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A CONTRIBUTION TO THE STATE MODEL
OF ELECTRIC NETWORK WITH EXCESS CAPACITORS

Daniel Mayer, Zdenék Ryjdcek

1. MOTIVATION OF THE PROBLEM

From the theory of linear electric networks it is well known (see e.g. [1], [2])
that the behaviour of networks for which at least one proper tree exists, iIs fairly
“reasonable”, that is, the formulation and solution of the state variable model
presents no substantial difficulties, the state quantities (i.e. the currents in the induc-
tors and the voltages on the capacitors) depend continuously on time and always
have — as well as the powers of all the elements of the network — finite values.
However, the situation is more complicated with networks for which no proper
tree exists, so that some of its inductors or capacitors are excess ones. For such
networks, at the moment when the parameter of a certain active or passive element
of the network changes by a jump, some state quantities may have discontinuities
while some co-state quantities (i.e. voltages on the inductors and currents in the
capacitors) may have the character of a “distribution function”; the power need
* )t be finite for all elements in the newtork. We can simply avoid these complications
oy modelling physically real systems only as models with proper trees, which from
the viewpoint of the physical interpretation of both voltage and current responses
apparently represent better models. However, taking into account the fact that every
network is just a more or less adequate model of the physical reality, we can accept
the above mentioned physically unjustifiable properties of the voltage and current
response of the network as approximations of the corresponding response in the
physical system. Moreover, the requirement of existence of a proper tree for the
network in question sometimes causes greater complexity of the network and may
lead to networks different from the usual ones, which are currently used in applica-
tions.

The construction of the state variable model of an electric network has been descri-
bed in detail in a number of publications even in the case that the given network
admits no proper tree, so that the network involves excess capacitors and inductors
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(see e.g. [1], [3])- Nonetheless, it is our opinion that there is still one open question
left, namely, how to determine — for networks with excess elements — the initial
conditions necessary for the integration of the state variable equations. This problem
was suggested in the book [4] and in the paper [5]. In the present paper we will
show that in networks with cxcess capacitors we can find sub-networks containing
only capacitors and voltage sources — we shall call them voltage-excess blocks,
briefly ve-blocks. The state variables will have discontinuities at ¢ = 0 only in these
ve-blocks, while they will be continuous outside them. This will enable us to find
the vector of the initial conditions from the right. If this initial condition is known,
then the integration of the corresponding state variable equation of the network
presents no problem any more.
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Fig. 1.

On the duality basis we could formulate an analogous procedure for networks
with excess inductors.

Our main idea can be illustrated by a simple example: the neiwork in Fig. | evi-
dently has no proper tree; one of his capacitors is an excess one. The state variables
are voltages uc,(1), uc,(t), which evidently have discontinuities at 1 = 0, the moment
when the switch is connected: u¢4(0_) =+ u¢1(0,), uc2(0-) = ucy(0, ). At the moment
t = 0. the both voltages have given values. However, in order to be able to solve
the state equations of the network for ¢t > 0 we need the initial condition

x0(0+) = '[1‘561(0+).§ uc2(0+)] s

which is not apriori known.

2. EXCESS OF THE TREE AND A NORMAL TREE OF A NETWORK

Consider a network, each of whose branches contains exactly one element. It may
be either a passive element R, L, C or a voltage source u(t), or possibly a current
source io(t). Taking into account the element of a given branch we speak about
C-branches, u,y-branches atc.
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If a network A" has a proper tree 7 ,, then all the state variables of the network
are known to be continuous [1], [2] Sirs

— every loop of the network 4" is incident with at least one link; according to
Kirchhoff’s voltage law, the sum of discontinuities of the voltage sources of branches
incident with this loop equals the discontinuity of the voltage of the link considered,
and

— every cut set of the network 47 is incident with at least one branch of the
proper tree; according to Kirchhoff’s current law, the sum of discontinuities of the
current sources of branches incident with this cut set equals the discontinuity of the
current in this tree branch.

However, we are not going to deal with networks which have proper trees but
solely with networks with excess elements, that is, with such networks for which
no proper tree exists. In our considerations we shall use the following characteristics
of a tree:

Definition 1. Let J be a tree of a network .47. Then

a) the number of all C-branches and ug-branches of the network 4 which are
not incident with the tree , will be denoted by E,(7) and called the voltage excess
of the tree 7 ;

b) the number of a]IL branches and iy-branches of the network .47, which are
incident with the tree 7, will be denoted by E () and called the current excess
of the tree 7, and

¢) the number
E(T)=E(T)+ E(7)
will be called the excess of the tree 7.

We introduce the notion of a normal tree, which will be of crucial significance
in what follows:

Definition 2, A tree 7, of a network A", whose excess assumes the minimal value,
is called a normal tree of the network A4".

It is evident from this definition that the values E(7,), E{(7,) and hence also

E(T l,) are independent of the particular choice of the normal tree 7 ,. Thus they
characterize not only any normal tree 7, of the network 4" but the whole network A"
as well, and we can use for them the notatlon E(A), E{A") and E(AX).

It is also evident that a proper tree &, {for definition see e.g. [ 1], [2]) is at the same
time a normal tree with E(J,) = 0. While in a given network /" a proper tree need
not exist, a normal tree always exists. Neither a normal tree nor a proper one are
uniquely determined; nevertheless, if there are more of them, their excesses coincide.

The following result gives the basic topological characteristic of a normal tree:

319



Theorem 1. A tree of a network 4" is a normal tree 7, if and only if the following
conditions are fulfilled:

1. By adding to a normal tree 7, either a u,-branch or a C-branch which are not
incident with the tree J,, we obtain a loop (according to [2], it is unique), which
contains only uy-branches and C-branches.

2. If we delete from a normal tree 7, an iy-branch or an L-branch, then by means
of a Jordan curve intersecting only this branch of the tree 9, we can obtain a cut set
(it is again unique, according to [2]), which contains only ip-branches and L-branches.

Proof.

a) Necessity: if the obtained loop is incident with either an iy-branch or an L-branch
or an R-branch, we modify the tree 4, by including the uy-branch or C-branch
into 4, and deleting the i,-branch or the L-branch or the R-branch. In this way the
excess of the network decreases. Analogously, if the cut set is incident with a uy-branch
or a C-branch or an R-branch, we include it into the tree and delete the iy-branch
or the L-branch, which previously belonged to the cut set. This again decreases the

excess, which contradicts the minimality.

b) Sufficiency: from the conditions it follows that the network ./ contains
exactly E(,) independent loops incident only with the u,- and C-branches, and
exactly E,(7,) independent cut sets incident only with the i;- and L-branches. Since
in each tree of the network .4 at least one branch from each loop of the network
must be missing, while the tree must contain at least one branch each cut set, its
excess is necessarily greater than or equal to E(7,), Q.E.D.

The algorithm suggested in the first part of the proof of Theorem 1 makes it
possible to find a normal tree of a given network .4~ and to evaluate its excess; the
structure of the “excess parts’ of the network .4” is seen from the second part of the
proof.

3. NETWORKS WITH EXCESS CAPACITORS

In this section we shall restrict our considerations to networks with excess capaci-
tors, that is, to networks A4~ with E(47) = 0 and E(4") > 0. In the network A4
we indicate a sub-network containing only u,-branches and C-branches and denote
it by A", Theorem 1 implies that the sub-network ., contains exactly E(A)
links. For our further considerations, the sub-networks obtained from the sub-
network ", by deleting the branches which are incident with no loop, are of crucial
importance. They are introduced by

Definition 3. The blocks (i.e. the maximal 2-connected parts) of the network A",
are called the voltage excess blocks of the network 4" briefly ve-blocks.
Let us recall that a network is called 2-connected, if each of its node-cut set contains
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at least two nodes, or equivalently, if it is connected and remains so after deleting
an arbitrary one of its nodes. For example, the networks in Fig. 2ab are not 2-connect-
ed while that in Fig. 2c is.

Fig. 2.

521



~ Fig. 3 illustrates the notions just introduced: a metwork 4" (Fig. 3a), its sub-
network 4", (Fig. 3b) and the three corresponding ve-blocks (Fig. 3c).

Fig. 3a.

The reason of introducing the ve-blocks is the fact that the phenomena connected
with the non-continuity of the state variables can be studied in each ve-block separa-
tely, that is, independently of the rest of the network A4". This is asserted by

Theorem 2. Let a network A4 with excess capacitors be given, i.e. E,-(J!"” ) =0,
EI,(A-’") > 0. Let each loop of A" contain at least one passive branch. Then all the
state variables are continuous on the branches which are not incident with the ve-
blocks.

Before passing to the proof of Theorem 2, let us illustrate the idea of the proof
by an example of a network with a single ve-block with a single loop (i.e. E(A") = 1,
E(A") = 0), and then prove an auxiliary proposition.

Example 1. Let us investigate the network from Fig. 4. It contains a single ve-block
which is formed by the branches with capacitors C,, C,, C,, Cs and voltage source
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uy,(t). The method of loop currents yields
1 - 1 ; ; 1 ’ y 1
1 —_ . — 1)+ — (i — + — (i — i)+ — ) (if — i) =
O Zf6=mr &[0+ -1+ 2[00 - =,
dis 1. . I
Ry, +Li—+—|lip—i))+—lia—i3)=— {),
112 Ea CZJ(z 1) C:J(z 3) uo ()
; L[, ; ; ;
R213 + Fj(l3 = 12) + R3(13 - 14) = 0,
¢y
Ra('4 = fs) + 'C—“J.(ia. = '1) + R4('4 = 15) = uo:z(f),
s
, o Ll dig
Rsis+ Ry(is — iy) + —f(fs — i) + Lz—(15 —ig) =0,
Eig dt
Rﬁiﬁ + Lz"q'(fs == 15) + “_]— (iﬁ T il) ——q 0,
d e,

when we write'[(fl — i,) etc. instead ofJ. (i;() — iy(1)) dz for the sake of brevity.
0
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Since the network in Fig. 4 has at least one passive branch in each of its loop,
the equations (1) have exactly one solution (which is well known — see e.g. [6]).
Let us denote it by 7,(?), ..., is{t). Denoting

@) i) = ¢ [ (9~ () e
1) = = [ () = T a
as(1) = g- ("G, - i4(@)) de,

and

i) e j ) = T de = RE0 - %),

Calo

where R > 0, we obtain after substituting (2) into the equations (1):

(3) R(f}_ - jﬁ) = Uy — ﬁ]. - az - ﬁ:; - 174,
di, 1 ” ; 5

R, + L, —= 4+ — (i, — i35) = —uyy — 6y,

112 i dr C}J( 2 3) 01 1

. 1 2 . 1 .
Raiz + —'[(’3 — i) + Ry(is — is) =0,
C,
Ry(iy — i3) + Ry(iy — is) = ug; + i3,
d : .
RSfS + R4(£5 - f4) e Lza(:’s = ’6} = U,,
; d. . ; . ; .
Rgis + ng(f(, — is) + Rig — iy) = d .
t

From the system of equations (3) it is clear that the network from Fig. 4 can be
replaced by an equivalent one (in the sense that the voltages as well as currents
of the corresponding branches are equal), which is shown in Fig. 5. Comparing
the both networks we see that the possibly discontinuous state variables in the net-
work from Fig. 4 have been replaced by voltage sources (with posibly discontinuous
dependence on the time variable). While there is no proper tree for the network
in Fig. 4, there 1s one for the network in Fig. 5. Consequently, the state quantities
for the network from Fig. 5 are continuous, hence the same is true for the correspond-
ing state quantities of the network from Fig. 4. Let us note that in both networks
the only mutually corresponding state variables are those which do not belong to the
ve-block of the network from Fig. 4.

Before passing to the proof of Theorem 2 let us establish an auxiliary result.

525



Lemma 1. If the assumptions of the Theorem 2 are fulfilled, then there exists
a normal tree 97, in the network A4, such that all u,-branches of the nctwork 4" are
incident with the tree 7.

Fig. 5.

Proof. Let us choose a normal tree 770 in the network 4. In the corresponding
system of links A4 — 7, there are exactly E,(A4"} u,-branches and C-branches.
Let k of them (k < E,(A")) be u,-branches, say bf, ..., b{. Adding the branch b}
to the tree 7 - we obtain a network .4, containing exactly one loop .Z,. By assump-
tion this loop is incident with at least one passive branch. In virtue of the fact that
the branches of the loop &, are either u,-branches or C-branches, the branch
incident with the loop %, necessarily is a C-branch, say bS. By deleting this branch
bS from the network 4", we obtain a tree .. It is easily seen that 7, again is
a normal tree of the network ..

By adding the branch b} to the network 7} we obtain a network A°,, which
contains a loop .%,. Deleting another C-branch from the loop %5, say the branch
bS, we obtain a normal tree 2. After k such steps we obtain a normal tree ¥,
such that the corresponding system of links A4 — Z% contains no u,-branches.

The proof is then completed by putting 7, = 7%
Now we proceed to

Proof of Theorem 2. In the network A" let us choose a normal tree 7, with
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the property from 1. Let us denote the branches of the corresponding system of links
A= T, by by, ..., b, (I is the cyclomatic number of the graph of the network).
By adding the i-th branch b; to the tree 7, we obtain a single loop &, (i = 1, ..., ).
As is well known (see e.g. [2]), the family of loops {Z;}i_, forms the complete
system of independent loops of the network 4. Given an arbitrary orientation
of the branches of the tree A" and the independent loops #;, the method of loop
currents can be used to formulate the system of equations, which represent the mathe-
matical model of the network .#". Under the assumptions of Theorem 2 (see e.g. [6])
this system of equations has exactly one solution i,(f), ..., i(t). Now it is possible
to find the current i(r) in each branch b of the network A"

Starting from the network 4" we use the following construction to obtain a network

(i) is incident with no ve-block of the network ., then it will belong to the
network 4" as well;

(i1} is incident with a ve-block, then

— it will belong to 4" as well provided it is a ug-branch (and hence necessarily
belongs to the tree 7,),

— provided it is a C-branch (with a capacitor whose capacity is C,) and this
C-branch

() is incident with the tree 7, we replace it by a ug-branch, the value of the
voltage source being

T
@ vorl)) = = [ ) .
bJ 0
(B) is not incident with a tree 7, we choose a real number R, > 0 and replace
the branch b by a pair of branches coupled in series, one of them being an R-branch
(containing a resistor with the resistance R,) and the other a u,-branch with a voltage
source with the value

t
(5) )= —l-j i(t)dr — R, iy(1).
Cb 0
It is seen from this construction that the network 4" has a proper tree, since all
the excess branches of the tree 7, have been replaced by an R-branch and a u,-branch
connected in series. Consequently, the state quantities of the network 4" are conti-
nuous. In virtue of the relations (4) and (5) the systems of equations describing the
networks 4" and 4" have the same solutions. The continuity of the state variables
of the network A4~ implies the continuity of the state variables in that part of the
network A4~ which has not charged by the construction, that is, in all the branches
which do not belong to the ve-blocks.
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4. DISCUSSION OF DISCONTINUITIES OF THE STATE VARIABLES
IN THE VE-BLOCKS

We have found out that the state variables may have discontinuities only in the
ve-blocks and that when investigating these discontinuities, we may solve each
ve-block separately, independently of the rest of the network. Hence the problem
of finding the limit from the right of the initial values for a network with excess
capacitors reduces to finding the Iimit from the right of the initial values in a network
consisting solely of uy-branches and C-branches, bricfly a UC-network.

The UC-networks satisfy relations analogous to the Kirchhoff’s laws [1], [2]:

a) the charge preserving law holds for any node B; which is incident only with
C-branches:

(6) ;“ijk— = ;aj;ka )

where Q,_ > 0O is the value of the charge of the clectrode of the capacitor at the
end of the k-th C-branch at the time moment r = 0_ while Q, > 0 is the value
of charge of the same electrode at t = 0, ; the coefficient a; = 1 provided the node
B;is incident with the k-th C-branch and the corresponding electrode of the capacitor
has a positive charge, a; = —1 provided the node B; is incident with the k-th
C-branch and the corresponding clectrode of the capacitor has a negative charge,
and a; = 0 provided the node B; is not incident with the k-th C-branch.

b) For an arbitrary loop #;, the second Maxwell equation in the integral form
yields

(7) ijkufk = ijk % = Z bjk”o;.; ;
k k C; k

where ug, > 0 is the voltage on the capacitor with a capacity Cy, Q; > 0 is the value
of charge of its positive electrode and u, is the voltage of the k-th uy-branch; the
coefficient by = 1 provided the k-th branch is incident with the loop & ; and their
orientations coincide, b, = —1 provided the k-th branch is incident with the loop
& ; and they have different orientations, and b, = 0 provided the k-th branch is not
incident with the loop & ;.

Let a UC-network containing p C-branches be given. For the moments t = 0_
and ¢ = 0, let us apply the relation (6) to the independent nodes and for 1 = 0,
the relation (7) to the independent loops. Thus we obtain a system of p linearly
independent algebraic equations for the charges Q,, ..., Q,. By solving this system
of equations we determine these charges, and hence also the voltages at t = O,

for the branches with capacitors whose capacities are Cy, ..., C:
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Example 2. For the UC-network in Fig. 6, B, is an independent node and %,

&, are independent loops. By applying the relations (6), (7) we obtain the system
of linear equations

- Q1 + Qz - Q3 = 0 ’
- C30, + €103 = —CCiuyy
— C30; — C,0; = —C,C;uq,

and hence the initial values for f = 0,:

0

k
ey = — (k=1,2,3).
@ = ( )
C1 CZ
) i' 3 il )
+ 4 - / + 8l -
1 Z

()

Q
O) ok
T, L \T t=0

5. MATHEMATICAL MODEL OF A NETWORK WITH EXCESS CAPACITORS

It remains to construct a mathematical model of a network with excess capacitors,
and then to solve it for ¢ > 0. We have just described a way of finding the voltages
on all capacitors at the time ¢ = 0,. The mathematical model can be obtained by
only slightly modifying the well known method applicable to the case of networks
with proper trees (see e.g. [2]): We introduce the state variables (i.e. the voltages
on the C-branches and the currents in the L-branches) as well as the auxiliary variables
(i.e. the currents or voltages on the R-branches) in the usual way. By means of the
normal tree we obtain the system of independent loops and independent cut sets
(see e.g. [1], [3]) and by applying the Kirchhoff’s current law and Kirchhoff’s
voltage law we obtain the equations of the network. Here the voltages on the excess
C-branches are not introduced as independent state variables but expressed in terms
of the voltages on the C-branches of the proper tree.
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Example 3. Let us give a sketch of how to formulate the equations for the net-
work from Fig. 7a. The corresponding proper tree with the state variables (u,,

Rs C, R
- H 3
=T =0 =L L,
()
+\/ —
Yo

Fig. 7.

Ucy, Ues, ipa) and the auxiliary variables (i, ig) is given in Fig. 7b, where two loops
(&1, &,) and four cut sets (#,, #,, #3, £4) are indicated. Hence we obtain:

Lyt = Uy + ey — Rl =0,
di

55’2:*“(‘3_1'4‘%_"261'6 =0,
du .

dgl: _CI C1+15 =0,
dt
du d

Fai— s Cz_&f—z“c’fa("cz‘_“cs“uo)‘O:
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Fa — dg +ipg =0.

Eliminating the auxiliary variables and re-arranging this system we obtain the usual
state-variable model of the network.
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A CONTRIBUTION TO THE STATE MODEL
OF ELECTRIC NETWORK WITH EXCESS CAPACITORS

When applying the state variable method to networks with excess elements, the problem
of finding of the initial conditions from the right arises. The present paper concerns the theory
of networks with excess capacitors. It is shown that certain sub-networks can be selected from
the given network — the so called voltage excess blocks, briefly ve-blocks — in which the state
variables have discontinuities, while in the remaining part of the network they are continuous.
Further, it is shown that in order to find the initial conditions from the right, these ve-blocks
can be investigated independently. On the basis of these fact it is possible to formulate a simple
algorithm for construction of a mathematical model of a network with excess capacitors.
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