10 87.05±1.21 92.74±0.79

XRCE (Brun et al., 2014) 82.29 83.23 81.37 78.10 - -
NRC (Kiritchenko, Zhu, Cherry, & Mohammad, 2014) 88.58 91.04 86.24 82.90 - -
BERT single (Sun, Huang, & Qiu, 2019) 90.89 92.78 89.07 83.70 86.90 93.30
NLI-B (Sun, Huang, & Qiu, 2019) 92.18 93.57 90.83 84.60 88.70 95.10
QACG-B (Wu & Ong, 2021) 92.64 94.38±0.31 90.97±0.28 86.80±0.80 90.10±0.30 95.60±0.40

BART generation (J. Liu et al., 2021) 92.80 95.18 90.54 - 90.55±0.32 -

Table 8.24: English results for the category extraction (CE) subtask as F1 Micro score, Preci-
sion and Recall. Results for category polarity (CP) subtask as accuracy for four polarity labels
(Acc #4), three polarity labels (Acc #3) and binary polarity labels (Acc #2).

task than the CP subtask and therefore, the injection of the semantic information does not
help. In other words, the semantic structure of the sentence may not play a crucial role in
aspect detection (that can be viewed as multi-label text classification). On the other hand, for
the CP subtask, the combined models can leverage the semantic structure of the sentence to
their advantage.

For the Czech ABSA dataset we achieve new SotA results on both subtasks26. As we
expected, we did not outperform the current SotA results for the English dataset, as our
ELECTRAmodel has considerably fewer parameters than SotAmodels. For Czech, themulti-
task model exhibited a marginal improvement in the results and generally, the model was
significantly inferior to our other models. We decided to use the smaller ELECTRA-based
models because of their much smaller computation requirements.

26It is worth noting that although the test data we used differ from those used by Hercig, Brychcín, Svoboda,
Konkol, and Steinberger (2016) due to their 10-fold cross-validation, the performance difference is substantial
enough to demonstrate the superiority of our approach.
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8.4.8 Conclusion
In this work, we introduced a novel end-to-end SRLmodel that improves the aspect category
polarity task. Our contribution lies in proposing several methods to integrate SRL and ABSA
models, which ultimately lead to improved performance. The experimental results validated
our initial assumption that leveraging semantic information extracted from an SRL model
can significantly enhance the aspect category polarity task. Importantly, the approaches we
proposed are versatile and can be applied to combine Transformer-based models for other
related tasks as well, extending the scope of their applicability.

Moreover, we believe that our approaches hold even greater potential in addressing other
ABSA subtasks, namely term extraction and termpolarity classification. These subtasks could
benefit from the integration of SRL and ABSA models in a similar manner.

8.5 Prompt-based Approach for Aspect-based
Sentiment Analysis

In a paper named “Prompt-Based Approach for Czech Sentiment Analysis” (Šmíd & Přibáň,
2023), we introduced the first prompt-based methods for ABSA and sentiment classification
in Czech.

We propose a novel approach for solving Czech sentiment classification and ABSA tasks
using the new paradigm called prompt-based learning or prompting. Nowadays, the traditional
approach is to pre-train a Transformer-based model on a large amount of text, for example,
BERT (Devlin et al., 2019) and then fine-tune it for a specific task. Prompting is a technique
that encourages a pre-trained model to make specific predictions by providing a prompt
specifying the task to be done (P. Liu et al., 2023). This new approach became very popular in
solvingNLP problems in zero-shot or few-shot scenarios, including SA (Gao et al., 2022; Gao
et al., 2021; Hosseini-Asl et al., 2022). Most of the current research aimed at languages other
than Czech, especially English. To the best of our knowledge, no research has focused on
any SA task in the Czech language by using prompting. To address this lack of research, we
performed an initial study focusing on two sentiment-related tasks, i.e., ABSA and sentiment
classification for the Czech language, by applying prompt-based fine-tuning.

ABSA is a more detailed task compared to sentiment classification, which aims to extract
fine-grained information about entities, their aspects and opinions expressed towards them.
There are multiple definitions and versions of the ABSA task (Barnes et al., 2022; Pontiki
et al., 2014; Saeidi et al., 2016). In this work, we focus on the version of aspect-based sentiment
analysis presented in the SemEval competitions (Pontiki et al., 2015, 2016), which includes
several subtasks. Specifically, the tasks are aspect category detection (ACD), aspect term
extraction (ATE), simultaneously detecting (aspect category, aspect term) tuples (ACTE), and
detecting the sentiment polarity (APD)27 of a given aspect term and category (see Figure

27The ACD, ATE, ACTE and APD tasks are named Slot1, Slot2, Slot1&2 and Slot3, respectively, in Pontiki
et al. (2015, 2016) under Subtask 1.
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8.10 for examples). In addition, we solve the target-aspect-sentiment detection task (TASD)
(H. Wan et al., 2020), which aims to simultaneously detect the aspect category, aspect term
and sentiment polarity.

“The food was very
expensive”

Sentence category=“FOOD#PRICES”        ACD

target=“food”                                ATE

polarity=“negative”                       APD

Task Annotations

Figure 8.10: The example of the ABSA tasks.

Unlike in our previous work (Přibáň & Pražák, 2023) that is described in Section 8.4, in
this work we solve slightly different versions of ABSA tasks, thus we cannot compare our re-
sults with the work. In addition, we reannotated the entire Czech ABSA dataset from Hercig,
Brychcín, Svoboda, Konkol, and Steinberger (2016) to be in the same format as English, Dutch,
Russian, Spanish and Turkish datasets from Pontiki et al. (2015), allowing cross-lingual and
multilingual experiments betweenCzech and these languages. The newly reannotated dataset
is described in Šmíd et al. (2024)28.

We utilize Czech monolingual BERT-like models and their language modeling ability to
perform prompting for the APD and sentiment classification tasks. We use multilingual text-
to-text generative models such as mT5 (Xue et al., 2021) and large mBART (Tang et al., 2021)
for the remaining ABSA tasks to generate textual predictions based on a prompted input.
Our approach enables us to solve all these ABSA tasks at once, and we show its superiority
to the traditional fine-tuning approach for them.

We also explore zero-shot and few-shot learning scenarios for APD and SC tasks and
show that prompting leads to significantly better results with fewer training examples com-
pared to traditional fine-tuning. Additionally, we demonstrate that pre-training on data from
a target domain results in great improvements in a zero-shot scenario.

At the time of publication of the study, it provided pioneered results for prompt-based
fine-tuning in Czech sentiment. Overall, the key contributions are the following: 1) to the
best of our knowledge, we propose the first prompt-based approach for SA tasks in Czech. 2)
We show the superior performance of our prompting approach over traditional fine-tuning
for ABSA tasks. 3) We compare the two approaches and show that prompting achieves better
results than traditional fine-tuning in few-shot scenarios29.

28The paper was accepted at the LREC-COLING 2024 conference https://lrec-coling-2024.org/ and it will
be published in May 2024. The paper is accessible from https://home.zcu.cz/~pribanp/LREC-2024/paper.pdf.

29Because the author of this thesis is not the first author of the paper, we do not consider this publication
as a core part of this thesis and thus we do not describe the approach and results in detail. For details, see the
corresponding paper (Šmíd & Přibáň, 2023)
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8.6 Emotion Analysis
We focused on emotion analysis tasks in two publications: “UWB at SemEval-2018 Task 1:
Emotion Intensity Detection in Tweets” (Přibáň et al., 2018) and “UWB at IEST 2018: Emo-
tion Prediction in Tweets with Bidirectional Long Short-Term Memory Neural Network”
(Přibáň & Martínek, 2018).

8.6.1 Emotion Intensity
In Přibáň et al. (2018), we presented a systemdeveloped for the SemEval-2018Task 1: Affect in
Tweets (Mohammad et al., 2018) competition. This competitionwas focused on the detection
of emotion intensity in posts from Twitter across three languages: Spanish, English, and
Arabic. The task was divided into two subtasks. In the emotion intensity regression subtask,
the goal was to predict the intensity on a scale of zero to one for a given tweet and emotion.
In the second subtask, the intensity was split into four distinct categories.
The task posed notable challenges due to the prevalence of slang expressions, misspelt

words, emoticons or abbreviations in tweets. To address this complexity, our system em-
ployed a hybrid approach, incorporating traditional language features such as word n-grams,
emotion lexicons, and topic distribution obtained through Latent Dirichlet Allocation (LDA)
(Blei et al., 2003), alongside word embeddings. For supervised training, we use SVM and lo-
gistic regression classifiers. We achieved scores of 0.64, 0.57 and 0.63 of Pearson correlation
for English, Arabic and Spanish, respectively, in the intensity regression subtask. In the case
of the classification subtask, we achieved scores of 0.50, 0.39 and 0.50 of Pearson correlation
for English, Arabic and Spanish, respectively.

8.6.2 Emotion Prediction
In Přibáň and Martínek (2018), we proposed a model based on an LSTM neural network to
predict an emotion of a given tween from which a certain emotion word is removed. The
removed word can be sad, happy, disgusted, angry, afraid or a synonym of any of these. The
model was developed for the WASSA 2018 Implicit Emotion Shared Task (Klinger et al.,
2018) competition.

Our approach is based on a neural network that combines word embeddings and emoji-
based features as input. The model incorporates BiLSTM layer for word embeddings input
and dense layers for the other inputs, i.e., emoji2vec (Eisner et al., 2016) and DeepMoji (Felbo
et al., 2017), connected to one dense layer, see the Figure 8.11 with a model architecture.
Outputs of these three layers are concatenated and then a dropout (Srivastava et al., 2014)
technique is applied. After the concatenating, the next dense layer is employed. An output
from the previous dense layer is then passed to a fully connected softmax layer. An output
of the softmax layer is a probability distribution over all six possible emotion classes.

Our system system performed best for the joy emotion. It achieved 65.7%macro F1 score
and our rank was 13th out of 30 participated teams in the competition.
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Figure 8.11: Emotion prediction system architecture.

8.7 Other Research Contributions

Apart from our contribution to the field of SA, we also published multiple works related to
other NLP tasks, including medical classification (Přibáň et al., 2023), named entity recogni-
tion (Piskorski et al., 2019, 2021; Yangarber et al., 2023), fact-checking (Přibáň et al., 2019),
dialect recognition (Přibáň & Taylor, 2019), lexical semantic change (Pražák, Přibáň, & Tay-
lor, 2020; Pražák, Přibáň, Taylor, & Sido, 2020; Přibáň et al., 2021; S. Taylor et al., 2021) and
building pre-trained language models (Sido et al., 2021).
Further, we briefly describe works that we believe are important to the research com-

munity or worthy of mentioning even in terms of this thesis.

8.7.1 Czech BERT-like Model

In our work presented in Sido et al. (2021), we introduced the first BERT-like model tai-
lored for the Czech language. This contribution outlines the process of training two distinct
BERT-like models for the Czech language and evaluates their performance across six tasks,
comparing them to two existing multilingual models, namely mBERT (Devlin et al., 2019)
and SlavicBERT (Arkhipov et al., 2019). Themodels, namedCzert-A andCzert-B, are publicly
available30. More concretely, the architectures of our models are based on the ALBERT (Lan
et al., 2020) model (Czert-A) and the original BERT (Devlin et al., 2019) model (Czert-B). Both
models are trained from scratch, utilizing a text corpus of approximately 36 GB of plain text,

30The model is available at https://github.com/kiv-air/Czert
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comprising Czech Wikipedia articles, crawled Czech news, and the Czech National Corpus
(Křen et al., 2016).

We trained the models from scratch (i.e., with random initialization) usingMasked Lan-
guage Model (MLM) and Next Sentence Prediction (NSP) tasks as training objectives with
a slight modification of the NSP task. We evaluated our models on six tasks: Semantic Text
Similarity, Named Entity Recognition, Morphological Tagging, Semantic Role Labeling, Sen-
timent Classification and Multi-label Document Classification. Our models outperformed
the multilingual counterparts on 9 out of 11 datasets. In addition, at the time of releasing the
models, we established the new state-of-the-art results on nine datasets, including sentiment
classification.

8.7.2 Lexical Semantic Change
In Pražák, Přibáň, Taylor, and Sido (2020), we proposed a model for the task of lexical
semantic change in English, German, Latin and Swedish. Our approach is based on the same
linear transformations (described in Section6.2.1) as we used for our cross-lingual sentiment
classification experiments presented in Chapter 7. The model was designed for the SemEval-
2020 Task 1: Unsupervised Lexical Semantic Change Detection (Schlechtweg et al., 2020)
competition, in which we ranked first and won the competition.
The lexical semantic change task aims to identify shifts in the meanings of words over

time. Typically, two corpora fromdistinct time periods are provided for analysis. Ourmethod
is fully unsupervised and language-independent. It consists of preparing a semantic vector
space for each corpus, earlier and later; computing a linear transformation between earlier
and later spaces, using Canonical Correlation Analysis and Orthogonal Transformation; and
measuring the cosines between the transformed vector for the target word from the earlier
corpus and the vector for the target word in the later corpus. The competition was divided
into two subtasks. We ranked 1𝑠𝑡 in Sub-task 1: binary change detection, and 4𝑡ℎ in Sub-task
2: ranked change detection.
We further successfully applied our approach (S. Taylor et al., 2021) in other languages

such as Italian (Pražák, Přibáň, & Taylor, 2020) and Russian (Přibáň et al., 2021).

8.7.3 Dataset for Multilingual Named Entity Recognition
In terms of building NLP resources, we contributed by building a manually annotated mul-
tilingual corpus (Piskorski et al., 2019, 2021; Yangarber et al., 2023) for the tasks of named
entity recognition and classification, name normalization and cross-lingual entity linking in
Czech, Polish, Bulgarian, Russian, Slovene and Ukrainian.
The goal of named entity recognition and classification task is to recognize all named

mentions of five types: persons, organizations, locations, products and events. In name nor-
malization, the goal is to convert the detected named mentions to their base forms, usually
its lemma. Finally, in the entity linking task, all mentions of the detected named entity should
be linked across all its mentions, including mentions in other languages.
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The dataset contains around 4.1k documents that comemainly from news articles which
covermultiple topics likeBrexit, Nord Stream, Covid-19, USAA 2020 elections, Russian invasion
of Ukraine. All documents are manually annotated for each of the three named tasks. See
Yangarber et al. (2023) for detailed statistics of language, topic and class distribution.
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Contributions Summary 9
This chapter summarizes our contributions and the fulfilment of the objectives of this thesis.
In Section 9.1, we shortly outline our published works and their respective contributions.
Section 9.2 provides details on the fulfilment of the defined goals of this thesis.

9.1 Contributions Overview
This section concisely outlines the primary contributions stemming from our publications,
focusing on their relevance to sentiment analysis and the central theme of this thesis. Further,
we also provide an overview of other additional research contributions.

Contributions:

• Conducting preliminary experiments, we explored cross-lingual sentiment classifica-
tion between Czech and English utilizing Transformer-based models. Furthermore,
we applied monolingual models to Czech sentiment classification and achieved new
SotA results (Přibáň & Steinberger, 2021).

• Weproposedmethods for cross-lingual sentiment classification betweenCzech, French
and English based on linear transformations and compared their competitive perfor-
mance with Transformer-based models (Přibáň et al., 2022).

• We thoroughly evaluated methods for cross-lingual sentiment classification, including
the latest LLMs (ChatGPT and LLama 2), linear transformations and Transformer-
based approaches. Our extensive comparison shed light on their advantages and dis-
advantages, considering factors such as performance, training/inference speed, and
their applicability in real-world scenarios (Přibáň et al., 2024).

• We created a newCzech dataset of 10kmanually labeled sentences for subjectivity clas-
sification. Subsequently, we conducted cross-lingual experiments, specifically between
Czech and English, utilizing this new dataset (Přibáň & Steinberger, 2022).

• We thoroughly evaluated multilingual systems deployed in a real-world production
environment, as discussed in Přibáň and Balahur (2023).
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• We proposed a novel multitask approach that improves the performance of the aspect-
based sentiment analysis by leveraging information from the semantic role labeling
task and achieved new SotA results for Czech (Přibáň & Pražák, 2023).

• We applied prompt-based learning to the aspect-based sentiment analysis and senti-
ment classification tasks for the Czech language (Šmíd & Přibáň, 2023).

• We completely reannotated the existing Czech dataset for ABSA to the same format
as its counterparts in other languages. As a result, the dataset can be utilized in cross-
lingual experiments. The annotation process is described in (Šmíd et al., 2024).

• We proposed and built models for emotion intensity detection and emotion prediction
tasks (Přibáň & Martínek, 2018; Přibáň et al., 2018).

Additional Research Contributions:

• We created the first BERT-like model for the Czech language (Sido et al., 2021).

• We proposed a novel approach based on linear transformations for the task of lexical
semantic change and we won the SemEval competition (SemEval-2020 Task 1: Unsu-
pervised Lexical Semantic Change Detection) (Pražák, Přibáň, & Taylor, 2020; Pražák,
Přibáň, Taylor, & Sido, 2020; Přibáň et al., 2021; S. Taylor et al., 2021).

• We built a manually annotatedmultilingual dataset for the tasks of named entity recog-
nition and classification, name normalization and cross-lingual entity linking inCzech,
Polish, Bulgarian, Russian, Slovene and Ukrainian (Piskorski et al., 2019, 2021; Yan-
garber et al., 2023).

• We built a system for automatical clinical document classification (coding) (Přibáň
et al., 2023)

• We explored the task of Arabic dialect recognition (Přibáň & Taylor, 2019).

• We compiled a newCzech, Polish and Slovak dataset for the fact-checking task (Přibáň
et al., 2019).

9.2 Fulfilment of the Thesis Goals
Based on the predefined objectives for this thesis that were set and defined in the author’s
Ph.D. thesis exposé document (Přibáň, 2020), we present a concise overview of how these
goals were successfully met in this thesis. Corresponding publications are also referenced
for a comprehensive understanding of the achievements.
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9.2. Fulfilment of the Thesis Goals

1. Tackle the problem of lack of annotated data in languages other than English
by introducing new resources.
This goal is notably achieved by creating a novel manually annotated dataset tailored
for subjectivity classification in Czech (Přibáň & Steinberger, 2022). Prior to this effort,
there was a conspicuous absence of a dedicated dataset in the Czech language for this
specific task. The construction of this dataset was approached with a keen considera-
tion for its applicability in cross-lingual experiments. As a direct result, it is a valuable
resource for conducting cross-lingual benchmarks between English and Czech.
Next, in Šmíd and Přibáň (2023), we completely reannotated the existing Czech dataset
for ABSA to the same format as its counterparts in other languages. Consequently, the
dataset can be used for cross-lingual experiments between Czech and several other
languages, including English.We describe the annotation process in Šmíd et al. (2024)1.
Additionally to this goal, we also built new multilingual resources for NER (Piskorski
et al., 2019, 2021; Yangarber et al., 2023) and fact-checking (Přibáň et al., 2019) tasks.

2. Perform sentiment analysis (and other related) tasks in languages other than
English by applying cross-lingual methods and transforming knowledge be-
tween languages.
We perform zero-shot cross-lingual sentiment analysis between English, Czech and
French by using linear transformations that allow external transfer of knowledge
between the languages in Přibáň et al. (2022). In our subsequent investigation, de-
tailed in Přibáň et al. (2024), we study the usage of linear transformations for CLSA
deeper and inmore detail, including their performance and speed comparisonwith the
most recent approaches, such as LLMs. Notably, our findings revealed that the linear
transformation-based approach exhibits performance levels comparable to smaller
Transformer-based models while significantly outpacing them in terms of speed.
The fulfilment of this goal is also partly supported in Přibáň and Balahur (2023), where
we compared multilingual systems for a real-world application.

3. Apply recent state-of-the-art pre-trained models and transfer learning ap-
proaches to sentiment analysis (and other related) tasks to textual data other
than English.
First, we fulfil this goal in Přibáň and Steinberger (2021), where we delved into the
CLSA by leveraging recent multilingual Transformer-based models in the context of
Czech and English. Building upon this exploration, our subsequent work in Přibáň
et al. (2024), expands the scope to include the French language. We employed the most
recent LLMs such as Llama 2 and ChatGPT. These recent LLMs use very little or
no training data and achieve results that are on par or better than the multilingual
Transformer-basedmodels but with significant additional hardware requirements and

1The paper is accepted and it is going to be published in proceedings of the LREC-COLING 2024 con-
ference https://lrec-coling-2024.org/. The paper is accessible from https://home.zcu.cz/~pribanp/LREC-2024/
paper.pdf.
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limitations associated with these LLMs.
In the same work, we provide a comprehensive overview of current approaches to
CLSA, offering an exhaustive evaluation of selected methods and a discussion of their
merits and drawbacks in terms of performance and training speeds.
Additionally, we performed cross-lingual experiments on our newly built subjectivity
dataset (Přibáň & Steinberger, 2022) with multilingual Transformer-based models.
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List of Abbreviations

ABSA aspect-based sentiment analysis

AI artificial intelligence

API application programming interface

BiLSTM bidirectional long short-term memory

BiRNN bidirectional recurrent neural network

BPE byte-pair encoding

BWE bilingual word embeddings

CBOW continuous bag-of-words

CCA canonical correlation analysis

CLS classification token

CLSA cross-lingual sentiment analysis

CLWE cross-lingual word embeddings

CNN convolutional neural network

CRF conditional random fields

CSFD czech-slovak film database

FB facebook

FFN feed-forward layer

GPT generative pre-trained transformer

GRU gated recurrent unit

HMM hidden markov models
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List of Abbreviations

IEST implicit emotion shared task

IMDB internet movie database

LLM large language model

LLMs large language models

LM language model, language modeling

LSA latent semantic analysis

LSTM long short-term memory

MLM masked language modeling

MLP multilayer perceptron

MSE mean squared error

NB naive bayes

NLP natural language processing

NLTK natural language toolkit

NNLM neural network for language modeling

NSP next sentence prediction

OOV out-of-vocabulary

POS part-of-speech

ReLU rectified linear unit

RNN recurrent neural network

SA sentiment analysis

SC sentiment classification

SemEval international workshop on semantic evaluation

SotA state-of-the-art

SST stanford sentiment treebank

SVD singular value decomposition

SVM support vector machines
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List of Abbreviations

VAD valence arousal dominance

WASSA workshop on computational approaches to subjectivity, sentiment & social me-
dia analysis
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DeclarationofGenerativeAI andAI-
assisted Technologies in the Writ-
ing Process

During the preparation of this thesis, we used the ChatGPT2 and Grammarly3 tools in order
to improve readability and language and correct grammatical errors. After using these tools,
we reviewed and edited the content as needed and took full responsibility for the content
of the thesis. The tools were not in any case used to analyse and draw insights from data as
part of the research process.

2https://chat.openai.com
3https://app.grammarly.com
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Appendix A
In Appendix A.1, we provide monolingual results for sentiment classification experiments
and the used hyper-parameters for training the corresponding models. The same hyper-
parameters were used for the cross-lingual experiments. In Appendix A.2, we report the
detailed results of the cross-lingual sentiment analysis experiments with linear transforma-
tions. In Appendix A.4, we report details about fine-tuning and the used hyper-parameters
for experiments with the subjectivity datasets. We provide examples of prompts for binary
classification in Appendix A.5. Appendix A.6 contains examples of outputs of LLMs.

A.1 Results with Hyper-parameters
We provide monolingual results with the important hyper-parameters for all models we
trained (fine-tuned) in Tables A.1, A.2, A.3 and A.4 for the French Allocine, English IMDB,
Czech CSFD and English SST datasets, respectively. These tables contain the same informa-
tion as Tables 7.3, 7.4, 7.5 and 7.6 in Section 7.5, which describes monolingual results. The
models denoted by CNN and LSTM were trained with in-domain embeddings, while the
models with the suffix -F, i.e., CNN-F and LSTM-F, were trained with the original fastText
embeddings. For the LSTM and CNN models, there are two results separated by a slash,
where the first number represents the accuracy score for the unnormalized embeddings, and
the second number represents the score for the normalized version of the word embeddings.
The values in parentheses separated by a slash character describe the hyper-parameters in the
following order: learning rate, number of epochs and a learning rate scheduler. The learning
rate scheduler is either constant (c) or linear (l). For example, the (1e-3 / 9 / l) values mean
that the corresponding model was trained with a learning rate of 1e-3 for nine epochs and
the learning rate was linearly decreased.
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Model Allocine (French)

Default/Normalized

CNN 95.0±0.1 (1e-3 / 10 / c) / 95.1±0.1 (1e-3 / 8 / c)

CNN-F 94.3±0.1 (1e-3 / 10 / c) / 94.7±0.2 (1e-3 / 5 / c)

LSTM 96.4±0.1 (1e-3 / 10 / c) / 96.4±0.1 (1e-3 / 10 / c)

LSTM-F 95.7±0.1 (1e-3 / 10 / c) / 95.9±0.1 (1e-3 / 7 / c)

CamemBERT 97.5±0.0 (2e-5 / 2 / l)

mBERT 96.2±0.1 (2e-6 / 15 / c)

XLM 96.3±0.0 (2e-6 / 8 / l)

XLM-RBase 96.9±0.0 (2e-6 / 8 / c)

XLM-RLarge 97.6±0.0 (2e-6 / 6 / l)

Table A.1: Monolingual accuracy results for
the French Allocine dataset (2 classes) with
the used hyper-parameters.

Model IMDB (English)

Default/Normalized

CNN 91.8±0.1 (1e-3 / 7 / l) / 91.6±0.2 (1e-3 / 5 / c)

CNN-F 89.3±0.6 (1e-3 / 10 / l) / 91.1±0.2 (1e-3 / 8 / c)

LSTM 92.5±0.2 (1e-3 / 9 / l) / 92.6±0.4 (1e-3 / 10 / c)

LSTM-F 90.7±0.7 (1e-3 / 10 / c) / 91.5±0.5 (1e-3 / 10 / c)

BERTBase-Cased 93.7±0.0 (2e-5 / 37 / l)

mBERT 92.4±0.4 (2e-6 / 57 / c)

XLM 86.4±0.2 (2e-6 / 29 / l)

XLM-RBase 94.5±0.2 (2e-6 / 43 / l)

XLM-RLarge 96.2±0.1 (2e-6 / 37 / l)

Table A.2: Monolingual accuracy results for
the English IMDB
dataset (2 classes) with the used hyper-
parameters.

Model
CSFD (Czech)

2 Classes 3 Classes

Default/Normalized Default/Normalized

CNN 93.9±0.1 (1e-3 / 6 / l) / 93.4±0.1 (1e-3 / 3 / c) 83.7±0.1 (1e-3 / 5 / l) / 82.9±0.2 (1e-3 / 4 / c)

CNN-F 91.5±0.2 (1e-3 / 10 / c) / 92.6±0.1 (1e-3 / 9 / c) 80.3±0.1 (1e-3 / 7 / c) / 81.7±0.2 (1e-3 / 7 / c)

LSTM 94.4±0.2 (1e-3 / 8 / c) / 93.9±0.1 (1e-3 / 6 / c) 84.8±0.2 (1e-3 / 8 / c) / 84.2±0.1 (1e-3 / 9 / c)

LSTM-F 92.1±0.3 (1e-3 / 10 / c) / 92.6±0.3 (1e-3 / 10 / c) 81.8±0.3 (1e-3 / 9 / c) / 82.8±0.2 (1e-3 / 10 / c)

Czert-B 94.4±0.1 (2e-5 / 15 / l) 84.9±0.1 (2e-5 / 12 / l)

RobeCzech 95.1±0.9 (2e-5 / 15 / l) 86.0±0.2 (2e-6 / 13 / c)

Czech Electra 93.2±0.4 (2e-5 / 15 / c) 81.8±0.1 (2e-5 / 13 / c)

mBERT 93.1±0.3 (2e-6 / 14 / c) 82.9±0.1 (2e-6 / 13 / l)

XLM 93.9±0.2 (2e-5 / 5 / l) 83.8±0.1 (2e-5 / 11 / l)

XLM-RBase 94.3±0.3 (2e-6 / 14 / c) 85.0±0.1 (2e-6 / 15 / c)

XLM-RLarge 96.0±0.0 (2e-6 / 14 / c) 87.2±0.1 (2e-6 / 11 / l)

Table A.3: Monolingual accuracy results for the Czech CSFD dataset with the used
hyper-parameters.
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A.1. Results with Hyper-parameters

Model
SST (English)

2 Classes 3 Classes

CNN 84.4±0.6 (1e-3 / 8 / c) / 84.6±0.3 (1e-3 / 3 / c) 66.4±1.1 (1e-3 / 4 / c) / 68.5±0.6 (1e-3 / 3 / c)

CNN-F 83.7±0.2 (1e-3 / 8 / c) / 85.4±0.4 (1e-3 / 3 / c) 66.1±1.0 (1e-3 / 9 / c) / 68.6±0.8 (1e-3 / 6 / c)

LSTM 85.3±0.4 (1e-3 / 9 / c) / 84.5±1.2 (1e-3 / 9 / c) 69.7±1.1 (1e-3 / 7 / c) / 68.2±1.7 (1e-3 / 10 / c)

LSTM-F 84.3±0.6 (1e-3 / 9 / c) / 85.9±0.9 (1e-3 / 10 / c) 70.4±0.7 (1e-3 / 9 / c) / 71.3±1.2 (1e-3 / 10 / c)

BERTBase-Cased 91.0±0.1 (2e-6 / 57 / l) 71.9±0.1 (2e-6 / 63 / l)

mBERT 85.2±0.9 (2e-6 / 55 / l) 65.1±0.4 (2.5e-7 / 50 / c)

XLM 89.6±0.2 (2e-6 / 51 / l) 70.5±0.4 (2e-6 / 4 / c)

XLM-RBase 90.9±0.2 (2.5e-7 / 77 / c) 73.5±0.2 (2.5e-7 / 56 / c)

XLM-RLarge 94.6±0.4 (2.5e-7 / 73 / c) 78.1±0.5 (2.5e-7 / 57 / l)

Table A.4: Monolingual accuracy results for the English SST dataset with the used hyper-
parameters.
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A. Appendix

A.2 Complete Cross-lingual Results for Linear
Transformations

Here we report the complete results for individual linear transformations for cross-lingual
sentiment analysis in Tables A.5, A.6, A.7, A.8, A.9, A.10, A.11, A.12, A.13, A.14, A.15 and A.16.
In Section 7.6.1, we provide the averaged results over the individual linear transformations.
The notation and formatting of these tables are identical to those in Section 7.6.1. The only
difference in notation is that the underlined number always represents the better score from
the normalized/unnormalized pair. The best results for each language and model pair are in
bold.

Evaluated on Czech Evaluated on English

Norm. Method Monoling.
EN-s⇒CS-t CS-t⇒EN-s

Monoling.
CS-s⇒EN-t EN-t⇒CS-s

in-domain/fastText in-domain/fastText in-domain/fastText in-domain/fastText

CNN

-

MSE

93.9/91.5

88.2±0.3/75.7±1.4 87.5±1.8/80.3±1.4

91.8/89.3

84.4±0.4/78.7±0.4 64.7±0.5/70.3±0.8

Orto 88.5±0.1/78.9±0.9 89.2±0.1/78.1±0.9 84.0±0.1/79.7±0.1 81.3±0.3/79.3±0.8

CCA 88.4±0.1/76.3±1.1 88.2±0.1/79.2±0.6 83.9±0.1/77.4±0.5 80.2±0.1/75.0±0.6

Rank 85.7±0.3/78.9±0.7 88.0±0.8/76.7±0.6 83.4±0.2/77.6±0.7 82.9±0.3/73.5±0.7

Or-Ra 83.3±0.6/76.9±1.7 89.2±0.1/79.2±1.0 79.6±0.5/78.4±0.5 82.3±0.4/75.0±0.8

Avg. 86.8/77.3 88.4/78.7 83.1/78.4 78.3/74.6

B

MSE

93.4/92.6

87.6±0.2/85.0±0.3 87.9±0.2/85.2±0.4

91.6/91.1

85.4±0.9/84.2±0.5 81.4±0.3/81.3±0.3

Orto 88.2±0.1/85.8±0.1 87.3±0.4/86.1±0.1 85.2±0.2/82.2±1.3 81.0±2.9/79.8±2.7

CCA 88.3±0.1/85.9±0.2 86.9±0.2/86.0±0.1 85.2±0.1/83.9±0.1 83.6±0.2/80.5±2.1

Rank 87.8±0.2/85.5±0.2 87.9±0.1/85.3±0.2 85.7±0.2/84.7±0.1 83.8±0.1/84.0±0.0

Or-Ra 87.6±0.4/86.3±0.2 88.4±0.1/85.7±0.2 85.9±0.1/79.6±0.4 82.9±0.8/82.5±0.5

Avg. 87.9/85.7 87.7/85.7 85.5/82.9 82.5/81.6

LSTM

-

MSE

94.4/92.1

84.9±0.7/80.6±1.3 85.9±2.6/79.3±4.3

92.5/90.7

85.5±0.7/83.5±1.9 67.7±3.7/75.2±2.9

Orto 87.6±0.4/80.2±2.3 87.9±0.5/80.2±3.0 73.6±1.1/79.8±1.5 74.9±3.8/83.3±1.2

CCA 86.6±1.9/82.9±0.7 87.4±0.3/82.7±0.5 83.6±0.8/66.9±3.1 81.8±1.5/82.6±0.6

Rank 84.1±1.2/75.4±0.5 86.0±1.5/82.6±1.1 74.1±4.5/69.6±2.8 83.8±0.8/83.5±0.5

Or-Ra 86.2±0.4/73.2±1.5 86.8±0.7/82.9±2.0 82.0±3.4/71.6±3.4 84.9±0.7/83.8±0.8

Avg. 85.9/78.5 86.8/81.5 79.8/74.3 78.6/81.7

B

MSE

93.9/92.6

86.7±0.8/85.4±0.6 87.2±3.0/72.0±7.3

92.6/91.5

85.1±0.8/83.6±1.3 76.0±3.7/78.0±4.6

Orto 85.1±0.8/79.2±9.0 84.9±3.3/84.8±0.7 77.3±3.8/85.3±0.7 76.3±3.4/85.1±0.6

CCA 87.0±1.3/83.8±1.7 87.2±0.6/83.7±2.8 86.0±1.9/82.6±3.0 81.3±3.5/78.0±2.7

Rank 86.2±0.9/81.4±2.4 88.5±1.1/84.4±0.6 83.1±1.7/73.5±6.5 81.1±1.4/83.1±0.6

Or-Ra 85.2±1.8/76.3±4.3 88.5±1.4/85.1±0.5 84.2±1.8/68.4±3.9 79.6±2.0/85.5±0.7

Avg. 86.0/81.2 87.3/82.0 83.1/78.7 78.9/81.9

Table A.5: Cross-lingual accuracy results for linear transformations obtained on the binary
IMDB-CSFD (English-Czech) dataset pair. Normalization was applied only before the trans-
formation.
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A.2. Complete Cross-lingual Results for Linear Transformations

Evaluated on Czech Evaluated on English

Norm. Method Monoling.
EN-s⇒CS-t CS-t⇒EN-s

Monoling.
CS-s⇒EN-t EN-t⇒CS-s

in-domain/fastText in-domain/fastText in-domain/fastText in-domain/fastText

CNN

-

MSE

93.9/91.5

88.2±0.3/75.7±1.4 87.5±1.8/80.3±1.4

91.8/89.3

84.4±0.4/78.7±0.4 64.7±0.5/70.3±0.8

Orto 88.5±0.1/78.9±0.9 89.2±0.1/78.1±0.9 84.0±0.1/79.7±0.1 81.3±0.3/79.3±0.8

CCA 88.4±0.1/76.3±1.1 88.2±0.1/79.2±0.6 83.9±0.1/77.4±0.5 80.2±0.1/75.0±0.6

Rank 85.7±0.3/78.9±0.7 88.0±0.8/76.7±0.6 83.4±0.2/77.6±0.7 82.9±0.3/73.5±0.7

Or-Ra 83.3±0.6/76.9±1.7 89.2±0.1/79.2±1.0 79.6±0.5/78.4±0.5 82.3±0.4/75.0±0.8

Avg. 86.8/77.3 88.4/78.7 83.1/78.4 78.3/74.6

B,A

MSE

93.4/92.6

88.7±0.2/86.0±0.1 86.8±0.1/86.1±0.1

91.6/91.1

84.3±0.2/84.5±0.1 80.9±0.3/82.7±0.4

Orto 88.0±0.2/86.1±0.1 87.2±0.4/87.2±0.4 85.3±0.3/82.1±1.9 82.0±0.9/84.0±0.3

CCA 88.2±0.1/84.7±0.4 86.5±0.3/85.9±0.1 85.0±0.1/84.3±0.1 83.4±0.2/83.4±0.8

Rank 88.0±0.2/85.7±0.1 87.2±0.1/85.5±0.2 84.9±0.2/84.5±0.1 83.9±0.4/83.5±0.8

Or-Ra 87.8±0.2/86.2±0.2 88.3±0.2/83.1±0.4 85.2±0.1/83.6±0.8 83.6±0.3/84.9±0.4

Avg. 88.1/85.7 87.2/85.6 84.9/83.8 82.8/83.7

LSTM

-

MSE

94.4/92.1

84.9±0.7/80.6±1.3 85.9±2.6/79.3±4.3

92.5/90.7

85.5±0.7/83.5±1.9 67.7±3.7/75.2±2.9

Orto 87.6±0.4/80.2±2.3 87.9±0.5/80.2±3.0 73.6±1.1/79.8±1.5 74.9±3.8/83.3±1.2

CCA 86.6±1.9/82.9±0.7 87.4±0.3/82.7±0.5 83.6±0.8/66.9±3.1 81.8±1.5/82.6±0.6

Rank 84.1±1.2/75.4±0.5 86.0±1.5/82.6±1.1 74.1±4.5/69.6±2.8 83.8±0.8/83.5±0.5

Or-Ra 86.2±0.4/73.2±1.5 86.8±0.7/82.9±2.0 82.0±3.4/71.6±3.4 84.9±0.7/83.8±0.8

Avg. 85.9/78.5 86.8/81.5 79.8/74.3 78.6/81.7

B,A

MSE

93.9/92.6

86.2±0.6/83.9±2.1 89.1±0.3/83.5±1.5

92.6/91.5

85.4±1.8/78.4±3.3 81.3±1.1/83.7±1.6

Orto 86.6±0.9/83.8±0.9 80.9±5.5/79.1±3.1 72.0±6.1/84.7±0.9 78.5±2.2/86.2±1.0

CCA 86.5±1.0/84.0±1.2 85.9±1.4/83.3±1.1 84.2±3.4/83.0±2.5 84.1±2.2/85.1±0.4

Rank 87.2±0.6/81.8±1.5 87.9±0.8/82.5±2.3 84.2±2.0/76.3±3.6 83.5±1.4/84.8±0.6

Or-Ra 85.8±1.4/82.5±3.4 86.7±1.8/82.7±2.0 76.7±3.5/83.6±3.8 79.7±2.1/86.0±0.7

Avg. 86.5/83.2 86.1/82.2 80.5/81.2 81.4/85.2

Table A.6: Cross-lingual accuracy results for linear transformations obtained on the binary
IMDB-CSFD (English-Czech) dataset pair. Normalization was applied before and after the
transformation.
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A. Appendix

Evaluated on Czech Evaluated on English

Norm. Method Monoling.
EN-s⇒CS-t CS-t⇒EN-s

Monoling.
CS-s⇒EN-t EN-t⇒CS-s

in-domain/fastText in-domain/fastText in-domain/fastText in-domain/fastText

CNN

-

MSE

93.9/91.5

86.3±0.2/74.5±0.5 86.0±1.4/78.1±1.0

84.4/83.7

73.4±0.4/70.3±0.9 64.7±2.5/70.4±0.3

Orto 85.4±0.1/77.1±0.5 84.9±1.1/66.5±2.1 77.8±0.2/76.0±0.2 75.3±0.5/74.3±0.8

CCA 85.4±0.1/76.3±0.9 85.5±0.4/72.7±2.5 77.6±0.2/74.7±0.4 74.6±0.5/73.0±0.4

Rank 85.9±0.3/69.3±1.2 83.4±0.9/74.8±0.5 77.0±0.4/73.2±0.2 77.4±0.4/75.2±0.4

Or-Ra 82.4±0.9/66.5±2.6 85.6±0.8/75.4±0.3 76.2±0.4/75.5±0.3 77.4±0.3/77.2±0.3

Avg. 85.1/72.7 85.1/73.5 76.4/73.9 73.9/74.0

B

MSE

93.4/92.6

85.4±0.2/81.3±0.8 86.0±0.5/80.1±1.0

84.6/85.4

74.9±0.3/77.5±0.3 77.8±0.1/78.4±0.4

Orto 83.0±1.3/81.6±0.8 84.0±1.6/82.0±0.1 77.6±0.7/75.4±0.5 74.7±1.1/75.7±0.9

CCA 85.9±0.2/83.0±0.5 83.0±0.6/79.4±1.1 77.8±0.2/78.5±0.4 75.3±0.4/77.3±0.6

Rank 85.5±0.3/78.1±0.8 84.5±0.6/81.7±0.6 78.6±0.3/78.4±0.3 75.3±0.6/76.2±0.6

Or-Ra 85.2±0.7/82.6±0.5 85.8±0.5/82.7±0.2 78.7±0.2/75.7±0.4 76.2±0.9/77.6±0.4

Avg. 85.0/81.3 84.7/81.2 77.5/77.1 75.9/77.0

LSTM

-

MSE

94.4/92.1

85.3±0.4/73.0±0.4 82.0±2.2/69.5±2.0

85.3/84.3

76.1±0.4/78.4±0.4 72.3±2.9/70.6±3.0

Orto 80.4±1.9/75.5±1.1 80.1±0.9/76.7±1.3 72.6±1.3/78.4±0.5 75.6±1.8/78.7±0.5

CCA 83.0±1.3/72.7±1.7 82.6±0.8/72.9±1.9 76.5±1.6/76.9±1.5 75.0±0.6/76.5±1.7

Rank 84.1±0.7/71.7±1.0 76.1±0.6/73.3±1.0 72.9±3.1/76.2±0.7 77.5±1.3/79.1±0.6

Or-Ra 83.0±0.7/73.8±1.8 82.2±1.8/78.3±2.0 74.7±1.5/76.1±1.8 75.9±2.1/79.5±0.4

Avg. 83.2/73.3 80.6/74.1 74.6/77.2 75.3/76.9

B

MSE

93.9/92.6

83.8±0.4/81.1±0.6 85.3±0.9/77.7±3.1

84.5/85.9

77.7±0.8/78.2±1.5 74.9±1.1/75.5±2.0

Orto 74.2±3.9/80.2±1.3 78.4±3.7/80.0±0.5 76.9±0.8/79.1±0.3 73.2±0.9/76.9±1.4

CCA 82.2±1.4/79.8±2.8 74.5±3.5/78.4±1.2 77.6±1.2/77.1±1.1 74.4±1.4/77.8±0.8

Rank 83.2±2.5/79.4±1.5 84.2±0.6/82.0±0.6 76.8±1.0/76.1±0.7 75.6±1.1/79.9±0.3

Or-Ra 79.1±2.5/74.7±3.1 85.8±0.5/81.3±0.8 74.7±2.2/70.5±3.6 75.5±0.9/80.3±0.4

Avg. 80.5/79.0 81.6/79.9 76.7/76.2 74.7/78.1

Table A.7: Cross-lingual accuracy results for linear transformations obtained on the binary
SST-CSFD (English-Czech) dataset pair. Normalization was applied only before the trans-
formation.
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A.2. Complete Cross-lingual Results for Linear Transformations

Evaluated on Czech Evaluated on English

Norm. Method Monoling.
EN-s⇒CS-t CS-t⇒EN-s

Monoling.
CS-s⇒EN-t EN-t⇒CS-s

in-domain/fastText in-domain/fastText in-domain/fastText in-domain/fastText

CNN

-

MSE

93.9/91.5

86.3±0.2/74.5±0.5 86.0±1.4/78.1±1.0

84.4/83.7

73.4±0.4/70.3±0.9 64.7±2.5/70.4±0.3

Orto 85.4±0.1/77.1±0.5 84.9±1.1/66.5±2.1 77.8±0.2/76.0±0.2 75.3±0.5/74.3±0.8

CCA 85.4±0.1/76.3±0.9 85.5±0.4/72.7±2.5 77.6±0.2/74.7±0.4 74.6±0.5/73.0±0.4

Rank 85.9±0.3/69.3±1.2 83.4±0.9/74.8±0.5 77.0±0.4/73.2±0.2 77.4±0.4/75.2±0.4

Or-Ra 82.4±0.9/66.5±2.6 85.6±0.8/75.4±0.3 76.2±0.4/75.5±0.3 77.4±0.3/77.2±0.3

Avg. 85.1/72.7 85.1/73.5 76.4/73.9 73.9/74.0

B,A

MSE

93.4/92.6

84.9±0.5/79.9±0.8 84.3±0.4/79.8±1.7

84.6/85.4

77.4±0.3/79.2±0.1 77.8±0.2/78.2±0.5

Orto 84.2±0.9/82.2±0.2 81.4±0.9/81.6±0.5 77.5±0.4/77.5±0.4 76.1±0.3/77.7±0.4

CCA 85.5±0.2/82.4±0.1 84.8±0.6/78.6±1.3 77.8±0.1/79.2±0.3 75.6±0.2/77.2±0.2

Rank 85.9±0.5/82.6±0.3 82.9±0.9/81.6±0.2 78.8±0.3/79.1±0.2 76.7±0.4/76.8±0.5

Or-Ra 85.9±0.3/82.5±0.3 84.3±0.6/81.0±0.7 78.8±0.4/78.8±0.3 77.5±0.6/78.6±0.2

Avg. 85.3/81.9 83.5/80.5 78.1/78.8 76.7/77.7

LSTM

-

MSE

94.4/92.1

85.3±0.4/73.0±0.4 82.0±2.2/69.5±2.0

85.3/84.3

76.1±0.4/78.4±0.4 72.3±2.9/70.6±3.0

Orto 80.4±1.9/75.5±1.1 80.1±0.9/76.7±1.3 72.6±1.3/78.4±0.5 75.6±1.8/78.7±0.5

CCA 83.0±1.3/72.7±1.7 82.6±0.8/72.9±1.9 76.5±1.6/76.9±1.5 75.0±0.6/76.5±1.7

Rank 84.1±0.7/71.7±1.0 76.1±0.6/73.3±1.0 72.9±3.1/76.2±0.7 77.5±1.3/79.1±0.6

Or-Ra 83.0±0.7/73.8±1.8 82.2±1.8/78.3±2.0 74.7±1.5/76.1±1.8 75.9±2.1/79.5±0.4

Avg. 83.2/73.3 80.6/74.1 74.6/77.2 75.3/76.9

B,A

MSE

93.9/92.6

79.6±3.0/77.7±2.6 86.7±0.9/80.3±1.0

84.5/85.9

76.0±1.1/77.2±2.3 78.2±0.4/77.4±1.6

Orto 79.6±3.7/79.7±2.6 80.1±4.0/78.6±4.3 78.3±1.1/79.6±1.2 73.2±3.2/79.1±0.7

CCA 83.6±1.5/77.5±5.1 80.3±2.5/80.7±0.9 77.8±0.7/77.5±2.1 75.9±0.6/77.3±1.2

Rank 84.5±1.0/79.2±3.1 84.3±0.7/80.9±1.0 76.5±0.6/73.7±3.0 78.0±0.7/77.4±1.3

Or-Ra 82.8±1.4/79.7±1.5 81.1±2.7/77.5±2.0 76.7±0.9/79.1±1.2 78.5±0.4/78.5±0.4

Avg. 82.0/78.8 82.5/79.6 77.1/77.4 76.8/77.9

Table A.8: Cross-lingual accuracy results for linear transformations obtained on the binary
SST-CSFD (English-Czech) dataset pair. Normalization was applied before and after the
transformation.
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A. Appendix

Evaluated on Czech Evaluated on English

Norm. Method Monoling.
EN-s⇒CS-t CS-t⇒EN-s

Monoling.
CS-s⇒EN-t EN-t⇒CS-s

in-domain/fastText in-domain/fastText in-domain/fastText in-domain/fastText

CNN

-

MSE

83.7/80.3

57.8±0.0/43.8±0.0 56.6±5.7/44.4±1.2

66.4/66.1

45.0±0.0/45.7±0.0 34.6±0.0/53.3±0.0

Orto 55.7±1.9/49.8±2.1 53.9±4.3/47.2±0.4 48.1±0.1/50.8±0.7 48.1±0.0/57.0±0.0

CCA 58.2±1.7/49.5±1.0 55.3±1.4/47.7±1.3 47.2±0.5/48.0±0.5 48.5±0.0/54.3±0.0

Rank 55.8±0.0/47.4±0.0 55.8±0.0/35.8±0.0 47.4±0.7/50.6±1.0 59.3±2.8/46.9±0.2

Or-Ra 51.1±0.0/47.3±0.0 56.9±2.0/49.2±1.0 43.4±1.0/47.5±1.0 61.4±1.1/51.2±1.5

Avg. 55.7/47.6 55.7/44.9 46.2/48.5 50.4/52.5

B

MSE

82.9/81.7

57.3±0.9/55.0±0.7 55.7±1.4/52.7±2.3

68.5/68.6

49.8±0.2/49.6±0.3 50.3±0.3/55.0±0.5

Orto 56.4±0.9/55.0±0.3 56.8±1.4/52.6±0.2 51.2±1.1/48.6±1.3 52.7±0.2/53.9±0.3

CCA 59.7±0.5/52.8±0.5 57.3±1.4/53.1±0.6 48.3±0.5/50.7±0.5 50.2±0.3/53.4±0.3

Rank 58.4±1.4/52.3±0.5 56.2±2.1/54.5±0.4 47.7±0.3/50.7±0.6 52.4±0.3/52.1±0.2

Or-Ra 54.0±1.8/47.7±2.7 59.7±1.3/55.4±0.3 47.6±0.3/50.8±0.4 51.6±0.0/50.6±0.0

Avg. 57.2/52.6 57.1/53.7 48.9/50.1 51.4/53.0

LSTM

-

MSE

84.8/81.8

54.0±0.0/53.4±0.0 47.5±0.0/37.5±0.0

69.7/70.4

48.0±0.6/47.4±1.1 39.5±0.9/48.3±0.5

Orto 53.2±0.7/46.6±0.5 51.4±0.0/44.4±0.0 46.6±0.6/49.9±1.5 45.5±0.0/52.2±0.0

CCA 51.4±0.0/50.6±0.0 49.9±0.0/50.7±0.0 46.1±0.0/41.1±0.0 44.9±0.0/46.1±0.0

Rank 55.2±0.4/47.2±0.8 55.3±2.0/32.9±1.4 41.8±4.0/44.9±1.6 59.4±0.0/51.7±0.0

Or-Ra 54.3±0.0/42.5±0.0 54.2±2.3/34.7±2.0 41.1±5.0/42.9±2.7 55.4±0.0/53.3±0.0

Avg. 53.6/48.1 51.7/40.0 44.7/45.2 48.9/50.3

B

MSE

84.2/82.8

55.7±0.4/55.7±0.8 54.4±2.6/54.4±1.2

68.2/71.3

51.4±0.0/48.4±0.0 46.8±0.0/51.1±0.0

Orto 53.5±2.7/52.8±1.8 43.4±4.3/53.9±1.8 56.5±0.7/49.7±1.1 50.1±1.6/47.5±1.3

CCA 53.6±2.7/53.9±1.6 53.5±0.7/51.4±2.4 53.8±0.0/46.5±0.0 49.3±1.1/50.2±1.2

Rank 54.2±3.9/52.5±1.2 52.5±1.0/53.7±0.9 48.5±1.2/40.1±1.3 52.0±0.6/55.5±0.7

Or-Ra 47.7±3.0/52.6±1.2 54.2±1.3/54.2±0.7 45.8±1.4/43.1±1.6 54.3±0.7/50.0±0.6

Avg. 52.9/53.5 51.6/53.5 51.2/45.6 50.5/50.9

Table A.9: Cross-lingual accuracy results for linear transformations obtained on the three
class SST-CSFD (English-Czech) dataset pair. Normalization was applied only before the
transformation.
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A.2. Complete Cross-lingual Results for Linear Transformations

Evaluated on Czech Evaluated on English

Norm. Method Monoling.
EN-s⇒CS-t CS-t⇒EN-s

Monoling.
CS-s⇒EN-t EN-t⇒CS-s

in-domain/fastText in-domain/fastText in-domain/fastText in-domain/fastText

CNN

-

MSE

83.7/80.3

57.8±0.0/43.8±0.0 56.6±5.7/44.4±1.2

66.4/66.1

45.0±0.0/45.7±0.0 34.6±0.0/53.3±0.0

Orto 55.7±1.9/49.8±2.1 53.9±4.3/47.2±0.4 48.1±0.1/50.8±0.7 48.1±0.0/57.0±0.0

CCA 58.2±1.7/49.5±1.0 55.3±1.4/47.7±1.3 47.2±0.5/48.0±0.5 48.5±0.0/54.3±0.0

Rank 55.8±0.0/47.4±0.0 55.8±0.0/35.8±0.0 47.4±0.7/50.6±1.0 59.3±2.8/46.9±0.2

Or-Ra 51.1±0.0/47.3±0.0 56.9±2.0/49.2±1.0 43.4±1.0/47.5±1.0 61.4±1.1/51.2±1.5

Avg. 55.7/47.6 55.7/44.9 46.2/48.5 50.4/52.5

B,A

MSE

82.9/81.7

58.7±1.3/54.3±0.7 56.9±0.2/54.0±0.6

68.5/68.6

46.5±0.3/53.9±0.3 52.1±0.4/56.2±0.2

Orto 55.7±1.6/54.6±0.4 54.7±0.7/55.2±0.3 54.3±0.3/54.7±0.6 53.5±0.2/55.8±0.5

CCA 58.0±0.5/52.5±0.7 55.6±1.3/49.4±1.0 46.0±1.7/51.9±1.2 47.5±1.4/49.2±1.2

Rank 57.9±0.4/51.8±0.4 55.3±0.7/54.9±0.7 50.8±0.5/55.9±0.3 50.6±0.1/53.9±0.5

Or-Ra 57.0±0.3/55.3±0.2 55.9±0.7/55.6±0.6 51.1±0.2/54.1±0.4 53.1±0.2/52.1±0.6

Avg. 57.5/53.7 55.7/53.8 49.7/54.1 51.4/53.4

LSTM

-

MSE

84.8/81.8

54.0±0.0/53.4±0.0 47.5±0.0/37.5±0.0

69.7/70.4

48.0±0.6/47.4±1.1 39.5±0.9/48.3±0.5

Orto 53.2±0.7/46.6±0.5 51.4±0.0/44.4±0.0 46.6±0.6/49.9±1.5 45.5±0.0/52.2±0.0

CCA 51.4±0.0/50.6±0.0 49.9±0.0/50.7±0.0 46.1±0.0/41.1±0.0 44.9±0.0/46.1±0.0

Rank 55.2±0.4/47.2±0.8 55.3±2.0/32.9±1.4 41.8±4.0/44.9±1.6 59.4±0.0/51.7±0.0

Or-Ra 54.3±0.0/42.5±0.0 54.2±2.3/34.7±2.0 41.1±5.0/42.9±2.7 55.4±0.0/53.3±0.0

Avg. 53.6/48.1 51.7/40.0 44.7/45.2 48.9/50.3

B,A

MSE

84.2/82.8

52.6±2.3/52.1±1.6 57.2±0.4/53.8±0.7

68.2/71.3

40.9±1.5/47.2±2.4 57.5±1.3/54.0±1.7

Orto 51.0±1.7/53.9±0.6 43.9±2.7/52.5±1.5 57.1±1.1/44.1±1.6 52.8±1.5/53.0±1.2

CCA 53.8±1.3/53.6±1.0 46.8±1.9/48.0±1.9 52.3±1.0/53.6±1.2 49.4±1.2/52.0±1.1

Rank 52.8±2.4/54.5±0.4 52.9±1.5/54.6±0.8 50.6±1.3/50.9±2.0 48.4±0.8/49.4±1.5

Or-Ra 52.6±2.0/54.1±1.0 55.3±1.1/52.3±1.9 46.5±1.0/43.6±2.7 53.6±0.6/49.8±1.5

Avg. 52.6/53.6 51.2/52.2 49.5/47.9 52.3/51.6

Table A.10: Cross-lingual accuracy results for linear transformations obtained on the three
class SST-CSFD (English-Czech) dataset pair. Normalization was applied before and after
the transformation.

223



A. Appendix

Evaluated on French Evaluated on English

Norm. Method Monoling.
EN-s⇒FR-t FR-t⇒EN-s

Monoling.
FR-s⇒EN-t EN-t⇒FR-s

in-domain/fastText in-domain/fastText in-domain/fastText in-domain/fastText

CNN

-

MSE

95.0/94.3

87.5±0.6/78.0±0.8 74.3±4.3/73.5±3.4

91.8/89.3

86.2±0.1/78.2±0.2 56.1±1.5/73.5±1.6

Orto 90.4±0.1/81.0±0.7 89.4±0.1/79.6±0.9 86.0±0.1/81.3±0.4 87.0±0.1/81.0±0.6

CCA 89.9±0.1/81.0±0.5 89.1±0.1/81.9±0.1 84.6±0.3/80.2±0.4 85.3±0.3/79.2±0.4

Rank 88.5±0.7/68.2±1.6 88.7±0.1/80.9±0.5 83.6±0.2/74.5±0.6 85.3±0.5/74.9±0.9

Or-Ra 89.2±0.3/75.9±0.8 89.4±0.0/80.8±0.6 81.0±0.8/78.3±1.3 86.3±0.2/76.2±0.7

Avg. 89.1/76.8 86.2/79.3 84.3/78.5 80.0/77.0

B

MSE

95.1/94.7

90.4±0.1/86.7±0.5 85.0±0.8/82.9±0.5

91.6/91.1

86.4±0.5/85.1±0.6 76.1±0.8/81.2±0.7

Orto 89.9±0.1/86.6±0.1 89.7±0.1/87.1±0.1 85.9±0.3/84.8±0.6 86.3±0.3/83.9±0.4

CCA 89.4±0.1/87.1±0.1 89.2±0.1/86.0±0.2 86.9±0.1/85.6±0.4 84.0±0.4/85.4±0.3

Rank 90.2±0.2/83.2±1.2 88.9±0.0/87.1±0.1 87.1±0.1/85.3±0.3 85.1±0.3/81.9±0.8

Or-Ra 90.4±0.1/84.1±0.6 89.3±0.1/87.3±0.1 86.2±0.2/84.8±0.4 86.8±0.2/82.7±0.3

Avg. 90.1/85.5 88.4/86.1 86.5/85.1 83.7/83.0

LSTM

-

MSE

96.4/95.7

84.9±1.2/86.0±1.5 85.6±1.4/67.2±0.9

92.5/90.7

86.9±0.5/83.2±2.4 79.3±2.6/78.4±1.1

Orto 91.5±0.5/79.4±2.8 88.8±1.0/86.3±1.2 82.7±3.4/86.1±1.4 88.2±0.8/83.4±3.3

CCA 91.9±0.2/76.7±9.2 90.7±0.4/86.6±0.9 85.2±0.9/82.2±0.2 88.9±0.4/85.1±0.9

Rank 89.7±1.6/84.5±4.2 88.7±1.3/84.8±1.6 62.3±6.6/83.1±2.2 88.6±0.7/87.3±1.4

Or-Ra 90.6±1.1/79.2±4.1 90.2±1.3/87.9±1.0 79.4±4.4/80.8±3.2 88.5±0.2/83.3±0.4

Avg. 89.7/81.2 88.8/82.6 79.3/83.1 86.7/83.5

B

MSE

96.4/95.9

91.5±0.3/89.3±0.4 85.9±3.0/72.7±4.1

92.6/91.5

88.3±0.7/88.3±0.9 84.3±2.9/84.0±2.4

Orto 90.9±0.6/81.5±4.2 91.0±0.6/89.3±0.4 89.1±0.5/86.8±0.3 89.3±0.4/87.2±1.2

CCA 90.3±0.5/88.5±1.0 90.5±0.5/78.4±3.3 88.4±1.5/88.4±0.7 89.7±0.9/88.6±0.9

Rank 89.4±1.2/83.6±1.3 91.1±0.3/89.8±0.4 79.9±3.6/86.2±1.1 87.4±0.9/85.8±2.2

Or-Ra 90.2±1.9/52.8±3.0 90.9±1.0/89.6±0.5 82.3±3.4/78.1±5.7 90.0±0.4/82.3±1.8

Avg. 90.5/79.1 89.9/84.0 85.6/85.6 88.1/85.6

Table A.11: Cross-lingual accuracy results for linear transformations obtained on the binary
IMDB-Allocine (English-French) dataset pair. Normalization was applied only before the
transformation.
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A.2. Complete Cross-lingual Results for Linear Transformations

Evaluated on French Evaluated on English

Norm. Method Monoling.
EN-s⇒FR-t FR-t⇒EN-s

Monoling.
FR-s⇒EN-t EN-t⇒FR-s

in-domain/fastText in-domain/fastText in-domain/fastText in-domain/fastText

CNN

-

MSE

95.0/94.3

87.5±0.6/78.0±0.8 74.3±4.3/73.5±3.4

91.8/89.3

86.2±0.1/78.2±0.2 56.1±1.5/73.5±1.6

Orto 90.4±0.1/81.0±0.7 89.4±0.1/79.6±0.9 86.0±0.1/81.3±0.4 87.0±0.1/81.0±0.6

CCA 89.9±0.1/81.0±0.5 89.1±0.1/81.9±0.1 84.6±0.3/80.2±0.4 85.3±0.3/79.2±0.4

Rank 88.5±0.7/68.2±1.6 88.7±0.1/80.9±0.5 83.6±0.2/74.5±0.6 85.3±0.5/74.9±0.9

Or-Ra 89.2±0.3/75.9±0.8 89.4±0.0/80.8±0.6 81.0±0.8/78.3±1.3 86.3±0.2/76.2±0.7

Avg. 89.1/76.8 86.2/79.3 84.3/78.5 80.0/77.0

B,A

MSE

95.1/94.7

91.2±0.1/86.0±0.9 87.6±0.1/87.2±0.2

91.6/91.1

86.6±0.1/86.4±1.0 83.9±0.3/86.4±0.1

Orto 90.3±0.1/87.4±0.1 88.9±0.1/86.7±0.2 80.7±2.8/85.7±1.1 88.1±0.2/86.9±0.2

CCA 90.0±0.2/86.2±0.5 88.9±0.2/87.2±0.1 84.9±0.3/87.3±0.1 87.2±0.1/82.5±0.5

Rank 90.5±0.2/85.3±0.4 89.0±0.1/87.8±0.2 83.8±1.2/86.5±0.2 86.5±0.2/86.4±0.1

Or-Ra 90.6±0.1/87.2±0.2 89.6±0.1/86.8±0.2 82.9±1.3/86.2±0.3 88.0±0.2/86.1±0.5

Avg. 90.5/86.4 88.8/87.1 83.8/86.4 86.7/85.7

LSTM

-

MSE

96.4/95.7

84.9±1.2/86.0±1.5 85.6±1.4/67.2±0.9

92.5/90.7

86.9±0.5/83.2±2.4 79.3±2.6/78.4±1.1

Orto 91.5±0.5/79.4±2.8 88.8±1.0/86.3±1.2 82.7±3.4/86.1±1.4 88.2±0.8/83.4±3.3

CCA 91.9±0.2/76.7±9.2 90.7±0.4/86.6±0.9 85.2±0.9/82.2±0.2 88.9±0.4/85.1±0.9

Rank 89.7±1.6/84.5±4.2 88.7±1.3/84.8±1.6 62.3±6.6/83.1±2.2 88.6±0.7/87.3±1.4

Or-Ra 90.6±1.1/79.2±4.1 90.2±1.3/87.9±1.0 79.4±4.4/80.8±3.2 88.5±0.2/83.3±0.4

Avg. 89.7/81.2 88.8/82.6 79.3/83.1 86.7/83.5

B,A

MSE

96.4/95.9

91.4±0.9/87.4±2.8 89.3±0.7/88.2±1.1

92.6/91.5

88.3±0.7/88.3±0.9 88.3±0.6/88.6±0.5

Orto 92.1±0.3/89.1±1.4 86.7±4.4/88.6±1.3 89.1±0.5/86.8±0.3 89.4±0.4/87.2±3.3

CCA 91.6±0.7/85.8±2.7 87.4±1.8/86.0±5.5 88.4±1.5/88.4±0.7 90.1±0.5/83.7±3.2

Rank 89.6±1.4/83.6±1.2 89.3±1.5/87.0±3.8 79.9±3.6/86.2±1.1 89.4±0.3/87.3±1.1

Or-Ra 91.1±0.7/84.0±4.7 89.3±2.0/87.8±1.5 82.3±3.4/78.1±5.7 89.5±0.4/83.2±4.5

Avg. 91.2/86.0 88.4/87.5 81.2/88.4 89.3/86.0

Table A.12: Cross-lingual accuracy results for linear transformations obtained on the binary
IMDB-Allocine (English-French) dataset pair. Normalization was applied before and after
the transformation.
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A. Appendix

Evaluated on French Evaluated on English

Norm. Method Monoling.
EN-s⇒FR-t FR-t⇒EN-s

Monoling.
FR-s⇒EN-t EN-t⇒FR-s

in-domain/fastText in-domain/fastText in-domain/fastText in-domain/fastText

CNN

-

MSE

95.0/94.3

86.7±0.9/67.9±1.4 84.5±0.2/68.4±0.6

84.4/83.7

79.6±0.2/79.2±0.3 50.8±0.6/72.8±1.4

Orto 87.1±1.0/76.5±1.0 82.4±2.7/77.9±1.4 78.9±0.4/80.0±0.3 80.1±0.4/79.5±0.3

CCA 87.8±0.1/61.7±1.4 84.2±0.6/66.4±0.7 77.7±0.3/78.9±0.3 79.2±0.4/78.2±0.3

Rank 86.5±1.3/71.4±1.6 82.9±0.9/78.6±0.8 75.4±0.9/74.4±1.1 82.0±0.3/77.8±0.7

Or-Ra 87.4±1.0/79.0±0.5 85.9±1.5/79.3±0.6 73.4±1.0/77.8±0.6 81.1±0.6/77.1±0.7

Avg. 87.1/71.3 84.0/74.1 77.0/78.1 74.6/77.1

B

MSE

95.1/94.7

89.6±0.2/86.7±0.2 86.7±0.6/82.6±1.4

84.6/85.4

79.8±0.2/80.9±0.2 77.0±1.1/77.8±0.3

Orto 89.1±0.3/81.6±2.1 86.3±0.3/84.4±0.2 79.4±0.2/80.0±0.1 80.3±0.2/79.6±0.3

CCA 89.0±0.1/86.1±0.4 86.2±0.5/84.8±0.1 80.3±0.3/79.7±0.3 79.3±0.2/79.6±0.2

Rank 89.3±0.1/86.4±0.2 85.8±0.3/83.6±0.3 80.5±0.2/79.0±0.3 81.2±0.1/78.5±0.5

Or-Ra 88.2±1.0/81.5±1.2 86.1±1.1/84.1±1.2 79.7±0.4/79.4±0.4 81.7±0.2/78.3±0.2

Avg. 89.0/84.5 86.2/83.9 79.9/79.8 79.9/78.8

LSTM

-

MSE

96.4/95.7

80.0±3.3/79.8±0.8 83.1±1.0/68.1±1.9

85.3/84.3

79.2±0.8/78.7±0.8 76.3±1.7/76.6±0.7

Orto 87.6±0.5/71.9±1.0 84.8±3.7/78.1±2.2 79.8±1.5/81.2±0.7 81.8±0.4/78.9±0.3

CCA 87.0±0.4/76.4±0.5 85.3±1.0/77.0±4.8 79.9±0.4/78.6±0.6 81.8±0.7/79.0±1.5

Rank 86.5±1.1/73.1±0.9 84.2±0.5/81.7±0.7 69.8±2.3/77.4±0.2 82.5±0.4/79.0±0.4

Or-Ra 85.8±1.8/77.5±1.8 85.6±0.8/76.5±0.5 74.7±3.3/79.8±1.0 82.1±0.4/79.6±0.5

Avg. 85.4/75.7 84.6/76.3 76.7/79.1 80.9/78.6

B

MSE

96.4/95.9

83.8±1.4/80.4±1.3 81.4±2.3/78.0±4.6

84.5/85.9

79.4±0.7/81.0±0.6 80.3±2.4/78.0±3.4

Orto 86.8±0.4/81.2±1.2 86.0±0.8/82.6±2.8 81.1±1.2/83.0±0.5 82.6±0.8/81.9±0.8

CCA 86.2±0.3/78.1±1.1 83.6±1.6/83.3±0.7 82.0±0.5/82.4±0.6 82.7±0.8/81.5±1.0

Rank 84.4±4.2/81.8±2.8 85.3±1.1/82.2±1.2 79.6±0.9/78.9±2.8 82.4±0.5/79.1±1.5

Or-Ra 85.3±1.0/78.5±2.6 82.2±1.2/80.7±0.9 80.4±0.9/80.8±1.2 82.0±0.4/79.4±0.5

Avg. 85.3/80.0 83.7/81.4 80.5/81.2 82.0/80.0

Table A.13: Cross-lingual accuracy results for linear transformations obtained on the bi-
nary SST-Allocine (English-French) dataset pair. Normalization was applied only before the
transformation.
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A.2. Complete Cross-lingual Results for Linear Transformations

Evaluated on French Evaluated on English

Norm. Method Monoling.
EN-s⇒FR-t FR-t⇒EN-s

Monoling.
FR-s⇒EN-t EN-t⇒FR-s

in-domain/fastText in-domain/fastText in-domain/fastText in-domain/fastText

CNN

-

MSE

95.0/94.3

86.7±0.9/67.9±1.4 84.5±0.2/68.4±0.6

84.4/83.7

79.6±0.2/79.2±0.3 50.8±0.6/72.8±1.4

Orto 87.1±1.0/76.5±1.0 82.4±2.7/77.9±1.4 78.9±0.4/80.0±0.3 80.1±0.4/79.5±0.3

CCA 87.8±0.1/61.7±1.4 84.2±0.6/66.4±0.7 77.7±0.3/78.9±0.3 79.2±0.4/78.2±0.3

Rank 86.5±1.3/71.4±1.6 82.9±0.9/78.6±0.8 75.4±0.9/74.4±1.1 82.0±0.3/77.8±0.7

Or-Ra 87.4±1.0/79.0±0.5 85.9±1.5/79.3±0.6 73.4±1.0/77.8±0.6 81.1±0.6/77.1±0.7

Avg. 87.1/71.3 84.0/74.1 77.0/78.1 74.6/77.1

B,A

MSE

95.1/94.7

89.2±0.2/84.3±1.4 87.2±0.2/85.6±0.4

84.6/85.4

79.6±0.2/80.5±0.2 80.8±0.2/80.5±0.1

Orto 89.4±0.2/86.8±0.2 85.8±0.5/85.2±0.2 79.0±0.1/80.6±0.4 80.8±0.3/80.5±0.2

CCA 88.7±0.6/85.1±0.9 86.3±0.2/83.2±0.4 80.0±0.3/80.5±0.3 79.9±0.3/80.6±0.1

Rank 89.3±0.2/86.1±0.4 84.3±0.3/84.5±0.3 79.7±0.5/79.8±0.2 81.5±0.3/79.3±0.3

Or-Ra 89.6±0.2/85.5±0.6 85.5±0.5/83.8±0.4 79.2±0.3/80.4±0.3 81.7±0.3/80.1±0.2

Avg. 89.2/85.6 85.8/84.5 79.5/80.4 80.9/80.2

LSTM

-

MSE

96.4/95.7

80.0±3.3/79.8±0.8 83.1±1.0/68.1±1.9

85.3/84.3

79.2±0.8/78.7±0.8 76.3±1.7/76.6±0.7

Orto 87.6±0.5/71.9±1.0 84.8±3.7/78.1±2.2 79.8±1.5/81.2±0.7 81.8±0.4/78.9±0.3

CCA 87.0±0.4/76.4±0.5 85.3±1.0/77.0±4.8 79.9±0.4/78.6±0.6 81.8±0.7/79.0±1.5

Rank 86.5±1.1/73.1±0.9 84.2±0.5/81.7±0.7 69.8±2.3/77.4±0.2 82.5±0.4/79.0±0.4

Or-Ra 85.8±1.8/77.5±1.8 85.6±0.8/76.5±0.5 74.7±3.3/79.8±1.0 82.1±0.4/79.6±0.5

Avg. 85.4/75.7 84.6/76.3 76.7/79.1 80.9/78.6

B,A

MSE

96.4/95.9

86.1±0.6/80.6±2.4 84.5±1.2/78.8±2.5

84.5/85.9

81.5±0.7/81.6±0.6 82.5±0.3/80.2±0.3

Orto 86.3±0.6/80.6±3.0 83.9±2.6/79.8±1.8 81.4±0.7/81.0±1.0 82.6±0.8/80.7±1.1

CCA 86.7±0.9/84.0±0.9 84.3±1.2/82.5±1.6 80.6±0.9/81.9±0.9 81.9±0.9/82.5±1.0

Rank 85.9±0.5/83.0±0.1 83.6±0.5/82.3±1.5 82.2±0.7/82.1±0.6 82.0±0.7/83.0±0.8

Or-Ra 85.9±1.1/78.9±4.5 82.4±2.7/81.0±2.5 77.7±1.8/80.2±1.4 82.3±0.5/78.0±1.0

Avg. 86.2/81.4 83.7/80.9 80.7/81.4 82.3/80.9

Table A.14: Cross-lingual accuracy results for linear transformations obtained on the binary
SST-Allocine (English-French) dataset pair. Normalization was applied before and after the
transformation.
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Evaluated on Czech Evaluated on French

Norm. Method Monoling.
FR-s⇒CS-t CS-t⇒FR-s

Monoling.
CS-s⇒FR-t FR-t⇒CS-s

in-domain/fastText in-domain/fastText in-domain/fastText in-domain/fastText

CNN

-

MSE

93.9/91.5

85.4±0.1/76.0±0.4 56.0±1.8/68.5±2.9

95.0/94.3

75.8±0.9/65.3±0.7 58.4±2.5/70.1±1.5

Orto 86.0±0.2/78.1±0.4 86.3±0.2/78.5±0.3 84.6±0.2/80.8±0.2 84.0±0.3/78.4±0.5

CCA 83.7±0.3/75.9±0.4 83.9±0.2/72.5±0.4 84.7±0.3/79.8±0.3 76.9±0.5/73.7±0.5

Rank 81.7±0.9/75.1±1.1 86.2±0.3/68.8±0.4 82.7±0.5/77.0±0.8 84.7±0.1/71.6±0.8

Or-Ra 82.7±0.7/72.6±1.4 87.0±0.2/75.1±0.1 83.7±0.7/74.9±1.3 85.3±0.2/80.3±0.2

Avg. 83.9/75.5 79.9/72.7 82.3/75.6 77.9/74.8

B

MSE

93.4/92.6

86.0±0.2/81.4±0.6 82.2±0.9/79.2±0.6

95.1/94.7

81.2±1.1/81.4±0.7 85.4±0.1/83.7±0.2

Orto 85.4±0.2/76.8±0.9 85.6±0.3/82.4±0.8 84.5±0.9/77.9±0.7 84.9±0.6/74.4±1.6

CCA 84.8±0.1/80.2±0.4 83.7±0.9/68.5±1.8 84.6±0.4/84.0±0.4 77.3±2.0/58.8±1.0

Rank 84.7±0.2/81.6±0.4 86.5±0.1/81.8±0.1 86.1±0.6/80.6±1.4 84.4±0.3/73.3±0.8

Or-Ra 83.2±0.4/83.0±0.3 86.8±0.2/75.2±0.7 83.8±1.5/73.4±2.8 84.1±1.1/80.2±0.3

Avg. 84.8/80.6 85.0/77.4 84.0/79.5 83.2/74.1

LSTM

-

MSE

94.4/92.1

85.6±0.6/82.9±0.7 84.8±2.4/74.5±3.6

96.4/95.7

81.8±1.9/76.6±1.7 60.6±2.6/67.7±4.0

Orto 87.6±0.5/80.3±0.6 88.0±0.7/81.5±0.6 73.2±0.9/76.0±4.4 73.5±1.2/71.7±2.9

CCA 87.4±0.4/79.3±1.1 87.3±0.5/79.3±0.9 80.0±0.4/81.7±1.0 69.1±1.1/75.8±1.2

Rank 80.0±3.6/82.7±0.7 87.8±0.4/76.3±0.4 72.8±5.0/74.9±3.4 85.4±0.8/78.5±0.9

Or-Ra 85.2±0.7/79.4±0.8 87.6±0.6/81.0±0.8 81.6±5.5/77.6±2.9 85.8±1.0/84.4±0.6

Avg. 85.2/80.9 87.1/78.5 77.9/77.4 74.9/75.6

B

MSE

93.9/92.6

86.1±0.8/84.6±0.5 85.4±0.8/78.8±2.3

96.4/95.9

84.6±0.6/74.7±2.1 63.0±5.7/56.3±2.4

Orto 86.9±0.4/83.4±1.1 88.2±0.8/81.5±1.4 76.3±1.4/83.9±2.3 69.2±3.3/80.7±3.6

CCA 86.2±0.8/84.4±0.7 87.5±1.2/81.1±2.0 85.2±1.8/80.0±3.0 76.1±3.5/77.2±2.1

Rank 87.9±0.4/83.2±1.9 88.7±0.3/83.5±1.0 77.8±4.5/64.9±3.6 84.7±1.0/82.9±1.3

Or-Ra 87.0±0.6/84.3±1.6 87.7±0.9/80.7±2.3 82.4±3.1/72.1±2.3 85.6±1.3/84.1±1.3

Avg. 86.8/84.0 87.5/81.1 81.3/75.1 75.7/76.2

Table A.15: Cross-lingual accuracy results for linear transformations obtained on the binary
CSFD-Allocine (Czech-French) dataset pair. Normalization was applied only before the
transformation.
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A.2. Complete Cross-lingual Results for Linear Transformations

Evaluated on Czech Evaluated on French

Norm. Method Monoling.
FR-s⇒CS-t CS-t⇒FR-s

Monoling.
CS-s⇒FR-t FR-t⇒CS-s

in-domain/fastText in-domain/fastText in-domain/fastText in-domain/fastText

CNN

-

MSE

93.9/91.5

85.4±0.1/76.0±0.4 56.0±1.8/68.5±2.9

95.0/94.3

75.8±0.9/65.3±0.7 58.4±2.5/70.1±1.5

Orto 86.0±0.2/78.1±0.4 86.3±0.2/78.5±0.3 84.6±0.2/80.8±0.2 84.0±0.3/78.4±0.5

CCA 83.7±0.3/75.9±0.4 83.9±0.2/72.5±0.4 84.7±0.3/79.8±0.3 76.9±0.5/73.7±0.5

Rank 81.7±0.9/75.1±1.1 86.2±0.3/68.8±0.4 82.7±0.5/77.0±0.8 84.7±0.1/71.6±0.8

Or-Ra 82.7±0.7/72.6±1.4 87.0±0.2/75.1±0.1 83.7±0.7/74.9±1.3 85.3±0.2/80.3±0.2

Avg. 83.9/75.5 79.9/72.7 82.3/75.6 77.9/74.8

B,A

MSE

93.4/92.6

84.8±0.2/82.5±0.0 84.8±0.1/84.2±0.1

95.1/94.7

85.1±1.1/83.6±0.4 83.3±0.7/79.9±1.5

Orto 85.2±0.1/83.4±0.1 84.5±0.3/82.8±0.1 85.6±0.8/83.9±0.7 85.7±1.5/75.4±2.7

CCA 85.2±0.1/82.9±0.2 83.2±0.2/82.8±0.1 85.9±0.8/80.9±3.2 82.7±0.6/81.3±1.1

Rank 85.6±0.1/83.9±0.1 86.4±0.2/81.6±0.1 85.4±1.3/80.5±1.4 84.1±1.0/78.6±1.0

Or-Ra 85.0±0.2/83.9±0.2 86.4±0.2/81.4±0.3 83.2±1.6/83.3±0.3 84.6±0.7/77.2±2.2

Avg. 85.2/83.3 85.1/82.6 85.0/82.4 84.1/78.5

LSTM

-

MSE

94.4/92.1

85.6±0.6/82.9±0.7 84.8±2.4/74.5±3.6

96.4/95.7

81.8±1.9/76.6±1.7 60.6±2.6/67.7±4.0

Orto 87.6±0.5/80.3±0.6 88.0±0.7/81.5±0.6 73.2±0.9/76.0±4.4 73.5±1.2/71.7±2.9

CCA 87.4±0.4/79.3±1.1 87.3±0.5/79.3±0.9 80.0±0.4/81.7±1.0 69.1±1.1/75.8±1.2

Rank 80.0±3.6/82.7±0.7 87.8±0.4/76.3±0.4 72.8±5.0/74.9±3.4 85.4±0.8/78.5±0.9

Or-Ra 85.2±0.7/79.4±0.8 87.6±0.6/81.0±0.8 81.6±5.5/77.6±2.9 85.8±1.0/84.4±0.6

Avg. 85.2/80.9 87.1/78.5 77.9/77.4 74.9/75.6

B,A

MSE

93.9/92.6

86.6±2.1/83.4±1.4 88.9±0.2/85.1±0.7

96.4/95.9

83.0±3.5/71.4±5.6 77.1±3.0/83.0±2.1

Orto 88.2±0.8/84.1±0.6 87.4±1.1/84.8±0.7 77.6±2.8/76.3±4.3 82.7±1.9/83.1±1.8

CCA 87.9±0.5/84.6±1.3 87.1±0.5/84.8±0.5 83.9±1.8/76.2±2.8 76.4±2.1/76.4±4.0

Rank 88.2±0.4/81.6±2.4 87.8±0.6/84.3±0.5 81.6±3.0/72.2±8.0 83.5±1.9/83.1±1.9

Or-Ra 86.3±0.7/85.2±0.8 87.9±0.5/85.2±1.1 77.8±2.5/82.8±3.0 82.9±0.8/79.2±3.0

Avg. 87.4/83.8 87.8/84.8 80.8/75.8 80.5/81.0

Table A.16: Cross-lingual accuracy results for linear transformations obtained on the binary
CSFD-Allocine (Czech-French) dataset pair. Normalization was applied before and after the
transformation.
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A.3 Czech Monolingual Results and
Hyper-parameters

For fine-tuning of the Transformer-based models in Chapter 8 in Section 8.1, we use the
same modification (Loshchilov & Hutter, 2017) of the Adam (Kingma & Ba, 2015) optimizer
with default weight decay set to 1e-2. We use different learning rates and a number of epochs
for each combination of themodels and datasets, see Table A.17.We use either constant linear
rate or linear learning rate decay without learning rate warm-up. We use default values of
all other hyper-parameters.

Model
3 Classes 2 Classes

CSFD FB Mallcz CSFD FB Mallcz

Log. reg. (ours) 79.6 67.9 76.7 91.4 88.1 89.0
LSTM (ours) 79.9±0.2 (5e-4 / 2)* 72.9±0.5 (5e-4 / 5)* 73.4±0.1 (5e-4 / 10) ‡ 91.8±0.1 (5e-4 / 2)* 90.1±0.2 (5e-4 / 5)* 88.0±0.2 (5e-4 / 2)‡

Czert-A 79.9±0.6 (2e-6 / 8) 73.1±0.6 (2e-5 / 8) 76.8±0.4 (2e-5 / 12) 91.8±0.8 (2e-5 / 8) 91.3±0.2 (2e-5 / 15)† 91.2±0.3 (2e-5 / 14)

Czert-B 84.9±0.1 (2e-5 / 12) 76.9±0.4 (2e-6 / 5)† 79.4±0.2 (2e-5 / 15) 94.4±0.1 (2e-5 / 15) 94.0±0.3 (2e-5 / 2) 92.9±0.2 (2e-5 / 15)

mBERT 82.9±0.1 (2e-6 / 13) 71.6±0.1 (2e-6 / 13)† 70.8±5.7 (2e-5 / 10) 93.1±0.3 (2e-6 / 14)† 88.8±0.4 (2e-5 / 8) 72.8±3.1 (2e-5 / 1)

SlavicBERT 82.6±0.1 (2e-6 / 12) 73.9±0.5 (2e-5 / 4) 75.3±2.5 (2e-5 / 10) 93.5±0.3 (2e-6 / 15)† 89.8±0.4 (2e-5 / 9)† 91.0±0.2 (2e-6 / 14)†
RandomALBERT 75.8±0.2 (2e-6 / 14) 62.5±0.5 (2e-6 / 14)† 64.8±0.3 (2e-6 / 15)† 90.0±0.2 (2e-6 / 14)† 81.7±0.6 (2e-6 / 15)† 85.4±0.1 (2e-6 / 14)†
XLM-RBase 85.0±0.1 (2e-6 / 15)† 77.8±0.5 (2e-6 / 7)† 75.4±0.1 (2e-6 / 15)† 94.3±0.3 (2e-6 /14) † 93.3±0.7 (2e-6 / 5)† 92.6±0.1 (2e-6 / 12)†
XLM-RLarge 87.2±0.1 (2e-6 / 11 ) 81.7±0.6 (2e-6 / 5)† 79.8±0.2 (2e-6 / 24)† 96.0±0.0 (2e-6 / 14)† 96.1±0.0 (2e-6 / 15) 94.4±0.0 (2e-6 / 15)†
XLM 83.8±0.1 (2e-5 / 11) 71.5±1.6 (2e-6 / 9)† 77.6±0.1 (2e-6 / 14)† 93.9±0.2 (2e-5 / 5) 89.9±0.3 (2e-6 / 15)† 92.0±0.2 (2e-6 / 16)†

Table A.17: The final monolingual results as macro 𝐹1 score and hyper-parameters for all
threeCzech polarity datasets on two and three classes. For experimentswith neural networks
performed by us, we present the results with a 95% confidence interval. For each result, we
state the used learning rate and the number of epochs used for the training. The † symbol
denotes that the result was obtained with a constant learning rate, ∗ denotes the cosine
learning rate decay, ‡ denotes exponential learning rate decay; otherwise, the linear learning
rate decay was used.
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Figure A.1: Subword token histograms for the CSFD and Mallcz datasets for the Czert-B
model.
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A.4. Details and Hyper-parameters of Subjectivity Experiments
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(a) CSFD – XLM-RBase and XLM-RLarge
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Figure A.2: Subword token histograms for the CSFD and Mallcz datasets for the XLM-RBase
and XLM-RLarge models.
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Figure A.3: Subword token histograms for the CSFD and Mallcz datasets for the mBERT
model.

A.4 Details and Hyper-parameters of Subjectivity
Experiments

Wefine-tune all parameters of themodel, including the added classification layers.We run the
experiments for at most ten epochs with the linear learning rate decay (without learning rate
warm-up) with the initial learning rates ranging from 2e-7 to 2e-4. The 2e-4 learning rate
was used only for the Czech Electra model, when used with other models, the models started
to diverge. The batch size is set to 32 and the max sequence length of the input is 200 since
we classify sentences and the vast majority of them fit into this length. During fine-tuning,
we tried a variety of hyper-parameters, we use the Adam (Kingma & Ba, 2015) optimizer with
default parameters (𝛽1 = 0.9, 𝛽2 = 0.999) and the cross-entropy loss function. We randomly
shuffle training data before each epoch. In Tables A.18, A.21, A.22, A.19 and A.20 we report
results with the used initial learning rate and a number of epochs in parentheses. The first
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number in brackets is the initial learning rate and the second is the number of epochs for
fine-tuning.

Model
Subj-CS (cs-train) Subj-CS-L (cs-L-train)

cs-test cs-test

Czech Electra 91.9 ± 0.3 (2e-4 / 4) 91.2 ± 0.1 (2e-5 / 7)

Czert-B 92.9 ± 0.2 (2e-5 / 3) 91.8 ± 0.1* (2e-6 / 7)
RobeCzech 93.3 ± 0.2* (2e-5 / 7) 91.6 ± 0.1 (2e-6 / 2)

mBERT 91.2 ± 0.2 (2e-5 / 3) 91.1 ± 0.1 (2e-6 / 5)

XLM-RLarge 93.6 ± 0.1 (2e-5 / 4) 92.0 ± 0.1 (2e-6 / 9)

Table A.18: Results with model hyper-parameters for Czech monolingual experiments re-
ported as average accuracy for the testing cs-test data part. The * symbol denotes results
containing intersection in confidence interval with the best model.

Model
CS→ EN (cs-train) CS→ EN (cs-L-train) Monolingual (en-train)

cs-dev en-test en-dev en-test en-test

mBERT 92.1 ± 0.4 89.0 ± 0.9 (2e-5 / 3) 85.8 ± 0.9 85.5 ± 0.9 (2e-6 / 1) 95.9 ± 0.1 (2e-5 / 10)
XLM-RLarge 94.4 ± 0.4 92.9 ± 0.4 (2e-5 / 4) 93.4 ± 0.2 91.0 ± 0.3 (2e-7 / 1) 97.3 ± 0.1 (2e-6 / 10)

Table A.19: Accuracy results with model hyper-parameters for cross-lingual experiments
from Czech to English along with the results for models trained on monolingual data.

Model en-test en-10-fold

BERT 96.6 ± 0.2 (2e-5 / 3) 96.9 ± 0.3 (2e-5 / 9)
mBERT 95.9 ± 0.1 (2e-5 / 10) 96.0 ± 0.2 (2e-5 / 5)
XLM-RLarge 97.3 ± 0.1 (2e-6 / 10) 97.3 ± 0.2 (2e-5 / 4)

Table A.21: Results with model hyper-parameters for English monolingual experiments re-
ported as average accuracy for the testing en-test and en-10-fold data parts.

Model
EN→ CS Monoling. (cs-train)

en-dev cs-test cs-test

mBERT 95.4 ± 0.2 86.2 ± 0.3 (2e-5 / 10) 91.2 ± 0.2 (2e-5 / 3)
XLM-RLarge 97.6 ± 0.2 90.8 ± 0.3 (2e-6 / 10) 93.6 ± 0.1 (2e-5 / 4)

Table A.22: Accuracy results with model hyper-parameters for cross-lingual experiments
from English to Czech along with the results for models trained on monolingual data.
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Joint (cs-train + en-train) Monolingual (cs-train) Monolingual (en-train)
Model cs-test en-test cs-test en-test

mBERT 91.1 ± 0.2 95.7 ± 0.2 (2e-5 / 3) 91.2 ± 0.2 (2e-5 / 3) 95.9 ± 0.1 (2e-5 / 10)
XLM-RLarge 93.9 ± 0.2 96.9 ± 0.1 (2e-6 / 10) 93.6 ± 0.1 (2e-5 / 4) 97.3 ± 0.1 (2e-6 / 10)

Table A.20: Accuracy results with hyper-parameters for models jointly trained on English
and Czech data along with the results for models trained on monolingual data.

A.5 Prompts for Binary Classification
Figures A.4, A.5 and A.6 show examples of prompts for the following review: “The movie was
fantastic!!!”.

Basic prompt for binary classification

You are a sentiment classifier, classify the following review as “positive” or “negative”.
Answer in one word only.

The review:

The movie was fantastic!!!

Figure A.4: Example of the basic prompt for binary classification.
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Advanced prompt for binary classification

You are a Movie and TV Show Review Sentiment Analyzer. You will be given a text of a movie or TV
show review, please analyze its content and determine the most appropriate category from the following
list. The categories are divided based on the type of sentiment:

Category 1 - positive: Includes reviews that are satisfied with the movie or TV show.
Category 2 - negative: Includes reviews that are dissatisfied with the movie or TV show.
The text for analysis will be marked with four slashes, i.e., ////.

Step 1:#### Judge the overall mood of the text and determine which category the text most
likely belongs to.
Step 2:#### Focus more closely on the keywords used in the text. Check if the keywords suggest a
specific category. For instance, if the text extensively praises the movie or TV show, you should choose
“Positive”. If the text criticizes the movie or TV show, choose “Negative”.
Step 3:#### Determine the final category based on the highest probability.

Use the following format:
Step 1:#### <rationale for Step 1>
Step 2:#### <rationale for Step 2>
Step 3:#### <rationale for Step 3>

User’s answer:#### <the evaluated sentiment itself>

Ensure that you are inserting #### to separate each step.

////The movie was fantastic!!!////

Figure A.5: Example of the advanced prompt for binary classification.

In-context prompt for binary classification

You are a sentiment classifier. You will be given a review, please classify the review as “positive” or
“negative”. Answer in one word only. As an example, you will obtain examples of the reviews and the
desired output.

The examples:
Review:“An opportunity missed.” sentiment:negative
Review:“The most consistently funny of the Austin Powers films.” sentiment:positive
Review:“Very good movie from my favourite director.” sentiment:positive
Review:“Even as I valiantly struggled to remain interested, or at least conscious”:negative

Ensure that the output is only one word, i.e., one of the sentiment classes.

The review:

The movie was fantastic!!!

Figure A.6: Example of the in-context prompt for binary classification.
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A.6 Examples of LLMs Outputs
We provide examples of ChatGPT and Llama 2 model’s outputs for the advanced prompt in
Figures A.7, A.8, A.9, A.10, A.11 and A.12.

Review: A masterpiece four years in the making.
Label: positive

Model output:

Step 1:####
Based on the given text, it seems to express a
positive sentiment towards the movie or TV
show.

Step 2:####
The text includes the phrase "A masterpiece four
years in the making," which suggests a highly
positive sentiment towards the movie or TV
show.

Step 3:####
Considering the positive sentiment expressed in
the text, the final category is "Positive."

User’s answer:#### Positive

(a) ChatGPT output.

Review: A masterpiece four years in the making.
Label: positive

Model output:

Step 1:#### The overall mood of the text is very
positive, suggesting a high level of satisfaction
and admiration for the movie or TV show.

Step 2:#### Keywords such as "masterpiece"
and "four years in the making" imply a sense
of accomplishment and dedication, further
reinforcing the positive tone.

Step 3:#### Based on the strong language used in
the text, it is likely that the reviewer has nothing
but praise for the movie or TV show, making the
final category "Positive."

User’s answer:#### Positive

(b) Llama 2 output.

Figure A.7: Example of LLMs outputs for the advanced prompt for English review annotated
as positive.
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Review: This film, starring Anthony Hopkins and
Chris Rock, is your typical ’fish out of water’ story.
Label: neutral

Model output:

Step 1:#### In Step 1, the overall mood of the text
seems to be neutral. The reviewer describes the
movie as a typical "fish out of water" story, which
suggests a mixed or indifferent sentiment.
Step 2:#### In Step 2, the keywords used in the
text do not strongly suggest a specific sentiment.
The description of the film as a "typical ’fish out
of water’ story" can be interpreted as neither
positive nor negative.
Step 3:#### Based on the analysis in Step 1 and
Step 2, the final category for this review is neutral.
The text does not express a clear positive or
negative sentiment, indicating a neutral response
to the movie.

User’s answer:#### Neutral

(a) ChatGPT output.

Review: This film, starring Anthony Hopkins and
Chris Rock, is your typical ’fish out of water’ story.
Label: neutral

Model output:

Step 1:#### The overall mood of the text seems to
be neutral, as it describes the movie as a "typical"
fish-out-of-water story without expressing any
strong emotions or opinions.

Step 2:#### Upon closer inspection, the
use of the phrase "fish out of water" suggests a
lighthearted and comedic tone, which points to-
wards a Positive category. However, the fact that
the review doesn’t provide any specific details or
examples that support this categorization leaves
some room for doubt.

Step 3:#### Considering the lack of con-
crete evidence leaning towards either side, I
would classify this review as Neutral.

User’s answer:#### Neutral

(b) Llama 2 output.

Figure A.8: Example of LLMs outputs for the advanced prompt for English review annotated
as neutral.
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Review: Efekty mluví za sebe a příběch? Nic
takového se zde nevyskytuje!
Translation (en): The effects speak for themselves
and the story? There is nothing like that here!
Label: negative

Model output:

Step 1: The text contains negative words such as
"Nic takového se zde nevyskytuje" (Nothing like
that is here) which suggest a negative sentiment.
Step 2: The keywords used in the text indicate
dissatisfaction with the movie or TV show, as the
text mentions that the effects are not impressive
and there is no interesting story.
Step 3: Based on the negative sentiment expressed
in the text, the most appropriate category is
Category 3 - negative.

User’s answer: Category 3 - negative

(a) ChatGPT output.

Review: Efekty mluví za sebe a příběch? Nic
takového se zde nevyskytuje!
Translation (en): The effects speak for themselves
and the story? There is nothing like that here!
Label: negative

Model output:

Step 1:#### The overall mood of the text is
negative.

Step 2:#### The reviewer uses phrases such as
"Efekty mluví za sebe" (effects speak for them-
selves) and "nic takového se zde nevyskytuje"
(nothing like this can be found here), indicating
disappointment and frustration with the lack of
substance in the storytelling.

Step 3:#### Based on the language used, it
appears that the reviewer was expecting a more
engaging and meaningful experience but was
left unsatisfied. Therefore, the final category is
Negative.

User’s answer:#### Negative

(b) Llama 2 output.

Figure A.9: Example of LLMs outputs for the advanced prompt for Czech review annotated
as negative.
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Review: I po letech aktuální sonda do hamburg-
erového světa - zábavné, pravdivé a děsivé.
Translation (en): A timely probe into the ham-
burger world, even after all these years - funny, true
and scary.
Label: positive

Model output:

Step 1: The overall mood of the text seems to be
positive because the review mentions that the
movie is "zábavné" (fun) and "pravdivé" (truthful).

Step 2: The review uses positive words such
as "zábavné" (fun), "pravdivé" (truthful), and
"hamburgerového světa" (hamburger world) to
describe the movie.

Step 3: Based on the positive words used in the
review, the final category is "positive".

User’s answer: Positive

(a) ChatGPT output.

Review: I po letech aktuální sonda do hamburg-
erového světa - zábavné, pravdivé a děsivé.
Translation (en): A timely probe into the ham-
burger world, even after all these years - funny, true
and scary.
Label: positive

Model output:

Step 1:#### The overall mood of the text is
positive. The reviewer uses words like "zábavné"
(fun), "pravdivé" (true), and "děsivé" (scary) to
describe their experience, indicating that they
enjoyed the movie or TV show.

Step 2:#### The keywords used in the text,
such as "zábavné" and "pravdivé", suggest a
positive category. However, the presence of the
word "děsivé" could also indicate some negative
elements in the movie or TV show.

Step 3:#### Based on the highest probability,
the final category is Positive. The reviewer’s use
of positive adjectives outweighs the potential
negative connotations of the word "děsivé",
suggesting that they generally had a positive
experience with the movie or TV show.

User’s answer:#### Positive

(b) Llama 2 output.

Figure A.10: Example of LLMs outputs for the advanced prompt for Czech review annotated
as positive.
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Review: Un scénario béton...avec pleins de re-
bondissements...un film à voir absolument.
Translation (en): A solid script...with lots of twists
and turns...a must-see film.
Label: positive

Model output:

Step 1:#### The text expresses positive senti-
ments towards the movie.
Step 2:#### The keywords used in the text such
as "scénario béton" (solid screenplay), "pleins de
rebondissements" (lots of twists), and "un film
à voir absolument" (a movie to absolutely see)
suggest positive sentiments.
Step 3:#### Based on the positive overall mood
and the keywords used, the final category is
positive.

User’s answer:#### Positive

(a) ChatGPT output.

Review: Un scénario béton...avec pleins de re-
bondissements...un film à voir absolument.
Translation (en): A solid script...with lots of twists
and turns...a must-see film.
Label: positive

Model output:

Step 1:#### The overall mood of the text is posi-
tive. The use of the phrase "à voir absolument" (a
must-see) suggests that the reviewer has a strong
positive opinion of the movie.

Step 2:#### The keywords used in the text, such
as "scénario béton" (concrete scenario) and "pleins
de rebondissements" (lots of twists), imply that
the reviewer enjoyed the movie’s storyline and
found it engaging.

Step 3:#### Based on the positive language used
in the text and the emphasis on the movie’s
entertainment value, it is likely that the reviewer
would give the movie a positive rating.

User’s answer:#### Positive

(b) Llama 2 output.

Figure A.11: Example of LLMs outputs for the advanced prompt for French review annotated
as positive.
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Review: Humour potache façon teenage movie,
scènes de baston/hip hop pas crédibles, personnages
creux. Aucun interêt.
Translation (en): Teenage-movie-style humor, im-
plausible fight/hip hop scenes, hollow characters. No
interest whatsoever.
Label: negative

Model output:

Step 1:#### The overall mood of the text seems
to be negative. The reviewer mentions that the
humor is puerile, the fight scenes and hip hop
scenes are not believable, and the characters are
shallow. They also state that there is no interest
in the movie.
Step 2:#### The keywords used in the text suggest
a negative sentiment. The reviewer mentions
"humour potache" (puerile humor), "scènes de
baston/hip hop pas crédibles" (unbelievable fight
scenes/hip hop scenes), and "personnages creux"
(shallow characters).
Step 3:#### Based on the negative mood and
the negative keywords used in the text, the final
category is negative.

User’s answer:#### Negative

(a) ChatGPT output.

Review: Humour potache façon teenage movie,
scènes de baston/hip hop pas crédibles, personnages
creux. Aucun interêt.
Translation (en): Teenage-movie-style humor, im-
plausible fight/hip hop scenes, hollow characters. No
interest whatsoever.
Label: negative

Model output:

Step 1:#### The overall mood of the text is
negative.

Step 2:#### The keywords used in the text suggest
a negative category. Words such as "potache,"
"baston/hip hop pas crédibles," and "personnages
creux" convey a sense of disappointment and
unrealism.

Step 3:#### Based on the highest probability, the
final category is Negative.

User’s answer:#### Negative

(b) Llama 2 output.

Figure A.12: Example of LLMs outputs for the advanced prompt for French review annotated
as negative.
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