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ON ASYMPTOTIC STABILITY OF LINEAR CIRCUITS
WITH LUMPED PARAMETERS

DanEL MavER and ZDENEK RYJASEK

The criterion of asymptotic stability of a linear electric circuit which has been
known till now requires each loop of the circuit to contain a resistor. This criterion
represents a sufficient condition, however, not a necessary one. In the present paper
a more general criterion of asymptotic stability for circuits which contain passive
elements and independent voltage sources is formulated. This criterion admits that
some loops contain no resistor. The proof of the assertion is sketched.

1. MOTIVATION OF THE PROBLEM

~ In order that a circuit may be a sufficiently adequate model of a real apparatus,
we usually require it to be asymptotically stable, which means that each pair of its
current or voltage responses x;(t) and x;(¢) which correspond to different initial
conditions satisfies

(1) lim [xk(t) — x,’f(t)l =0, k=1,2,..,r
t—

where r stands for the number of branches (edges) of the circuit. If all branch re-
sponses in the equation (1) are voltages we shall speak about v-asymptotic stability
of the circuit; if all branch responses are currents, then we shall speak about c-
asymptotic stability of the circuit and finally, if the responses are voltages of some
branches and currents of the others, we have the mixed asymptotic stability of the
circuit.

It is well known that a mathematical model of a circuit with lumped parameters
is given by a system of ordinary differential equations; a necessary and sufficient
condition of its asymptetic stability is that all of its characteristic values have negative
real parts. However, an application of this condition is computationally demanding
and laborious: we should prefer if the asymptotic stability could be determined as
simply as possible, without any computation, immediately from the circuit.

The following sufficient conditions were established (see e.g. [1], [3]):
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() If a circuit includes at least one tree such that each of its links contains
a resistor (i.e., ech loop of the circuit is incident with at least one branch containing
a resistor), then the circuit is c-asymptotically stable.

(ii) If a circuit includes at least one tree such that each of its branches contains
a resistor (i.e. each cut set of the circuit is incident with at least one branch con-
taining a resistor), then the circuit is v-asymptotically stable.

However, the assumptions of these conditions of asymptotic stability are too
restrictive. For example, the circuit in Fig. 1a does not satisfy the condition (i) while
the circuit in Fig. 1b does not satisfy the condition (ﬁ). Nevertheless, it can be easily
seen that the former is c-asymptotically stable while the latter is v-asymptotically
stable. Therefore, we will introduce more general conditions of asymptotic stability.
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Fig. 1.

2. FORMULATION OF CONDITIONS OF ASYMPTOTIC STABILITY
AND THEIR APPLICATION

We shall consider only circuits including passive elements and independent voltage
sources.

Theorq)ln 1. A sufficient condition for a circuit to be c-asymptotically stable is
that there exists a tree whose all links satisfy the following condition: If the link
contains no resistor then it contains a capacitor and there exists a loop for which
the capacitor is the single non-resistance element. 4

We omit the proof of Theorem 1; we shall sketch later the proof of Theorem 3
which is a generalisation of Theorem 1.
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Theorem 2. A sufficient condition for a circuit to be v-asymptotically stable is
that there exists a tree whose all branches satisfy the following condition: If the
branch contains no resistor then it contains an inductor and there exists a cut set
for which this inductor is the single non-resistance element.

The proof of Theorem 2 is dual to that of Theorem 1.

As examples let us introduce the circuits in Figs. 2a and 2b which are (according
to Theorems 1 and 2) c-asymptotically stable and v-asymptotically stable, respectively.
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Fig. 2.

Theorems 1 and 2, which are evidently generalizations of the above mentioned
conditions, may be further generalized as follows. A generalization of Theorem 1 is
given in

Theorem 3. A sufficient condition for a circuit to be c-asymptotically stable is
that the following conditions be fulfilled:

(i) Each cycle of the circuit contains a resistor or a capacitor.
(ii) Each cycle of the circuit contains a resistor or an inductor.
(iii) If a cycle C, of the circuit contains no resistor, then there exists a cycle C,
such that

— the cycles C; and C, have a common capacitor while
— ‘they have no common inductor.

These conditions of c-asymptotical stability may be formulated mathematically
as follows (the concepts used are defined precisely e.g. in [11, [2]. [4)): A sufficient
condition for the c-asymptotical stability of a circuit is that each cycle cTv of the
circuit satisfies '

(@) <"(R + S) ¢ > O and simultaneously
(ii) "(R+ L)e > 0O,
(iii) if €"Re = O then there exists a cycle <Tv such that
cTSe + 0 and TLe =0
where v is the vector of all branches of the graph of the circuit

y = [vls Ugy eens Ur]T
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Dy, Uy, ..., U, are the branches of the circuit, ¢ is a vector of real numbers of the type
(r, 1), R, §, L are real square matrices of resistances, elastances (i.e., inverse values
of capacitances) and inductances; the matrices R and § are diagonal ones. Within
the class of circuits considered in the present paper, the matrices R, L, § are positive
semidefinite.

.k _8f
(1] 1]

1

= u(e)=0
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Fig. 3.

We could have formulated a sufficient condition of v-asymptotical stability by
using duality; however, it is not our intention to do so in the present paper.

As an example, let us consider the circuit in Fig. 3: It does not satisfy the assump-
tions of Theorem 1, nevertheless, it satisfies the assumptions of Theorem 3 and hence
it is c-asymptotically stable.

3. SKETCH OF PROOF OF THEOREM 3

Let us consider a linear circuit with a vector of voltages of sources e(t) and two its
current solutions i,(t), i,(t) corresponding to two different initial conditions. Then
the difference i,(f) — i,(t) is obviously the solution of the circuit for e(r) = O and

fim [i,() — 1(0)] = ©

holds if and only if its Laplace Transform i,(p) — i,(p) has no poles in &, where &
stands for the closure of the set & of all complex numbers with positive real parts.
Consequently, the circuit is c-asymptotically stable provided that for each pair of real
vectors of initial conditions i, = i(0), g, = q(O) there is a solution i corresponding
to the vector e = O and the Laplace Transform of this solution has no poles in &.

It is known that under the assumptions of Theorem 3 the Laplace Transform of the
solution i(p) exists and has the form

®) i(p) = A(p) (Lio — Sqop™7),
where :
Alp) = XW™(p) XT = X[X" (Lp + R + Sp™ ") X]71 X

and X is a constant matrix whose columns form a basis of the space of all solutions

of the equation
(3} BTx =0

2

wheré B is the node-branch incidence matrix of the graph of the circuit. It can be
easily proved that the vector x is a solution of Eq. (3) if and only if xTv is a cycle.
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The results from [2] imply that under our assumptions the real part of the matrix
W1 is positive definite in &, and hence W~ has no poles in &; nevertheless, it
might possibly have simple poles on the boundary of & (i.e. some of its elements
might have simple poles on the boundary of ). ‘

a) We shall prove that the matrix W ™! has no poles on the imaginary axis except
0O and co. To this end, it suffices to prove that det W £ O on the imaginary axis.
Let there exist, to the contrary, a real @, + O such that det W(jcoo) = 0. Then
there exists a non-zero real vector w such that ,

@ ' W(jogw = O

and hence we have the following identity for thé non-Zero cycle ¢'v with ¢ = Xw:

c¢"Re + j | woe'Le — 1 c’Sc)= 0.
. @o

Hence ¢"Rec = 0. Accor dm gto the assumptlon (111) of Theorem 3 there exists a cycle

c’v such that ¢“Sc + O and ¢"Le = 0. Thus accordmg to the definition of X there

exists a non-zero vector w such that ¢ = Xw. The relation (4) then implies

wT W(jw,)w = O and consequently

) ‘ . wcTle = c”Sc

which is a contradiction. ‘ ’
oc) Let O be a pole of the matrix W~ Then thére are matrices H, K such that
W~Y(p) = Hp™' + K(p); here H is a constant matrix and O is.not a pole of the

matrix K(p). (These matrices may be obtained by decomposing the matrix W~ into

partial fractions). At the same time we have’ ‘

W(p) = szxp + XT(R + Lp) X
The 1dent1ty I=ww! 1mphes
 XTSXH = H'X"SX = O.
Multiplying by p and passing to the limit p — O we obtain
XTSXK, + X*RXH = O

where Ky = hm K(p) These relations yleld |

p~0

HX(R + §)XH = O

Let the matrix H have a non-zero column h. Then it holds c'(R + S)c = O for
a non-zero cycle ¢’v = (Xh)" v which contradicts the original assumption.

" B) Let oo be a pole of the matrix W ™1, Then the relations
W_l(p) = Hp + K(p)
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and
W(p) = X"LXp + XT(R + Sp“l) X

yield similarly as above the identity
H'X'R + L)XH = O
which again contradicts the original assumption.

b) We have proved the matrix W~ has no poles in ®. In virtue of the relation
(2), the only pole of i(p) in ® might be still 0. Let O be a pole of the matrix
W~ 1(p)X"Sp~!. Then there are matrices M, K such that

W-1X"Sp~t = Hp™' + K(p)

where H is constant and O is not a pole of K(p), i.e. there exists lim K(p) = K. This
implies » P20
(5) XTSp=1 = XTLXK(p) p + XTLXH + XTRXK +

+ (XTRXH + XTSXK) p~" + X"SXHp~2.
This yields X"SXH = O and hence also
6) HTXTSXH = O .
By multiplying (5) by p, passing to the limit p — O and using the relation (6) we obtain
(7) HTXTS = HTXTRXH .
Let the matrix H have a non-zero j-th column h. Then the identity
(8) TSc = 0

holds for a non-zero cycle ¢"v = (Xh)" v in virtue of (6) and thus according to the
assumption ¢’Re > 0. The matrix HTXTRXH contains thus a non-zero element
in its j-th row and j-th column. As the matrix § is diagonal and positive semidefinite,
the relation (8) yields 'S = O. Hence the j-th row of the matrix HTX”S is zero
which contradicts (7). This completes the proof that the matrix W~*(p) X"Sp~* has
no poles in &, and in virtue of (2) the same holds for the matrix i(p). '

Remark. If the matrix L is assumed to be diagonal, i.e. the circuit considered has
no magnetic couplings, it is easy to see that the asymptotic stability is guaranteed
provided the assumptions of Theorem 3 are fulfilled for each loop of the circuit.
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ON ASYMPTOTIC STABILITY OF LINEAR CIRCUITS
WITH LUMPED PARAMETERS

The introduction of the paper recalls the reasons why an electric circuit is required to be
asymptotically stable and mentions sufficient conditions for asymptotic stability of linear circuits
with lumped parameters witch are known from the literature. However, these conditions are too
restrictive and thus in many cases inapplicable. The aim of the paper i sto established weaker
conditions: more general sufficient conditions are presented, both for the current asymptotic
stability and voltage asymptotic stability. Further, another sufficient condition in introduced,
with is the most general one for the present. A sketch of its proof closes the paper.
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