Časopis pro pěstování matematiky

Zdeněk Ryjáček
Graphs with nonisomorphic vertex neighbourhoods of the first and second types

Časopis pro pěstování matematiky, Vol. 112 (1987), No. 4, 390-394
Persistent URL: http://dml.cz/dmlcz/108555

Terms of use:

© Institute of Mathematics AS CR, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

GRAPHS WITH NON-ISOMORPHIC VERTEX NEIGHBOURHOODS OF THE FIRST AND SECOND TYPES

Zdeněk Ryjáček, Plzeñ

(Received August 8, 1985)

Abstract

Summary. The paper is devoted to the relation between the classes $\mathbb{E}_{1}, \mathfrak{G}_{2}$ of graphs with non-isomorphic vertex neighbourhoods of the first and second types; the main theorem of the paper implies that each of the classes $\mathfrak{G}_{1}-\mathfrak{E}_{2}, \mathfrak{G}_{2}-\mathfrak{G}_{1}, \mathfrak{G}_{1} \cap \mathfrak{G}_{2}$ is infinite.

Keywords: Neighbourhood of a vertex, local properties of graphs, asymmetrical graphs.
AMS Classification: 05C99.

INTRODUCTION

Let $G=(V(G), E(G))$ be a finite undirected graph without loops and multiple edges, $u \in V(G)$ its vertex. The neighbourhood of u (defined in the obvious sense, i.e., as the induced subgraph on the set of all vertices which are adjacent to u in G) will be referred to as the neighbourhood of the first type of u and denoted by $N_{1}(u, G)$. We say that an edge $v w \in E(G)$ is adjacent to u if $v \neq u \neq w$ and either v or w is adjacent to u. According to [3], [5], [2] we define the "line-version" of $N_{1}(u, G)$ as follows: The neighbourhood of the second type of u (denoted by $N_{2}(u, G)$) is the edge-induced subgraph (see e.g. [1], [6]) on the set of all edges which are adjacent to u. (More precisely: the edge set of $N_{2}(u, G)$ contains all the edges $v w \in E(G)$ for which $\min \{\varrho(v, u), \varrho(w, u)\}=1, \varrho(x, y)$ denoting the distance of vertices $x, y)$.
J. Sedláček [3], [5] introduced the following classes $\boldsymbol{G}_{1}, \mathfrak{F}_{2}$ of asymmetrical graphs: $\mathscr{G}_{\boldsymbol{i}}$ contains all graphs G such that for every pair of distinct vertices $u, v \in V(G)$ the neighbourhoods of the i-th type $N_{i}(u, G), N_{i}(v, G)$ are non-isomorphic, $i=1,2$.

In [3] it is shown that for every integer $n \geqq 6$ there exists a graph $G_{n} \in \mathfrak{G}_{1}$ with n vertices; the corresponding graph G_{6} (with the minimum number of vertices) is shown in Fig. 1. The analogous question for the class \mathscr{G}_{2} is solved in [2]: A graph $G_{n} \in \mathscr{G}_{2}$ with n vetices exists if and only if $n \geqq 7$; the corresponding minimal graph G_{7} with 7 vertices is shown in Fig. 2.

As shown in [5], the graph in Fig. 1 belongs, in fact, to $\mathscr{G}_{1}-\mathfrak{G}_{2}$, and hence $\mathfrak{G}_{1}-\mathfrak{G}_{2} \neq \emptyset$; analogously, the graph in Fig. 2 belongs to $\mathfrak{G}_{2}-\mathfrak{G}_{1}$, and hence
$\mathfrak{G}_{2}-\mathfrak{G}_{1} \neq \emptyset$. Further, an example is given in [5] of a graph with 8 vertices which belongs to $\mathfrak{G}_{1} \cap \mathfrak{G}_{2}$; hence $\mathfrak{G}_{1} \cap \mathfrak{G}_{\mathbf{2}} \neq \emptyset$. In the present paper we shall show that each of the classes $\mathfrak{G}_{1}-\mathfrak{G}_{2}, \mathfrak{G}_{2}-\mathfrak{G}_{1}, \mathfrak{G}_{1} \cap \mathfrak{G}_{2}$ is infinite, and we shall find the minimal member in the last of them.

Fig. 1

Fig. 2

MAIN THEOREM

Theorem. Let n be an integer. Then there exists a graph G_{n} with n vertices which belongs to the class
a) $\mathfrak{G}_{1}-\mathfrak{G}_{2}$ if and only if $n \geqq 6$,
b) $\mathfrak{G}_{2}-\mathfrak{G}_{1}$ if and only if $n \geqq 7$,
c) $\mathfrak{G}_{1} \cap \mathfrak{G}_{2}$ if and only if $n \geqq 7$.

Corollary. Each of the classes $\mathfrak{G}_{1}-\mathfrak{G}_{2}, \mathfrak{G}_{2}-\mathfrak{G}_{1}, \mathfrak{G}_{1} \cap \mathfrak{G}_{2}$ is infinite.
We shall first prove some auxiliary assertions. We say that a vertex $u \in V(G)$ is universal if it is adjacent to all the other vertices of G.

Lemma 1. Let $n \geqq 6$ be an integer; suppose that G_{n} is a connected graph having n vertices u_{1}, \ldots, u_{n}, and that none of them is universal. Let us construct the graph G_{n+1} with $n+1$ vertices by adding a new vertex u_{n+1} to G_{n} and making it universal in G_{n+1}. Then
a) $G_{n} \in \mathfrak{G}_{1} \Leftrightarrow G_{n+1} \in \mathfrak{G}_{1}$,
b) $\boldsymbol{G}_{n} \in \mathfrak{G}_{2} \Leftrightarrow \boldsymbol{G}_{n+1} \in \mathfrak{G}_{2}$.

Proof. 1. Let $i=1$ or $i=2$ and $G_{n} \in \mathscr{G}_{i}$; suppose $G_{n+1} \notin \mathscr{G}_{i}$, i.e., for some distinct vertices $u_{\alpha}, u_{\beta} \in V\left(G_{n+1}\right)$ there exists an isomorphism $f: N_{i}\left(u_{\alpha}, G_{n+1}\right) \rightarrow N_{i}\left(u_{\beta}, G_{n+1}\right)$. Since u_{n+1} is universal in $N_{i}\left(u_{j}, G_{n+1}\right)$ for $1 \leqq j \leqq n$ while $N_{i}\left(u_{n+1}, G_{n+1}\right) \simeq G_{n}$ has no universal vertex, necessarily $\alpha \leqq n$ and $\beta \leqq n$ (\simeq denotes isomorphism).

Hence either $f\left(u_{n+1}\right)=u_{n+1}$ and then the partial mapping $\left.f\right|_{V\left(N_{i}\left(u_{\alpha}, G_{n}\right)\right)}$ is an isomorphism $N_{i}\left(u_{\alpha}, G_{n}\right)$ onto $N_{i}\left(u_{\beta}, G_{n}\right)$, which is impossible, or $f\left(u_{n+1}\right)$ is another universal vertex u_{y} in $N_{i}\left(u_{\beta}, G_{n+1}\right)$, and in this case interchanging the universal vertices u_{γ}, u_{n+1} we again obtain a contradiction.
2. If, conversely, $G_{n} \notin \mathfrak{G}_{i}$ for $i=1$ or $i=2$, then we have an isomorphism $f: N_{i}\left(u_{\alpha}, G_{n}\right) \rightarrow N_{i}\left(u_{\beta}, G_{n}\right)$; defining $f\left(u_{n+1}\right)=u_{n+1}$ we obtain an isomorphism $f: N_{i}\left(u_{\alpha}, G_{n+1}\right) \rightarrow N_{i}\left(u_{\beta}, G_{n+1}\right)$ and hence $G_{n+1} \notin \mathfrak{G}_{i}$.

Lemma 2. Let $n \geqq 6$ be an integer; suppose that G_{n} is a graph with n vertices u_{1}, \ldots, u_{n} such that the only universal vertex in G_{n} is u_{n} and that the minimum degree of G_{n} is at least 2 . Let us construct the graph G_{n+1} with $n+1$ vertices by adding a new vertex u_{n+1} to G_{n} and joining it to u_{n} by an edge. Then
a) $G_{n} \in \mathfrak{F}_{1} \Leftrightarrow G_{n+1} \in \mathfrak{F}_{1}$,
b) $G_{n} \in \mathfrak{G}_{2} \Leftrightarrow G_{n+1} \in \mathfrak{G}_{2}$.

Proof. a) 1. Let $G_{n} \in \mathfrak{G}_{1}$. Evidently $N_{1}\left(u_{i}, G_{n}\right)=N_{1}\left(u_{i}, G_{n+1}\right)$ for $1 \leqq i \leqq n-1$; moreover, u_{n} is the only vertex of degree n in G_{n+1} and u_{n+1} is the only vertex of degree 1 in G_{n+1}. Hence $G_{n+1} \in \mathscr{G}_{1}$.
2. Suppose conversely that $G_{n} \notin \mathfrak{F}_{1}$, i.e., some distinct vertices $u_{\alpha}, u_{\beta} \in V\left(G_{n}\right)$ have isomorphic neighbourhoods. Since u_{n} is the only universal vertex in G_{n}, necessarily $\alpha \neq n \neq \beta$; hence

$$
N_{1}\left(u_{\alpha}, G_{n+1}\right)=N_{1}\left(u_{\alpha}, G_{n}\right) \simeq N_{1}\left(u_{\beta}, G_{n}\right)=N_{1}\left(u_{\beta}, G_{n+1}\right)
$$

and therefore $G_{n+1} \notin \mathfrak{G}_{1}$.
b) 1. Let $G_{n} \in \mathfrak{G}_{2}$ and suppose that $G_{n+1} \notin \mathfrak{G}_{2}$, i.e., there exists an isomorphism $f: N_{2}\left(u_{\alpha}, G_{n+1}\right) \rightarrow N_{2}\left(u_{\beta}, G_{n+1}\right)$ for some $u_{\alpha}, u_{\beta} \in V\left(G_{n+1}\right), u_{\alpha} \neq u_{\beta}$. First observe that the neighbourhoods of u_{i} for $i \neq n$ have n vertices while $N_{2}\left(u_{n}, G_{n+1}\right)$ has $n-1$ vertices; hence $\alpha \neq n \neq \beta$. Further, evidently $N_{2}\left(u_{n+1}, G_{n+1}\right) \simeq K_{1, n-1}$. If $\alpha=$ $=n+1$ then $N_{2}\left(u_{\beta}, G_{n+1}\right) \simeq K_{1, n-1}$ and $1 \leqq \beta \leqq n-1$; considering neighbourhoods of the neighbouring vertices of u_{β} we obtain a contradiction. Hence $\alpha \neq n+1$; similarly $\beta \neq n+1$ and therefore $1 \leqq \alpha, \beta \leqq n-1$. The vertex u_{n+1} has degree 1 both in $N_{2}\left(u_{\alpha}, G_{n+1}\right)$ and in $N_{2}\left(u_{\beta}, G_{n+1}\right)$; hence either $f\left(u_{n+1}\right)=u_{n+1}$ and then the partial mapping $\left.f\right|_{V\left(N_{2}\left(u_{\alpha}, G_{n}\right)\right)}$ is an isomorphism $N_{2}\left(u_{a}, G_{n}\right)$ onto $N_{2}\left(u_{\beta}, G_{n}\right)$, which is impossible, or $f\left(u_{n+1}\right)$ is another vertex u_{γ} of degree 1 in $N_{2}\left(u_{\beta}, G_{n}\right)$ and in this case by interchanging the vertices u_{n+1}, u_{γ} we again obtain a contradiction.
2. Suppose conversely that $G_{n} \notin \mathfrak{G}_{2}$, i.e., we have an isomorphism $f: N_{2}\left(u_{\alpha}, G_{n}\right) \rightarrow$ $\rightarrow N_{2}\left(u_{\beta}, G_{n}\right)$ for some $u_{\alpha}, u_{\beta} \in V\left(G_{n}\right), \alpha \neq \beta$. Necessarily $\alpha \neq n \neq \beta$ since u_{n} is universal in $N_{2}\left(u_{i}, G_{n}\right)$ for $1 \leqq i \leqq n-1$ while $N_{2}\left(u_{n}, G_{n}\right)$ has no universal vertex. Further, u_{n} is the only vertex of degree $n-1$ both in $N_{2}\left(u_{\alpha}, G_{n}\right)$ and in $N_{2}\left(u_{\beta}, G_{n}\right)$, and hence $f\left(u_{n}\right)=u_{n}$. Therefore, if we define $f\left(u_{n+1}\right)=u_{n+1}$, we obtain an isomorphism $N_{2}\left(u_{\alpha}, G_{n+1}\right)$ onto $N_{2}\left(u_{\beta}, G_{n+1}\right)$, i.e. $G_{n+1} \notin G_{2}$.

Lemma 3. Let $n \geqq 6$ be an integer; suppose that G_{n} is a graph with n vertices u_{1}, \ldots, u_{n} such that the only universal vertex in G_{n} is u_{n-1} and the only vertex of degree 1 in G_{n} is u_{n}. Let us construct the graph G_{n+1} with $n+1$ vertices by adding a new vertex u_{n+1} to G_{n} and joining it to u_{n} by an edge. Then
a) $G_{n} \in \mathfrak{G}_{1} \Leftrightarrow G_{n+1} \in \mathfrak{G}_{1}$,
b) $\boldsymbol{G}_{n} \in \mathfrak{G}_{2} \Leftrightarrow G_{n+1} \in \mathfrak{G}_{2}$.

Proof. a) 1. If $G_{n} \in \mathfrak{F}_{1}$, then, since $N_{1}\left(u_{i}, G_{n}\right)=N_{1}\left(u_{i}, G_{n+1}\right)$ for $1 \leqq i \leqq n-1$, $N_{1}\left(u_{n+1}, G_{n+1}\right)$ is the graph which consists of an isolated vertex and $N_{1}\left(u_{n}, G_{n+1}\right)$ consists of two isolated vertices, evidently $G_{n+1} \in \mathfrak{G}_{1}$.
2. If, conversely, $G_{n} \notin \mathfrak{G}_{1}$, then there exist vertices $u_{\alpha}, u_{\beta}, \alpha \neq \beta$, such that $N_{1}\left(u_{\alpha}, G_{n}\right) \simeq N_{1}\left(u_{\beta}, G_{n}\right)$. Evidently $1 \leqq \alpha, \beta \leqq n-1$ and hence $N_{1}\left(u_{\alpha}, G_{n+1}\right)=$ $=N_{1}\left(u_{\alpha}, G_{n}\right) \simeq N_{1}\left(u_{\beta}, G_{n}\right)=N_{1}\left(u_{\beta}, G_{n+1}\right)$, i.e. $G_{n+1} \notin \mathfrak{G}_{1}$.
b) 1. If $G_{n} \in \mathfrak{G}_{2}$, then evidently $G_{n+1} \in \mathfrak{G}_{2}$, since $N_{2}\left(u_{i}, G_{n+1}\right)=N_{2}\left(u_{i}, G_{n}\right)$ for $1 \leqq i \leqq n, i \neq n-1$, and these neighbourhoods have $n-1$ vertices and are connected, while $N_{2}\left(u_{n-1}, G_{n+1}\right)$ is disconnected and $N_{2}\left(u_{n+1}, G_{n+1}\right)$ has exactly two vertices.
2. If, conversely, $G_{n} \notin \mathfrak{G}_{2}$, then $N_{2}\left(u_{\alpha}, G_{n}\right) \simeq N_{2}\left(u_{\beta}, G_{n}\right)$ for some $\alpha \neq \beta$. One can easily observe that necessarily $\alpha \neq n-1 \neq \beta$ and hence evidently $\boldsymbol{G}_{n+1} \notin \mathscr{G}_{2}$.

Proof of the theorem. The assertion concerning the non-existence of the graph $G_{n} \in \mathfrak{G}_{1}-\mathfrak{G}_{2}$ with n vertices for $n \leqq 5$ is contained in [3], the non-existence of the graph G_{n} on n vertices which belongs either to $\mathfrak{G}_{2}-\mathfrak{G}_{1}$ or to $\mathfrak{G}_{1} \cap \mathfrak{G}_{2}$ follows for $n \leqq 6$ from [2], Theorem 2.1.
a) For $n \geqq 6$ define the graph $G_{n} \in \mathfrak{G}_{1}-\mathfrak{F}_{2}$ by using the following construction:

- for $n=6$ see the graph G_{6} in Fig. 1;
- having obtained G_{n}, construct G_{n+1} using Lemma 1 for $n \equiv 0(\bmod 3)$, Lemma 2 for $n \equiv 1(\bmod 3)$, Lemma 3 for $n \equiv 2(\bmod 3)$.
b) For $n \geqq 7$ define the graph $G_{n} \in \mathfrak{F}_{2}-\mathfrak{G}_{1}$ by using the following construction:
- for $n=7$ see the graph G_{7} in Fig. 2;
- having obtained G_{n}, construct G_{n+1} using

Lemma 1 for $n \equiv 1(\bmod 3)$,
Lemma 2 for $n \equiv 2(\bmod 3)$,
Lemma 3 for $n \equiv 0(\bmod 3)$.
c) For $n \geqq 7$ define the graph $G_{n} \in \mathfrak{G}_{1} \cap \mathfrak{G}_{2}$ by using the following construction:

- for $n=7$ see the graph G_{7} in Fig. 3; one can easily observe that $G_{7} \in \mathfrak{G}_{1} \cap \mathfrak{G}_{2}$;
- having obtained G_{n}, construct G_{n+1} using

Lemma 1 for $n \equiv 1(\bmod 3)$,
Lemma 2 for $n \equiv 2(\bmod 3)$,
Lemma 3 for $n \equiv 0(\bmod 3)$.

Fig. 3

References

[1] M. Behzad, G. Chartrand: Introduction to the theory of graphs. Allyn and Bacon, Boston, 1971.
[2] Z. RyjáCek: On graphs with isomorphic, non-isomorphic and connected N_{2}-neighbourhoods. Časopis pěst. mat. 112 (1987), 66-79.
[3] J. Sedláček: Local properties of graphs. Časopis pěst. mat. 106 (1981), 290-298 (Czech, English summary).
[4] J. Sedláǎek: On local properties of finite graphs. In: Graph theory (Lagów 1981). Lecture Notes in Math. 1018, Springer-Verlag 1983, 242-247.
[5] J. Sedlácek: Über eine spezielle Klasse von asymmetrischen Graphen. In: Graphen in Forschung und Unterricht (Proc. Symp. Kiel, 1985), Barbara Franzbecker-Verlag, 1985.
[6] M. N. S. Swamy, K. Thulasiraman: Graphs, Networks and Algorithms. J. Wiley 1981.

Souhrn

GRAFY S NEIZOMORFNÍMI OKOLÍMI UZLUٌ 1. A 2. DRUHU ZDENĚK RyJÁČEK

V článku se zkoumá vzájemný vztah tříd $\mathscr{S}_{1}, \mathscr{G}_{2}$ grafủ s neizomorfními okolími uzlủ prvního, resp. druhého druhu; z hlavní věty článku jako dủsledek vyplývá, že každá z tříd $\mathbb{G}_{1}-\mathfrak{G}_{2}$, $\mathfrak{E S}_{2}-\mathscr{G}_{1}, \mathfrak{E}_{1} \cap \mathbb{E}_{2}$ je nekonečná.

Резюме

ГРАФЫ С НЕИЗОМОРФНЫМИ ОКРУЖЕНИЯМИ ВЕРШИН ПЕРВОГО И ВТОРОГО ТИПОВ
 Zdeněk RyjÁček

В статье изучается взаимоотношение классов $\mathfrak{G}_{1}, \mathfrak{G}_{2}$ графов с неизоморфными окружениями вершин первого и второго типа. Из главноц теоремы в качестве следствия вытекает, что каждыи из классов $\mathfrak{G}_{1}-\mathfrak{G}_{2}, \mathfrak{G}_{2}-\mathfrak{G}_{1}, \mathfrak{G}_{1} \cap \mathfrak{G}_{2}$ бесконечен.

Author's address: Katedra matematiky VŠSE, Nejedlého sady 14, 30614 Plzeň.

