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ON WEAK NON-LINEARITY OF MODELS 
O F PHYSICAL SYSTEMS 

DANIEL MAYER, ZDENEK RYJACEK 

(Received October 21, 1976) 

1. INTRODUCTION TO THE PROBLEM 

The call for penetrating the theory of non-linear technical and physical systems 
as deeply as possible has been more and more urgent lately. We distinguish non
linear systems whose very action is based on their non-linear properties and those 
which, though being non-linear, do not necessarily require the non-linearity for their 
function. The former include systems with functional non-linearities, the latter 
systems with non-functional [parasitic) non-linearities. For example, the tele
communications use various types of electric networks with functional non-linearities 
(e.g. rectifiers, oscillators, stabilizers, clipping networks, flip-flop circuits, clamping 
networks, frequency multipliers and divisors, AM demodulators, voltage and current 
limiters, parametric amplifiers, magnetic memory devices e.t.c). The other group 
includes e.g. various devices of heavy current engineering with strongly saturated 
magnetic circuits (e.g. electric machines and apparatus). A theory of systems with 
non-functional non-linearities is usually established by formulating first a non-linear 
mathematical model. Using our experience or merely the intuitive imagination, we 
presume that the behaviour of the non-linear model is "reasonable" enough to allow 
linearization. This argument, quite common for instance in the theory of electric 
machines, is often fully justified and we do not commit significant errors by applying 
it. Nevertheless, it can be completely inadmissible and its application can lead to 
serious blunders in other cases, since generally the behaviour of the non-linear model 
is qualitatively different from that of the linear one. 

In this paper we try to describe a class of non-linear models whose certain impor
tant properties coincide with the corresponding properties of the linearized models. 
We call such models weakly non-linear ones. When dealing with weakly non-linear 
models we make use of the above mentioned feature: we linearize them and, if the 
errors originating in this process are not negligible, suppress them by a suitable 
numerical method. It is a fundamental problem whether the physical system con-
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sidered, which has a non-functional non-linearity, can be described by a weakly 
non-linear model. Obviously the character of the non-linearities of the physical 
system is decisive here, but frequently also the way in which we approximate the 
characteristics of its non-linear elements. This approximation should be done so as 
to express with a sufficient adequacy the properties of the physically real non-linear 
element, at the same time possessing such "suitable" properties which guarantee 
the model to be weakly non-linear. We shall give a mathematical definition of weakly 
non-linear models and deduce a criterion which enables us in many particular cases 
to decide whether the model may be considered weakly non-linear. One of effective 
methods of the analysis of weakly non-linear electric networks is suggested in [ l ] . 

2. DEFINITION OF A WEAKLY NON-LINEAR MODEL 
OF A PHYSICAL SYSTEM AND ITS PROPERTIES 

Let us consider a model of a non-linear physical system with lumped parameters, 
for instance an electric network. Such a system is mathematically described by 
a system of n differential equations of the first order solved with respect to the deriv
ative (e.g. by the method of state variables [2], [3], [4]). This system of equations 
together with the initial conditions is written as usual in the vector form 

(1) — = f (x , t ) , x(t0) = x0 

dt 

where x(t) : E1 -> En is the vector of responses while f(x, t) : En + 1 -» En is the vector 
whose components contain the parameters of both the inputs and the passive ele
ments. 

Definition. A model of the physical system described by the equation (1) is 
called weakly non-linear (quasilinear) if any two solutions xx(t), x2(t) Of the 
equation (1) satisfy 

(2) l i r a | x 1 ( 0 - x a ( « ) | - « . 1 ) 
t~»00 

Remark . Let us assume that the system considered has been already associated 
with a fixed model. Then the properties of the model can be transferred to the system 
itself and the notions "solution of the system" etc. can be used as is usual in applica
tions and technology. The following properties, which are of great importance from 
the technical view-point, are immediately seen from the definition: 

a) If a weakly non-linear system has at least one bounded solution [on the interval 
<t0, -f oo)], then all its solutions are bounded. This property is in accordance with 
the well-known properties of asymptotically stable systems. 

*) The term "weakly non-linear" is introduced because of the terminology used in the technical 
practice. From the mathematical view-point we have here the global quasiasymptotical stability. 
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b) If, moreover, there exists a periodic solution of the equation (1), then, provided 
the system is weakly non-linear, this solution represents the "steady state" of the 
physical system, this steady state being independent on the choice of the initial 
conditions. For example, if a weakly non-linear system is excited by periodical 
inputs, then its responses in the steady state are periodic as well, any they are uniquely 
determined: the system is monostable. This means that weakly non-linear systems 
behave also in this respect in the same way as asymptotically stable linear systems. 

It is evident that the introduction of the notion of weak non-linearity is motivated 
by the effort to determine and master a certain class of non-linear systems whose 
properties important in technical application coincide with those of asymptotically 
stable linear systems2). 

The above described properties of a weakly non-linear model of a physical system 
may be evidently of advantage when investigating the behaviour of the physical 
system, particularly in its analysis or synthesis. Therefore it is clear that in particular 
cases we shall be interested in the problem whether the given model may be considered 
weakly non-linear. 

Now we shall proceed to the formulation and then to the proof of a theorem 
which gives a sufficient condition for weak non-linearity. This theorem can be used 
as a criterion whether a certain model is weakly non-linear. 

Theorem 1. Let the right hand side of the equation (1) be expressed in the form 

(3) f(x, t) = Ax + B(t) x + f0(x, t) + g(t), 

where Ae Enxn is a constant matrix and there exist such positive constants a, v that 

(4) |[eAf|| S *e~vt 

(we assume that the matrix norm || || is induced by the vector norm chosen in En), 
B(t) : E1 —> EnXn is a bounded continuous function on the interval <£0, +co), 

i.e. there exists a constant b > 0 such that 

(5) \\B(t)\\ S b for t ^ t 0 , 

f0(x, t) : En + 1 -* En is continuous on En x <t0, +oo). 
Let there exist a function a(t) which is non-negative and continuous on <t0, +oo) 

and such that 

(6) ||fo(*l> 0 - fo(X2> 01 = 4 0 ||X1 - X2|| 

2) Consequently, weakly non-linear systems are a certain generalization of asymptotically 
stable linear systems. Evidently, a linear system which is not asymptotically stable need not be 
weakly non-linear. 
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holds for all t ^ t0 and xl9 x2 e En, 

g(t) : E1 -> En is continuous on the interval <£0, +00) . 
Then to every initial condition x0 e En there exists one and only one solution 

of the equation (1) on the interval <t0, + 00). 
If, moreover, there exists s > 0 such that 

(?) a(т) áт <(- - b - s)(t - t0) 

for all t > t0, then the system described by the equation (1) is weakly non-linear. 
R e m a r k . In particular, if a(t) = a (= constant), then the condition (7) assumes 

the form 

(8) v < <x(a + b). 

Proof. The uniqueness and the local existence of a solution of the equation (1) 
is guaranteed by the Lipschitz condition (6). Let J be the right maximal interval of 
existence of solution. The function f0(x, t) is continuous on En x <t0, + 00) by the 
assumption and hence the case b) of the theorem on the prolongation of a solution 
cannot occur (see Appendix, Lemma 3). 

Let us choose an arbitrary but fixed x 1 e En. Then (6) implies 

||f0(x, t)|| - | f 0 (x\ t)|| S ||f0(x, t) - f0(x\ t)\\ S 

S a(t) \\x - x 1 ! S a(t) ||x|| + a(t) \\xx\\ 

for every x e En and t _• t0. Hence there exists a non-negative function Q(t) conti

nuous on <t0, + 00) and such that 

(9) ||fo(*,0|| -= <0 Ilxl +%)• 

Let x(t) be a solution of the equation (1). Then the relation (13) (see Appendix, 

Lemma 1) together with (4), (5), (6) and (9) yields the estimate 

||x(t)|| e v ' S a j x 0 | e v f 0 + f {a[6 + a(x)~\ eVT||x(T)|| + 
J to 

+ a e V T [ % ) + ||*(*)||]}dT 

which again implies by virtue of the Gronwall lemma an inequality 

||x(t)|| = K^(t) 

with K a positive constant and £(t) a continuous function defined on the interval 
<t0, +00). This excludes also the case c) of Lemma 3 in Appendix and hence ne
cessarily J = <t0? +00). 
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Now let us assume that the inequality (7) is satisfied in addition. Let us choose 
x 0 , x 0 ££" , let xt(t), x2(t) be solutions of the equation (1) on <t0, +00) such that 
*i(t0) = x0 , i = 1, 2. Put x 0 = x0 — x0 . Then in virtue of the equation (13), the 
function x(t) = xx(t) — x2(t) satisfies 

llxfíìll ѓ lleл(,-'0)ll . ЦxJI + ílhA(,~1|{|lBWI-ll*WI + 
J to 

+ ||fo[XlW» T] ~ fo[*2(?)> T]||} dT . 

This implies by means of (4), (5) and (6) the relation 

|xff)|| e
v í ^ oeWo||x0|| + í a[b + A(T)] ||x(T)||eVIdi 

J to 

and hence we obtain by the Gronwall lemma applied to 

<p(t) = | |x( t) | |ew , y = aev'°||x0|| , 

\j/(t) = a[b + a(t)] , 0(t) = 0 

the estimate 

|x( í ) | ^ й | x 0 | | e " v ( ' - ' o ) e x p i í я[ò + Ű(T)] dт j , 

that is, 
r fi 

a(x) dT «(01 LS a | | x 0 | exp (aft - v)(f - t0) 
ŕt 

+ a 

By the inequality (7) this yields immediately 

and, consequently, 
x(ř)|| ^ a | | x 0 | e - * £ ( ' - ' o ) 

lim |x(f)| = 0 . 

3. EXAMPLE OF INVESTIGATING THE WEAK NON-LINEARITY 

Let us find whether the model of a physical system described by the system of 
differential equations 

(10) — - = — 3x! — 2x2 + arctan x2 

^ - - 2x2 

df 
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is weakly non-linear. The application of Theorem 1 depends essentially on the way 

in which we write the right-hand sides of the system (10) in the form (3). We shall 

show that this may affect in particular cases the validity of the condition (8). 

I. Let us write the right-hand sides of the system (10) in the form (3) with 

[— 3; —21 , . . Tarctan x2l 

0 : _ 2 J , f0(x,o = [ 0 -j, 
B(r) = 0, g(t) = 0. 

If En is equipped with the norm 

(11) |x_, . . . , x„|| = max |x,| (i = 1, . . ., n) 

and Enxn with the norm induced by (11), then 

[ - З ř . 
Є , 

0; 

- 2 e _ 2 ř + e" 
e~ 2 ř < 2e~ 

and consequently, a = 2, v = 2. 

Further, for every x_, x 2 e En 

||fo(*i, -) ~ fo(*2> 01 = |arctan(x x ) 2 - arctan ( x 2 ) 2 | _S 

__ |(x_)2 ~ ( x 2 ) 2 | = ||x_ - x 2 | | 

and thus a = 1. Since B(t) = 0, we have b = 0. Substituting these values into (8) 
we find the inequality does not hold (instead we have an identity). 

If we replace the norm in En by 

(12) ||(xi, .---OH = Z|-v.| 
i— 1 

we obtain a = 3, v = 2, a = I and these values again do not satisfy the inequality (8). 
II. Let 

A = [_o! -2]' ^O^-^Y^i ' 
B(r) = 0 , g(t) = 0. 

Then 

e A < 
Гe--'; 0 1 

~L 0; e-J-
Both the norms (11) and (12) yield the same values: a = 1, v = 2, a = 2; again 

the condition (8) is not satisfied. 
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III. Let 

4"o;:î]'^"=[_i* 
ß(t) = o , g(t) = 0. 

2 + arctan x2 

0 

(In this case the Lipschitz constant of the function f0 assumes its least value possible.) 
Then 

"3e; - i e ~ 2 r + ie"3' 1 
Using the norm (11) we obtain 

that is, 

and 
L v = 2 

|fo(*l,0 - fo(X2, 01 = i K ~X2|| 

which yields a = \. The condition (8) is now satisfied. 
Similarly, the norm (12) gives the values 

a = f, v = 2 , a = i 

which again satisfy the condition (8). 
In the conclusion, let us point out once more that a model of the physical system 

described by the equation (l) is weakly non-linear if there exists a way of expressing 
the right-hand side f(x, t) of this equation- in the form (3) so that the inequality (8) 
is satisfied. The above example shows that even for weakly non-linear models not 
every way of expressing the right-hand side is suitable. It would be of interest to study 
this problem in more detail in order to obtain some results suggesting how to deal 
with particular cases. 

4. NOTE TO THE APPROXIMATION OF NON-LINEAR 
CHARACTERISTICS OF THE ELEMENTS 

OF THE SYSTEM CONSIDERED 

When formulating the equations of non-linear physical systems it is necessary 
to approximate the characteristics of their non-linear elements, which had been as 
a rule obtained by measurement, by a suitable analytic formula. For instance, when 
formulating the equations of an electric network which includes a coil with ferro
magnetic cores, it is necessary to approximate the dependence of the flux linkages $ 
on the current i passing through the coil, that is, to find a suitable function # = <P(i) 
or its inverse function i = i(<£). Here the graph of the function <2> = <P(i) reminds 
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by its shape a magnetization curve. When investigating the weak non-linearity, 

the choice of the approximation formulae for non-linear characteristics must be done 

by applying both the general view-point (see e.g. [4]) and the requirement that the 

assumptions of Theorem 1 be fulfilled. For example, in the above-mentioned case of 

non-linear coils we approximate by a one-to one continuous function whose graph 

has the shape of a "magnetization curve", and which satisfies the Lipschitz condi

tion with respect to $>. For instance, we can use the function 

/ = at<P — a2 arctan (a3<P) 

(a1 = tan a l 9 a2, a3 constants) which has the Lipschitz constant 

a = m a x ( a l 5 \ax — a2a3\) . 

A o - i 
a n \ / \ / 

/ 
a 2 2 / 3 

// / // / / / / / / / 
/ / / / 

/ f ^ / / / / 

/ / -лҐ " ^ / / / / ^Pł 
/ -_»̂ *' / ^ ^ 0 / — - ф 

^ŕ"x / 
" / л / / / / / / / / / / / / / // // / 

/ / 

// / // / 
/ 2 2 ' 

Fig. 1 

Its asymptotes obey the equation 

i = ax<!> ± a2 

and its derivative at the origin is 

— I = ax — a2a3 = tan fi (see Fig. 1). 
d<P 
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To determine the constants a u a29 a3 in a particular case, we use the equations 

of the asymptotes to obtain a u a 2 and the value of the derivative at the origin to find 

a 3 . 
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APPENDIX 

Lemma 1. Let the function x(t) in the equation (1) have a continuous first deriva

tive; let the function f(x, t) have the form of (3). Then the differential equation (1) 

is equivalent to the integral equation 

(13) x(t) = e A ( ' - ' o ) x( t 0 ) + 

+ P eA('-T){B(T)x(T) + f0[x(T), T] + g(T)} dT . 
J to 

P r o o f is well-known. 

Lemma 2. (Gronwall). Let 

(14) cp(t) ^ y + f [ > ( T ) cp(T) + <9(T)] dT 
J to 

where (P(T), \J/(T) and G(T) are non-negative continuous functions and y is a positive 

constant. Then 

(is) <Kt) ^ y exP I f [*(-) + ^ 1 dt 1. 

P r o o f may be found e.g. in [3]. 

Lemma 3. (Theorem on the prolongation of solutions). Let f(x, t) be continuous 

on the closure E of an open set EeEn+1 and let the equation (1) have a solution 
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on a right maximal interval J. Then there occurs precisely one of the following 
three possibilities: 

a) J = <ř0, +00); 

b) J = <í0, <S), d < + 00 and [á, x(<5)] e dE;1) 

c) J = <t0, S), S < + 00 and lim | |x(t)| = + 00. 

t->ao 

P r o o f may be found e.g. in [5]. 

1 ( The symbol dE denotes the boundary of a set E. 

S o u h r n 

O SLABÉ NELINEARITĚ MODELŮ FYZIKÁLNÍCH SYSTÉMŮ 

DANIEL MAYER, ZDENĚK RYJÁČEK 

Zavedení pojmu slabé nelinearity je motivováno snahou vyčlenit jistou třídu 
nelineárních systémů, jejichž jisté, pro technické aplikace významné vlastnosti jsou 
shodné s vlastnostmi asymptoticky stabilních lineárních systémů. Model fyzikálního 
systému, popsaný rovnicí (1), nazýváme slabě nelineárním (kvazilineárním), jestliže 
pro každá dvě řešení x-^ř), x2(t) rovnice (1) platí rovnice (2). Model fyzikálního 
systému popsaný rovnicí (1) je slabě nelineární, existuje-li pro pravou stranu f(x, t) 
této rovnice takové vyjádření ve tvaru (3), aby byla splněna nerovnost (8). Při po
suzování slabé nelinearity je třeba uplatňovat při volbě aproximačních formulí 
pro charakteristiky nelineárních prvků jednak všeobecná hlediska, jednak požadavek, 
aby tyto vztahy splňovaly předpoklady věty 1. 

Authors' address: Prof. Ing. Daniel Mayer, CSc, Zdeněk Ryjáček, prom. matem., Vysoká 
škola strojní a elektrotechnická, Nejedlého sady 14, 306 14 Plzeň 1. 
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