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INVESTIGATION OF STEADY STATE
OF PHYSICAL SYSTEMS WITH PERIODIC INPUTS

DANIEL MAYER, ZDENEK RysACEk and BorUS ULRYCH

1. SETTING THE PROBLEM

Let us consider a linear physical system (e.g. an electric network) with lumped
parameters whose mathematical model assumes the form

(1) %x:Ax+f(t),

where A = [a;;] is a square matrix of a type (s, ) with constant elements which
are determined by the parameters of the passive elements of the system; x(f) =
= [x:(0), ..., x,(#)] is a matrix of the type (s, 1), whose elements are the responses
of the system, £(¢) = "[f4(1), ..., f{t)] is a matrix of type (s, 1), whose elements are
contimuous periodic functions all with the same period T which are determined by
the parameters of both passive and active elements of the system; i,j = 1,...,s.
(A method of constructing this mathematical model for an electric network was
suggested e.g.in [2] and [3]). Our aim is to find a periodic solution x,(f) of the equa-
tion (1) which means — from the physical point of view — to find the responses of
the system in its steady state.

A solution of the equation (1) which starts from general initial conditions x(0)
includes some transient phenomena that damp sooner or later so that the solution
eventually represents the response in the steady state. If the system is asymptotically
stable (for details see [2] and [4]) and if it has sinusoidal inputs with the same
frequency, it is easy to analyze its steady state by the method of phasor representa-
tion of sinusoidal functions. If the input is periodic but not sinusoidal we can retain
the advantages of this method by developing the inputs into Fourier series, analyzing
the system separately for each sinusoidal component of the input taking into account
a “sufficient” number of the terms and then using the results to find the responses
of the system in its steady state (see e.g. [2]). If we decide the number of sinusoidal
components of the input taken into account only by the rate of convergence of its
Fourier series, we may commit an uncontrollable error since the rate of convergence
of the series representating the responses need not coincide with that of the input
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series. In particular, if the frequencies of some sinusoidal components of the input
are close to the eigenfrequencies of the system then some resonance phenomena
may appear so that the corresponding components of the responses are strongly
developed even if the amplitudes of the input components are small. The method
sugested above is suitable for application to such systems whose input differs only
slightly from sinusoidal function. It is unsuitable for systems with a strongly non-
sinusoidal input (for example for electric networks with diodes and thyristors) not
only because of the uncontrollable error but also because of the necessity to consider
a great number of sinusoidal terms which makes the calculation cumbersome and
lengthy. ‘

A simple idea which offers itself is to integrate the differential equation (1) for
a “sufficiently” long period until the transient phenomena vanish and the system
passes to the steady state. However, if the transient state lasts for a long time, for
example some tens or even hundreds of periods, this method turns out to be not only
uneconomical (regarding the necessary computer time) but also unreliable (due to
the possibility of cumulation of errors).

2. METHOD OF ANALYSIS OF THE STEADY STATE OF A SYSTEM:
THEORETICAL BACKGROUND

We seek a T-periodic solution of the equation (1) in the interval <0, co), T being
the least positive number such that x(f) = (¢ + T) for all £ = 0. It was shown
on [5] that this solution may be found on the basis of the following argument:
It is well known that for any vector of initial conditions x, there exists exactly one
solution (1) of the equation (1) such that x(0) = x,. If 3,(f) is "he required periodic
solution then this assertion is obviously valid for it, too. Consequently, if we knew
the vector of initial conditions 3t,, corresponding to the solution x,(1), i.e. satisfying
%,(0) = 3,0, then solving the equation (1) numerically by any known method of
numerical integration of differential equations we determine one period of the
function x,(7); the full response of the system is its periodic continuation.

In [5] we have suggested a simple way of expressing the desired vector of initial
values X, in the form of an infinite series. Now we shall show how the vector 3,(Q)
for the given mathematical model (1) of the physical system considered can be deter-
mined in a closed form.

It is well known from the theory of linear differential equations with constant
coefficients that the general solution of the equation

d
2 —x(t) = Ax(t
® x(y - ax)
has the form
(3) x(f) = P,
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where X, is an arbitrary constant vector. The general solution of the equation (1)
is obtained by adding a particular solution of the system (1) to the general solution
of the homogeneous system (2) One of these particular solut.ions is the function
x,(£). Thus the general solution of the system (1) may be written in the form

(4) x(1) = x,(t) + ek,

where k is an arbitrary constant vector.
Let us consider the solution x(f) corresponding to the initial condition x°(0) = 0.
According to the equation (4) this solution satisfies

(5 for t=0: x°(0) =x,(0) +e*k=0

I

for t = T: x%T) = x,(T) + e*"k

It follows from the periodicity of the function xp(t) that
XP(O) = p(T) = Xp0
which together with the equations (5) yields
X0+ k=0
X, + Ak = x(T).
Further we obtain
%, — A, = x%(T),
which means
6 (I = &%) x,0 = x(T),
where | is the unit matrix of the type (s, 5).-
Let us remind that x(T) is the value at the moment t = T of the function x%(f)

which is the solution of the equation (1) for the vector of initial values %, = 0.
This solution can be written in the form of a convolution integral

t
x°(f) = J A7) dr,
0
which yields in particular

T
XU(T) = J eA(T—T) f(’t) dr.
o

Evaluating this integral either analytically or numerically we determine the right
hand side of the relation (6). This relation then represents a system of a linear algebraic
equations with s unknown components of the vector x,,. The matrix of this system is

(7) CC=1-—-¢rT,
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This matrix can be viewed as a matrix of the form

C=U-B,
with
B=erT and 1=1.

This means that the matrix C, i.e. the matrix of the system (6), is regular if and only
if the number 4 = 1 1s not a characteristic number of the matrix B — eAT,

The following theorem holds (for its proof see e.g. [1]): Let & be a function of
a matrix. If 4 is a characteristic number of a matrix A then @(4) is a characteristic
number of a matrix p(A).

Applying this theorem to the function P(R) = e*T we conclude that if the matrix A
(and hence also the matrix AT) is singular,-i.e. if zero is its characteristic number,
then the matrix ¢®7 has a characteristic number e® = 1. However, since the matrices A
and e*7 are of the same type (s, 5) (and hence they have the same number of charac-
teristic numbers) and since the function o(?) = ' is strictly monotone, this assertion
may be reversed. Thus if the matrix A is regular then zero is not its characteristic
number and consequently, one is not a characteristic number of the matrix e®7.
Therefore the matrix € is regular in virtue of the equation (7) and the system of
algebraic equations (6) has exactly one solution ¥, for an arbitrary vector of the
right hand sides x°(T). In particular, the regularity of the matrix A is guaranteed if
all characteristic numbers of the matrix A have negative real parts, i.e. if the physical
system described by the system of differential equations (1) is asymptotically stable
(for details see [4]).

3. ALGORITHM FOR THE CALCULATION OF THE VECTOR 0

Let us now describe the way in which the analysis of the steady state of physical
system described by the equation (1) proceeds.

1. We evaluate the matrix

(8) : H(:) = e,
and, in particular, the matrix
) H(T) = AT |

A suitable method of determining the matrix H(t) based on the characteristic
vectors of the matrix A and on the real Jordan form of the matrix A, is presented
in detail in paper [6].

2. We evaluate analytically or numerically the convolution itnegral

(10) X(T) = j }A(T-ﬂ () ds.
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3. By solving the system of algebraic equations

(1) (1 = ") xp0 = x(T)

we find the vector of initial values Xq.

4. We integrate numerically the differential equation (1) for the vector of initial
values x,, just found, using any suitable method, on the interval t e <0, T). The
P

realation
(12) x,0 = x(0) = x(T) = x(2T) = x(3T) = ...

can be used to check the result.

4, NUMERICAL EXAMPLE

As an illustration of the process of computation let us determine the vector of
initial values x,, for steady state of an electric network whose equation has the form

(see [5] p. 292) |
d [x — 43636 . 102; —3-6363 . 103] ' [xl] N [400 uo(t)],
) dr [xz] - [ 18181,  —18181.10%] |x, 0
where uo(t) — 100 cos wt + 60 cos 3wt + 30 cos Sewt; @ = 100z i.e. T = 0-02s.
1. We use the algorithm described in [6] to determine the matrix

H(t) = e = Dye™' + Dye™',

where

If

4199029 . 102, 7, = —>463805. 10",
1042716, 10% 9438 447 . 10° :\
P1= [—4-719 091 .1073; —4271622.1072

—4271622.1072; —9-438 447 . 10° ]
27 [ 4719091.1073%;  1:042716 . 10°

A

2. The convolution integral (10) assumes the form

[oenm + ;1) 400.
0

'<[100 cos cor] + [60 cos 3cor] + [30 coOs Swr:D gt = x(T).
0 0

This integral is relatively simple, hence we decide to evaluate it analytically. This
leads to integrals of the type

T ac aT
“T=% cos by dt = ——— (T — 1),
¢ J‘o ¢ a® + b? (
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where a, b, ¢ are real constants. By integration we find

. 1
XO(T) - 7-519 045 . 10 '
—3-063 643, 10~

3. The system of algebraic equations (11) has the form

1021 131. 10°% 4718 919. 10° REFA 7-519 045 . 101
—2:359 394 .1073; 4784 503 . 1071 X —-3063643.1071 |

P02

Solving the éystem we find the vector of initial values
R N 7-488 700 . 10*
" Deod  L=2710342 1071 |
This value is in good agreement with the result obtained in [5] by an approximative
method.

The next step, i.e. a numerical integration of the equation () for te (0, 0-02)
yields practically the same results a$ in the quoted paper [5]-

5. CONCLUSION

In the paper we have formulated a simple and well programmable algorithm of
analysis of the steady state of a linear physical system with non-sinusoidal periodic
input which is described by a differential equation D).

Naturally, there are other methods of finding the periodic solution of the equation
(1), for example the well known and seemingly advantageous method based on the
use of Laplace transformation. This method uses the Laplace transforms of all com-
ponents of the vector f(r). However, in many applications the time behavior of the
inputs is relatively complicated and finding their Laplace transforms would be very
difficult. This is the case for example with electric networks including thyristors.
The effort to find a suitable method for analysis of the steady state of this type of
electric networks served as a motivation for writing this paper as well as the previous
one [5]. A number of calculated examples has shown both the methods to be very
effective.
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INVESTIGATION OF STEADY STATE
OF PHYSICAL SYSTEMS WITH PERIODIC INPUTS

In the present paper a method of evaluation of the vector of initial conditions %o for which
the integration of the differential equation (1) yields its periodic solution, is suggested. The method
makes it possible to find the vector x,q in a closed form. In order to find the vector of initial
conditions x 50 it is necessary to determme the matrix eAf; an algorithm for this is given in [6].

The descrlbed method of analysis of linear physical systems in the steady state is well program-
mable for digital computers. Its application is illustrated by a simple numerical example. This
method as well as its alternative form [5] is very effective especially in the case of complicated
time behavior of the input of the system, as e.g. for electric networks with thyristors.
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